Functional Programming
Practicals 0

Shin-Cheng Mu
FLOLAC 2022

Reviews...

1. A practice on curried functions.

(a) Define a function poly such that poly a b ¢ x = a x x> + b x x + c. All the inputs and the
result are of type Float.

(b) Reuse poly to define a function poly1such that polyTx = x* +2 x x + 1.
(c) Reuse poly to define a function poly2 such that poly2abc=ax 2>+ b x 2 +c.

Solution:

poly :: Float — Float — Float — Float — Float
polyabcx=axxXx+bXx+c

poly1:: Float — Float

poly1=poly 121

poly :: Float — Float — Float — Float
poly2ab c=poly abc?2

2. Type in the definition of square in your working file.

(a) Define a function quad :: Int — Int such that quad x computes x*.

Solution:

quad :: Int — Int
quad x = square (square x) .

(b) Type in this definition into your working file. Describe, in words, what this function
does.

twice i(a— a) — (a— a)

twice f x = f (f x) .

(c) Define quad using twice.

Solution:

quad :: Int — Int
quad = twice square .

3. Replace the previous twice with this definition:

twice :(a— a) — (a — a)

twice f =f - f .
(a) Does quad still behave the same?
(b) Explain in words what this operator (-) does.
4. Functions as arguments, and a quick practice on sectioning.
(a) Type in the following definition to your working file, without giving the type.
forktimes f g x =f x X g x .

Use : tin GHCi to find out the type of forktimes. You will end up getting a complex type
which, for now, can be seen as equivalent to

(t = Int) = (t — Int) — t — Int .

Can you explain this type?

(b) Define a function that, given input x, use forktimes to compute x* + 3 X x + 2. Hint:
X2 +3xx+2=(x+1) X (x+2).

Solution:

compute :: Int — Int
compute = forktimes (+1) (+2) .

(c) Type in the following definition into your working file: lift2 h f g x = h (f x) (g x). Find
out the type of lift2. Can you explain its type?

Page 2

Solution:

lift2:(a—b—¢c)—>(d—>a—(d—b)—d—c.

(d) Use lift2 to compute x* + 3 X x + 2.

Solution:

compute :: Int — Int
compute = lift2 (x) (+1) (+2) .

Definitions and Proofs by Induction

. Prove that length distributes into (+):

length (xs + ys) = length xs + length ys .

Solution: Prove by induction on the structure of xs.

Case xs:= []:

length ([] + ys)

{ definition of (+) }
length ys

{ definition of (+) }
0 + length ys

{ definition of length }
length [] + length ys

Page 3

Case xs := x : xs:

length ((x : xs) + ys)

{ definition of (+) }
length (x : (xs + ys))

{ definition of length }
1+ length (xs + ys)

{ by induction }
1+ length xs + length ys

{ definition of length }
length (x : xs) + length ys

Note that we in fact omitted one step using the associativity of (+).

. Prove: sum - concat = sum - map sum.

Solution: By extensional equality, sum - concat = sum - map sum if and only if
(sum - concat) xss = (sum - map sum) xss,

for all xss, which, by definition of (-), is equivalent to
sum (concat xss) = sum (map sum xss),

which we will prove by induction on xss.

Case xss := []:

sum (concat []))

{ definition of concat }
sum []
= { definition of map }

sum (map sum [])

Page 4

Case xss := XS : XSs:

sum (concat (xs : xss))
= { definition of concat }
sum (xs +(concat xss))
= { lemma: sum distributes over + }
sum xs + sum (concat xss)
= { by induction }
sum xs + sum (map sum xss)
= { definition of sum }
sum (sum xs : map sum Xxss)
= { definition of map }

sum (map sum (xs : xss)).

The lemma that sum distributes over +, that is,

sum (Xs + ys) = sum xs + sum ys,

needs a separate proof by induction. Here it goes:

Case xs:=[|:

sum ([]+ ys)

= { definition of (+) }
sum ys

= { definition of (+) }
0+sumys

= { definition of sum }

sum []+ sumys.

Page 5

Case xs := x : xs:

sum ((x : xs) + ys)
{ definition of (+) }

sum (x : (xs + ys))

= { definition of sum }
X + sum (xs + ys)

= { induction }
X + (sum xs + sum ys)

= { since (+) is associative }
(x + sum xs) + sum ys

= { definition of sum }

sum (x : xs) + sum ys.

3. Prove: filter p- map f = map f - filter (p - f).
Hint: for calculation, it might be easier to use this definition of filter:

fiter p[1 =11
filter p (x : xs) = if p x then x : filter p xs
else filter p xs

and use the law that in the world of total functions we have:
f (if g then e, else e,) = if gthen f e, else f e,

You may also carry out the proof using the definition of filter using guards:

filter p(x : xs) | px = ...

| otherwise = ...

You will then have to distinguish between the two cases: p x and = (p x), which makes the
proof more fragmented. Both proofs are okay, however.

Solution:

filter p - map f = map f - filter (p - f)
= { extensional equality }
(Vxs = (filter p - map f) xs = (map f - filter (p - f)) xs)
{ definition of (-) }
(Vxs :: filter p (map f xs) = map f (filter (p - f) xs)).

Page 6

We proceed by induction on xs.

Case xs:= []:

filter p (map f [])
= { definition of map }

filter p []
= { definition of filter }
[]

{ definition of map }
map f []

{ definition of filter }
map f (filter (p - f) [1)

Case xs := x : xs:

filter p (map f (x : xs))
= { definition of map }
filter p (f x : map f xs)
= { definition of filter }
if p (f x) then f x : filter p (map f xs) else filter p (map f xs)
{ induction hypothesis }
if p (f x) then f x : map f (filter(p - f) xs) else map f (filter (p - f) xs)
{ defintion of map }
if p (f x) then map f (x : filter (p - f) xs) else map f (filter (p - f) xs)
{ since f (if g then e, else ¢,) = if gthen f e, else f e, }
map f (if p (f x) then x : filter (p - f) xs else filter (p - f) xs)
{ definition of (-) }
map f (if (p- f) x then x : filter (p - f) xs else filter (p - f) xs)
{ definition of filter }
map f (filter (p- f) (x : x5))

4. Reflecting on the law we used in the previous exercise:
f (if g then e, else ¢,) = if gthen f ¢, else f e,

Can you think of a counterexample to the law above, when we allow the presence of 17?
What additional constraint shall we impose on f to make the law true?

Page 7

Solution: Let f = const 1 (where const x y = x), and g = L. We have:

const 1 (if L then e, else ¢,)

= { definition of const }
1

7 L

= { if is strict on the conditional expression }
if L then f e, else f e,

The rule is restored if f is strict, thatis, f 1 = L.

5. Prove: take n xs + drop n xs = xs, for all nand xs.

Solution: By induction on n, then induction on xs.
Casen:=0
take 0 xs + drop 0 xs
{ definitions of take and drop }
[]+xs
{ definition of (+) }

XS.

Casen:=1, nand xs := []
take (1, n) []+ drop (1. n) []
{ definitions of take and drop }

[1+[]
{ definition of (+) }

[].

Casen:=1, nand xs := x : xs

take (1, n) (x : xs) + drop (1, n) (x : xs)
{ definitions of take and drop }

(x : take n xs) + drop n xs
{ definition of (+) }

x : take n xs + drop n xs
{ induction }

X ¢ XS.

Page 8

6. Define a function fan :: a — List a — List (List a) such that fan x xs inserts x into the Oth,
1st... nth positions of xs, where n is the length of xs. For example:

fan'5[1,2,3,4] = [[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1,2,3,4,5]] .

Solution:

fan i a — List a — List (List a)
fan x [] = [[x]]
fanx (y : ys) = (x:y :ys): map (y :) (fan xys)

7. Prove: map (map f) - fan x = fan (f x) - map f, for all f and x. Hint: you will need the
map-fusion law, and to spot that map f - (y :) = (f y :) - map f (why?).

Solution: This is equivalent to proving that, for all f, x, and xs:

map (map f) (fan x xs) = fan (f x) (map f xs) .
Induction on xs.
Case xs:= [|:

map (map f) (fan x [])

= { definition of fan }
map (map f) [[x]]

= { definition of map }
[[f x]]

= { definition of fan }
fan(f x) []

= { definition of fan }
fan (f x) (map f []) .

Case xs:= y : ys:

map (map f) (fan x (y : ys))
= { definition of fan }

map (map f) ((x : y : ys) : map (y :) (fan x ys))
= { definition of map }

map f (x : y = ys) : map (map f) (map (y :) (fan x ys)))
= { map-fusion }

map f (x : y : ys) : map (map f - (y 3)) (fan x ys)
= { definition of map }

map f (x : y : ys) : map ((fy :) - map f) (fan x ys)
= { map-fusion }

map f (x : y : ys) : map (fy :) (map (map f) (fan x ys))
= { induction }

map f (x : y : ys) : map (fy) (fan (f x) (map f y9)
= { definition of map } Page 9

(f x: f y:map f ys): map (fy) (fan (f x) (map f ys))
= { definition of fan }

fan(f x) (f y : map f ys)

8. Define perms :: List a — List (List a) that returns all permutations of the input list. For
example:

perms [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

Solution:

perms i List a — List (List a)

perms[1 = [[1]

perms (x : xs) = concat (map (fan x) (perms xs))

9. Prove: map (map f) - perm = perm - map f. You may need previously proved results, as well
as a property about concat and map: for all g, we have map g - concat = concat - map (map g).

Solution: This is equivalent to proving that, for all f and xs:

map (map f) (perm xs) = perm (map f xs) .

Induction on xs.
Case xs:=[]:

map (map f) (perm [])

= { definition of perm }
map (map f) [[1]

= { definition of map }
[[1]

= { definition of perm }
perm []

= { definition of map }

perm (map f [1) -
Case x5 := x : x5t
map (map f) (perm (x : xs))
= { definition of perm }
map (map f) (concat (map (fan x) (perm xs)))
= { since map g - concat = concat - map (map g) }
concat (map (map (map f))(map (fan x) (perm xs)))
= { map-fusion }
concat (map (map (map f) - fan x) (perm xs))
= { previous exercise }
concat (map (fan (f x) - map f) (perm xs))
= { map-fusion }
concat (map (fan (f x)) (map (map f) (pernt xs)))
= { induction }
concat (map (fan (f x)) (pernpgrggpié" xs)))
= { definition of perm
perm (f x : map f xs)
= { definition of map }

10. Define inits :: List a — List (List a) that returns all prefixes of the input list.
inits "abcde" - [u n’ nau’ uabn’ "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

Solution:

inits i List a — List (List a)

inits [] = [[1]

inits (x : xs) =[] : map (x :) (inits xs) .

11. Define tails :: List a — List (List a) that returns all suffixes of the input list.
tails "abcde" - ["abcde", "bcde", "cde", udeu’ neu’ " u].

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

Solution:

tails i List a — List (List a)

tails] = [[1]

tails (x : xs) = (x : xs) : tails xs .

12. The function splits :: List a — List (List a, List a) returns all the ways a list can be split into
two. For example,

splits [1,2,3,4] = [([],[1,2,3,4]),([1
1 [1

Define splits inductively on the input list. Hint: you may find it useful to define, in a where-
clause, an auxiliary function f (ys,zs) = ... that matches pairs. Or you may simply use
(A (ys, zs) — ...).

Solution:

splits :: List a — List (List a, List a)

splits [] = [([1.[D]

splits (x : xs) = ([],x : xs) : map cons1 (splits xs) ,
where consT (ys, zs) = (x : ys, zs) .

Page 11

If you know how to use A expressions, you may:

splits 0 List a — List (List a, List a)
splits] [([1.ID]
splits (x : xs) = ([],x : xs) : map (X (ys, zs) — (x : ys, zs)) (splits xs) .

13. An interleaving of two lists xs and ys is a permutation of the elements of both lists such that

14.

the members of xs appear in their original order, and so does the members of ys. Define
interleave :: List a — List a — List (List a) such that interleave xs ys is the list of interleaving
of xs and ys. For example, interleave [1, 2, 3] [4, 5] yields:

[[1’ 2’ 3’ 4’ 5]7 [1’ 2) 4’ 3’ 5]7 [1’ 2) 4’ 5’ 3]’ [1’47 2’ 3) 5]’ [1’47 2’ 5) 3]’
(1,4,5,2,3],[4,1,2,3,5],[4,1,2,5,3],[4,1,5,2,3], 4,5, 1,2,3]].

Solution:
interleave . List a — List a — List (List a)
interleave [] ys = [ys]
interleave xs [] = [xs]

interleave (x : xs) (y : ys) = map (x :) (interleave xs (y : ys)) +
map (y :) (interleave (x : xs) ys) .

A list ys is a sublist of xs if we can obtain ys by removing zero or more elements from xs. For
example, [2,4] is a sublist of [1,2, 3,4], while [3,2] is not. The list of all sublists of [1,2,3] is:

(00, 3], [2], [2, 3], [1]. [, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a — List (List a) that computes the list of all sublists of the
given list. Hint: to form a sublist of xs, each element of xs could either be kept or dropped.

Solution:
sublist 2 List a — List (List a)
sublist [] = [[]]

sublist (x : xs)

xss + map (x :) xss ,
where xss = sublist xs .

The righthand side could be sublist xs+ map (x :) (sublist xs) (but it could be much

slower).

Page 12

15. Consider the following datatype for internally labelled binary trees:
data Tree a = Null | Node a (Tree a) (Tree a) .

(a) Given (}) == Nat — Nat — Nat, which yields the smaller one of its arguments, define
minT :: Tree Nat — Nat, which computes the minimal element in a tree. (Note: (]) is
actually called min in the standard library. In the lecture we use the symbol (]) to be

brief.)
Solution:
minT 2 Tree Nat — Nat
minT Null = maxBound

minT (Node x t u) = x| minT t | minT u .

(b) Define mapT :: (a — b) — Tree a — Tree b, which applies the functional argument to
each element in a tree.

Solution:
mapT :(a— b) — Treea— Tree b
mapT f Null = Null

mapT f (Node x t u) = Node (f x) (mapT f t) (mapT f u) .

(c) Can you define (}) inductively on Nat?

Solution:
) = Nat — Nat — Nat
0ln =0
(1.m)lo =0

(1.m) | (1,n) = 1, (m{n) .

(d) Prove that for all nand t, minT (mapT (n+) t) = n+ minT t. That is, minT - mapT (n+) =
(n+) - minT.

Solution: Induction on t.
Case t := Null. Omitted.

Page 13

Case t := Node x t u.

minT (mapT (n+) (Node x t u))
= { definition of mapT }
minT (Node (n + x) (mapT (n+) t) (mapT (n+) u))
= { definition of minT }
(n+ x) 4 minT (mapT (n+) t)) | minT (mapT (n+) u)
= { by induction }
(n+x)l (n+ minT t)] (n+ minT u)
= {lemma:(n+x)}(n+y)=n+(xly) }
n+ (x| minT t | minT u)
= { definition of minT }

n+ minT (Node x t u) .

The lemma (n+ x) L (n+ y) = n+ (x| y) can be proved by induction on n, using
inductive definitions of (+) and ({).

Page 14

