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Purpose of deduction systems (such as NJ and NK)

Constructing derivations in a deduction system is like playing a
game of symbols, with the rules being strictly followed. But is
there any meaning in playing the game?

Yes! We informally introduced the intuitionistic meaning of
propositions and explained how each inference rule in NJ is valid in
terms of this meaning. Thus every (correct) derivation gives a
valid entailment.

We can make the connection mathematically precise, starting from
defining a semantics for propositional logic, i.e., translating
propositional formulas to (more familiar) mathematical entities.
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Preliminary: structured proof

Leslie Lamport proposes an informal yet principled way of writing
proofs, inspired by natural deduction.

Analyse a proof goal into assumptions and a conclusion.
Give the proof directly if it is simple, or a sketch otherwise.
If a proof is more complex, separate the proof into
intermediate steps, with the last one being ‘QED’, which
stands for the conclusion that we set out to establish.
Organise intermediate steps as nested, numbered lists,
explicitly showing the tree structure of the proof, and making
it easy to refer to previous steps.

Questions. How do structured proofs correspond to derivations in
natural deduction? What do you think about the design of
structured proofs, especially compared with unstructured ones?
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A sample structured proof
Theorem. If a function is bijective, it has a two-sided inverse.

ASSUME f : A → B
(injectivity) ∀a, a′ : A. f a = f a′ ⇒ a = a′
(surjectivity) ∀b : B. ∃a : A. f a = b

GOAL There exists g : B → A such that
∀a : A. g (f a) = a and ∀b : B. f (g b) = b.

PROOF Construct the inverse and verify the inverse properties.
0 There exists g : B → A.
1 ∀b : B. f (g b) = b
2 ∀a : A. g (f a) = a
3 QED.

PROOF The inverse is constructed by 0 , and the inverse
properties are verified by 1 and 2 .
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A sample structured proof (continued)

0 There exists g : B → A.
PROOF Given any b : B, let g b be the element of A that is

asserted to exist by surjectivity. (Invoke the axiom
of choice if necessary.)

1 ∀b : B. f (g b) = b
ASSUME b : B
GOAL f (g b) = b
PROOF g b is, by definition in 0 (in terms of surjectivity),

an element a : A satisfying f a = b.
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A sample structured proof (continued)

2 ∀a : A. g (f a) = a
ASSUME a : A
GOAL g (f a) = a
PROOF Use injectivity.
2.0 f (g (f a)) = f a PROOF 1 , substituting f a for b.
2.1 QED. PROOF Injectivity and 2.0 .

Exercise. If a function has a two-sided inverse, it is bijective.

ASSUME f : A → B; g : B → A
∀a : A. g (f a) = a; ∀b : B. f (g b) = b

GOAL ∀a, a′ : A. f a = f a′ ⇒ a = a′
∀b : B. ∃a : A. f a = b
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Classical semantics of propositional logic

Classical semantics adopts the principle of bivalence: every
proposition denotes exactly one of the two truth-values, 0 (false)
or 1 (true).
Definition. The set of valuations is defined to be PV → 2, where
2 := {0, 1}.
Definition. The truth-value interpretation
[[_]] : Prop → (PV → 2) → 2 of propositional formulas maps each
propositional formula to a function from valuations to truth values,
and is defined by

[[⊥]] σ = 0
[[v : PV ]] σ = σ v
[[φ ∧ ψ]] σ = min ([[φ]] σ) ([[ψ]] σ)
[[φ ∨ ψ]] σ = max ([[φ]] σ) ([[ψ]] σ)
[[φ→ ψ]] σ = if [[φ]] σ ⩽ [[ψ]] σ then 1 else 0
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Meta-connectives
Lemma. [[⊤]] σ = 1 for any valuation σ.

ASSUME σ : PV → 2
GOAL [[⊤]] σ = 1

PROOF Expand the definitions:
[[⊤]] σ

= { definition of ⊤}
[[⊥ → ⊥]] σ

= { definition of [[_]] for ‘→’ }
if [[⊥]] σ ⩽ [[⊥]] σ then 1 else 0

= { definition of [[_]] for ⊥}
if 0 ⩽ 0 then 1 else 0

= { 0 ⩽ 0 }
1

Exercise. [[¬φ]] σ = 1 − [[φ]] σ for any valuation σ.
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Semantic consequence
Definition. A valuation σ satisfies a formula φ exactly when
[[φ]] σ = 1; it satisfies a set Γ of formulas exactly when it satisfies
every formula in Γ.

Definition. φ is a semantic consequence of Γ exactly when, for
any valuation σ, φ is satisfied by σ whenever Γ is satisfied by σ. In
this case we write Γ |= φ.

Definition. φ is valid exactly when |= φ. In this case φ is called a
tautology.
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Example: |= φ ∨ ¬φ

ASSUME σ : PV → 2
GOAL [[φ ∨ ¬φ]] σ = 1

PROOF Case analysis on [[φ]] σ.

0 CASE [[φ]] σ = 1

PROOF [[φ ∨ ¬φ]] σ = max ([[φ]] σ) (1 − [[φ]] σ) = max 1 0 = 1.

1 CASE [[φ]] σ = 0

PROOF [[φ ∨ ¬φ]] σ = max ([[φ]] σ) (1 − [[φ]] σ) = max 0 1 = 1.

2 QED.
PROOF Either [[φ]] σ = 1 or [[φ]] σ = 0; 1 and 2 .

Notation. ‘ CASE C ’ abbreviates ‘ ASSUME C GOAL QED’.

Exercise. φ ∨ ψ,¬ψ |= φ
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|= φ ∨ ¬φ — truth table method

We may just summarise the case analysis on [[φ]] σ and evaluation
of the value of the entire propositional formula in a truth table.

φ φ ∨ ¬ φ

0 0 1 1 0
1 1 1 0 1

Theorem. Validity in classical propositional logic is decidable, i.e.,
there is a mechanical procedure that, given a propositional formula,
decides whether it is valid or not in a finite amount of time.

Exercise. How do you use a truth table to show φ ∨ ψ,¬ψ |= φ?
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Relationship between deduction system and semantics

Theorem. NK is sound with respect to the classical semantics:
Γ ⊢NK φ implies Γ |= φ for any Γ and φ.

Corollary. NJ is sound with respect to the classical semantics.

PROOF Every NJ derivation is an NK derivation.

Theorem. NK is complete with respect to the classical
semantics: Γ |= φ implies Γ ⊢NK φ for any Γ and φ.

NJ is, however, not complete with respect to the classical
semantics, since, for instance, A ∨ ¬A is classically valid but not
derivable in NJ.
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Underivability

Theorem (consistency). There is no NJ/NK derivation of ⊢ ⊥.

ASSUME ⊢ ⊥ derivable
GOAL contradiction
PROOF By soundness we get |= ⊥, which is false however.

Question. Why is consistency important?

It is possible to prove this theorem purely syntactically, but it takes
more than a straightforward induction.
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Soundness proof
Theorem. NK is sound with respect to the classical semantics:
Γ ⊢NK φ implies Γ |= φ for any Γ and φ.

Intuitively, proving this theorem is just formalising how we justified
the inference rules last time: For each rule,

assume that the premises are semantic consequences, and
prove that the conclusion is also a semantic consequence.
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Example: soundness of implication introduction
Lemma. Γ, φ |= ψ implies Γ |= φ→ ψ.

ASSUME Γ ⊆ Prop; φ, ψ : Prop; Γ, φ |= ψ
σ : PV → 2; σ satisfies Γ

GOAL [[φ→ ψ]] σ = 1

PROOF Case analysis on the truth value of φ.

0 CASE [[φ]] σ = 0

1 CASE [[φ]] σ = 1

2 QED.
PROOF 0 and 1 cover all possible values of [[φ]] σ.
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Example: soundness of implication introduction
0 CASE [[φ]] σ = 0

PROOF [[φ→ ψ]] σ = 1
⇔ { definition of [[_]] for ‘→’ }

[[φ]] σ ⩽ [[ψ]] σ
⇔ { assumption }

0 ⩽ [[ψ]] σ
⇔ { truth value is either 0 or 1 }

true
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Example: soundness of implication introduction
1 CASE [[φ]] σ = 1

PROOF ψ must be true, and therefore so must φ→ ψ.
1.0 σ satisfies Γ, φ. PROOF σ satisfies Γ and φ.
1.1 [[ψ]] σ = 1. PROOF Γ, φ |= ψ and 1.0 .
1.2 QED.

PROOF [[φ→ ψ]] σ = 1
⇔ { definition of [[_]] for ‘→’ }

[[φ]]σ ⩽ [[ψ]]σ
⇔ { 1.1 }

[[φ]]σ ⩽ 1
⇔ { truth value is either 0 or 1 }

true.

Exercise. What about the soundness of other rules?

II-16



Induction
Every inductively defined set, e.g., the set N of natural numbers
and Prop, is equipped with an induction principle.

Let P φ be a property on φ : Prop. If we can show that P is
‘propagated’ by every construction rule of Prop, then for any
φ : Prop, a proof of P φ can be derived in the same way as how
φ is constructed.

Slightly more formally, P φ holds for every φ : Prop if
P v holds for every v : PV ,
P ⊥ holds,
for any φ, ψ ∈ Prop, P (φ ∧ ψ) holds if P φ and P ψ hold,
for any φ, ψ ∈ Prop, P (φ ∨ ψ) holds if P φ and P ψ hold, and
for any φ, ψ ∈ Prop, P (φ→ ψ) holds if P φ and P ψ hold.

Question. Do you accept this induction principle?
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Inductive definition of derivations
For brevity, let us focus on the ‘implicational fragment’ of Prop,
calling the subset Prop−.

Definition. The sets NJ−[Γ;φ] of derivations, where Γ ranges
over the subsets of Prop− and φ over Prop−, are inductively
defined by the following rules:

(assum)
Γ ⊢ φ : NJ−[Γ;φ] if φ ∈ Γ;

d (⊥E)
Γ ⊢ φ : NJ−[Γ;φ] if d : NJ−[Γ;⊥];

d (→I)
Γ ⊢ φ→ ψ

: NJ−[Γ;φ→ ψ] if d : NJ−[Γ, φ;ψ];

d e (→E)
Γ ⊢ ψ : NJ−[Γ;ψ] if d : NJ−[Γ;φ→ ψ] and

e : NJ−[Γ;φ].
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Induction principle on NJ−

The rule d (→I)
Γ ⊢ φ→ ψ

: NJ−[Γ;φ→ ψ] if d : NJ−[Γ, φ;ψ]
is interpreted as ‘if d is a derivation with conclusion Γ, φ ⊢ ψ, then

d (→I)
Γ ⊢ φ→ ψ

is a derivation with conclusion Γ ⊢ φ→ ψ’.

Let P Γ φ d be a property on Γ ⊆ Prop−, φ : Prop−, and
d : NJ−[Γ;φ], i.e., P talks about a derivation d and the context Γ
and formula φ in the conclusion of d. The corresponding case of
the above rule in the induction principle on NJ− is

For any Γ ⊆ Prop−, φ, ψ ∈ Prop−, and d : NJ−[Γ, φ;ψ],
P Γ (φ→ ψ)

(
d (→I)

Γ ⊢ φ→ ψ

)
holds if P (Γ, φ) ψ d holds.

Question. Do you accept this induction principle?
Exercises. Prove NK’s soundness and Glivenko’s theorem with
the respective induction principles.
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