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Why formal verification?

”Can we instead build on the idea that a computer program is
a mathematical object that can be understood through logic?”

— Leslie Lamport, The Future of Computing: Logic or Biology

Advantages against conventional approach

• No ambiguity (compared with specification written in natural languages)
• Correct with respect to all allowed inputs and states (compared with testing)
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Categorizing verification techniques

Extract-based interactive verification

• Programs, properties and proofs are all written in some functional language
which is itself also a consistent logic (e.g., Agda and Coq)

• Examples: CompCert and FSCQ

Import-based interactive verification

• Programs written in some imperative languages (e.g., C and Java); properties
and proofs are written in another first-order or higher-order logic

• Examples: seL4 and CertiKOS

Import-based automatic verification

• Programs written in some imperative languages (e.g., C and Java); properties
are often written in first-order logic; proofs are done automatically

• Examples: Yxv6 and Ironfleet
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Outline

Verifying programs and systems with automatic verification tools

• Definitions of program correctness
• Automatic verification techniques

Formal verification of a snapshot-consistent flash translation layer
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Absence of undefined behavior
int A[4];
uintptr_t i;
int8_t x;
uint8_t y;

void dummy(void) {
A[i] = 10;
x++;
y++;

}

Given what condition does this program have defined behaviors (e.g., array
out-of-bound access and integer overflow)?

i < 4 ∧ x < 127

How about y < 255? C language requires unsigned integer to ”wrap around”.

We often call this precondition.

But this program is not so useful. We don’t know what this program is intended to do.
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Algorithmic property
int A[4];
uintptr_t i, x;

void findmax(void) {
x = 0;
for (i = 0; i < 4; i++)

if (A[i] >= A[x])
x = i;

}

This program assigns to x the position of the maximal element in array A. We can
express this sentence formally:

∀i.i < 4 =⇒ A[i] ≤ A[x]

We often call this postcondition.

In fact, A[x] is the last maximal element. Again, formally:

(∀i.i < 4 =⇒ A[i] ≤ A[x]) ∧ (∀j.x < j < 4 =⇒ A[j] < A[x])
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uintptr_t i, x;

void findmax(void) {
x = 0;
for (i = 0; i < 4; i++)

if (A[i] >= A[x])
x = i;

}

If we know that ”A does not contain repeated elements”, then we can have a stronger
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Preservation of invariant

Up to now, we have only seen programs that run to their ends. But a system is more
like an infinite loop.

Let’s consider a system to be a state machine with a set of states and a set of
operations that bring one state to another. E.g., kernel data structures and system
calls of an operating system.

An execution fragment is a state-operation alternating sequence: s0α1s1α2s2...αnsn.
We are interested in the invariants of a system, which are conditions (on states)
satisfied throughout any execution fragment.

To show that a system actually has an invariant, we can show:

• The invariant holds for the initial state
• The invariant is preserved by every operation

That is, an invariant should be a precondition (assumed before executing an
operation) but at the same time a postcondition (established after executing an
operation). Although an invariant may be violated during execution.
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Preservation of invariant

int8_t cnt;

void init(void)
{

cnt = 0;
}

void add1(void)
{

cnt = cnt + 1;
if (cnt >= 100)

cnt = cnt - 100;
}

void add2(void)
{

cnt = cnt + 2;
if (cnt >= 100)

cnt = cnt - 100;
}

This simple example has one state variable cnt and two operations add1 and add2.

It has an invariant: cnt < 100, which rules out the possibility of signed integer
overflow.
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State machine refinement

In many cases, we would like to have some abstraction. We can define another
abstract state machine Spec that has the same set of operations as our concrete
state machine Prog, but the states and state transitions of Spec should be simple for
people to understand what this system is trying to achieve.

The two state machines are connected by an abstraction relation AR, which,
intuitively, say how to interpret a concrete state as an abstract state.

We say that Prog is a refinement of Spec if we can transform every execution
fragment s0α1s1α2s2...αnsn of Prog to an execution fragment t0α1t1α2t2...αntn of
Spec such that (1) the corresponding actions are the same and (2) the corresponding
states satisfy AR. This can be shown if:

• The abstraction relation holds for the initial state of Spec and Prog
• Assuming AR, executing the same operation for Spec and Prog establishes AR

With the refinement argument, we can reason about, e.g., the state after executing a
certain sequence of operations, with the much simpler Spec.
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State machine refinement

int8_t cnt;

void init(void)
{

cnt = 0;
}

void add1(void)
{

cnt = cnt + 1;
if (cnt >= 100)

cnt = cnt - 100;
}

void add2(void)
{

cnt = cnt + 2;
if (cnt >= 100)

cnt = cnt - 100;
}

If we’re only interested in whether cnt is an odd number, we can define Spec to be a
state machine with only one boolean variable isodd. The transition relations can be
defined as:

isodd +1→ isodd′ ≜ isodd′ = ¬isodd

isodd +2→ isodd′ ≜ isodd′ = isodd

The abstraction relation can be defined as:

AR ≜ isodd ⇐⇒ cnt % 2 = 1

Note that since Prog is written in a low-level language with undefined behaviors, we
still need to find a proper representation invariant, e.g., cnt < 100, to exclude
undefined behaviors.
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Expressing correctness definitions with Hoare triples

We can express all previous correctness definitions with Hoare triples.

Absence of undefined behavior
{Pre}C{True}

Algorithmic property
{Pre}C{Post}

Preservation of invariant
{Inv}C{Inv}

State machine refinement

{RI ∧ AR}C{RI ∧ (∃t′.t → t′ ∧ AR[t′/t])}
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Decorated program

To verify this program using Hoare logic, we
have to:

1. Specify pre and post conditions
2. Generate intermediate assertions
3. Reason about logical and arithmetic

formulae

uint8_t x, y, z;

if (z >= y)

x = z;

else

x = y;

x = x + 1;
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Symbolic execution

Let JPK be the set of states characterized by the state predicate P. For example:

Jx > −2 ∧ x < 3K = Jx > −2K ∩ Jx < 3K = {−1, 0, 1, 2} , if x is an integer

{P}C{Q} says: ”C (if terminates) brings any state in JPK to some state in JQK.”
When mentally executing a program, we often consider a single state. But Hoare
logic tells us that, in fact, we can consider a program as a transformer from a set of
states to another set of states.

We use a symbolic value to denote ”a set of values (of a certain type)”.

We maintain two data structures, symbolic state and path conditions, during
symbolic execution of a program. A symbolic state is like a normal state, except it
can map variables to symbolic values (or symbolic expressions). A path condition
limits the possible values that variables on a certain path can take.
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Symbolic execution

uint8_t x, y, z;
if (z >= y)

x = z;
else

x = y;
x = x + 1;

(x0, y0, z0)

(x0, y0, z0)

(y0, y0, z0)

(y0 + 1, y0, z0)

(x0, y0, z0)

(z0, y0, z0)

(z0 + 1, y0, z0)

z0 ≥ y0 z0 < y0

A path is formed by conjoining all path conditions from the root node to a leaf node,
and the relations between old and new values obtained via the symbolic state.

The transition relation of a program is the disjunction of all its paths.

(x0, y0, z0)
C→ (x1, y1, z1) ≜

(z0 ≥ y0 ∧ x1 = z0 + 1 ∧ y1 = y0 ∧ z1 = z0)
∨

(z0 < y0 ∧ x1 = y0 + 1 ∧ y1 = y0 ∧ z1 = z0)
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Strongest postcondition

Note that the transition relation generated by symbolic execution precisely captures
the behavior of a program. (In contrast, {P}C{True} is valid but imprecise.)

We can thus calculate the minimal set of the reachable states starting from a state inJPreK by conjoining the precondition with the transition relation. We call this formula
the strongest postcondition, written as SP(C, Pre). For example:

SP(C, Pre) ≜ (y0 < 255∧ z0 < 255)∧
( (z0 ≥ y0 ∧ x1 = z0 + 1 ∧ y1 = y0 ∧ z1 = z0)

∨
(z0 < y0 ∧ x1 = y0 + 1 ∧ y1 = y0 ∧ z1 = z0)

)
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Proving Hoare triples with the strongest postcondition

S
Post

SP(C, Pre)
Pre

To prove {Pre}C{Post}, we can show that every state in JSP(C, Pre)K is also in JPostK,
namely

SP(C, Pre) =⇒ Post

One interesting fact about being the strongest is that if the above implication does
not hold, then there must be a state in JPreK such that C can bring the state to a
state outside JPostK. We then know exactly what is wrong with our program.
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Automatic reasoning: SMT solving

The satisfiability problem (SAT) asks whether a propositional formula F has a model,
which is a valuation of variables satisfying F.

Examples.

• (P ∧ ¬Q) ∨ R is sat because it has a model {P = true,Q = false,R = false}
• P ∧ ¬P is unsat because it does not have a model

The satisfiability modulo theories (SMT) extends SAT with quantifiers (i.e., ∀ and ∃),
and more useful data types such as integers, bit vectors and uninterpreted functions.

Examples.

• ∀z.f(z) = y is sat because it has a model {y = 4, f = λx.4}
• x > 7 ∧ x < 3 is unsat because it does not have a model

There are efficient algorithms to decide satisfiability. SAT/SMT itself are also actively
(and independently) developed by their research communities.
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Validity vs. satisfiability

Validity. A logical formula F is valid if all valuations of variables satisfy F.

Satisfiability. A logical formula F is satisfiable if some valuation of variables satisfy F.

Theorem. A logical formula F is valid iff its negation ¬F is unsatisfiable.

When the SMT solver says ¬F is satisfiable, it also returns a counterexample. A
counterexample is a valuation of variables satisfying ¬F (and thus violates F).
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Summary

We have introduced several definitions of program correctness, from as simple as
saying my program does not have undefined behaviors, to finding an abstract
specification to replace our concrete representation.

Even if we’re not doing verification, knowing what our programs/systems are
supposed to do is still good.

Symbolic execution can be used to generate the strongest postcondition, and SMT
solving can do the automatic reasoning.

20



Formal verification of a
snapshot-consistent FTL



Crash and file system inconsistency

Crashes have two sources of non-determinism:

1. A crash can occur at any point
2. Reordering due to scheduling and concurrent operations

A write operation would:

1. Allocate a new block
2. Append the newly allocated block to the written file
3. Write the contents to the block

What would happen if step 2 succeeds but step 1 fails? The same block can be
allocated to two distinct files.

Or if step 1 succeeds but step 2 fails? Memory leak.

Such file system inconsistency can be avoided by ensuring the atomicity of multiple
disk writes.
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Snapshot-consistent flash translation layer

Conventional designs often use a write-ahead log to provide the atomicity of
multiple disk writes.

Problem: Data are written twice, resulting in poor performance

We want to solve this issue at the flash translation layer (FTL) because flash disks
have some features we can exploit.

Our design goal:

• Guarantee the atomicity of multiple disk writes
• Don’t sacrifice performance

22



Specification

x8 y6 z0 x8 y6 z0 x9 y6 z0 x8 y6 z0volatile

Original state
write(0, x9) read(2)

flush() recovery()

x0 y2 z0 x8 y6 z0x8 y6 z0 x8 y6 z0stable

This specification has the following features:

• A flush copies the volatile array to the stable array
• A write and a read only access the volatile array
• A recovery copies the stable array to the volatile array (opposite of flush)
• The volatile array is allowed to have any value upon a crash, but the stable one
must remain unchanged

This specification is snapshot-consistent because invoking a flush is like creating a
snapshot. This naturally ensures the atomicity of multiple disk writes between two
consecutive flushes. Next, we give a formal version of this specification.
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Operational specification for successful operations

Write (successful)

t
wa,d→ t′ ≜ t′.volatile = t.volatile[a 7→ d] ∧ t′.stable = t.stable

Flush (successful)

t f→ t′ ≜ t′.volatile = t.volatile ∧ t′.stable = t.volatile

GC (successful)

t g→ t′ ≜ t′.volatile = t.volatile ∧ t′.stable = t.stable

Recovery (successful)

t r→ t′ ≜ t′.volatile = t.stable ∧ t′.stable = t.stable

Read (successful)

read(a) ≜ volatile[a]
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Operational specification for crashed operations

Write (crashed)

t
wc
a,d→ t′ ≜ t′.stable = t.stable

Flush (crashed)

t fc→ t′ ≜ t′.stable = t.stable ∨ t′.stable = t.volatile

GC (crashed)

t gc→ t′ ≜ t′.stable = t.stable

Recovery (crashed)

t rc→ t′ ≜ t′.stable = t.stable

Crashed flush becomes non-deterministic as we cannot know whether a crash occurs
before or after stable is overwritten with volatile.

In fact, these crashed operations are all non-deterministic as we allow volatile to be
assigned any value.
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Formalizing correctness

We use the state machine refinement argument as our correctness definition. One
condition we have to show is per-operation correctness:

∀s, s′. s op→ s′ ∧ RI(s) =⇒ RI(s′)

∀s, s′, t. s op→ s′ ∧ RI(s) ∧ AR(s, t) =⇒ ∃t′.t op→ t′ ∧ AR(s′, t′)

However, RI and AR would be too strong for us to prove when a crash occurs.

Reason: A crash tears down all in-memory contents.

Solution: Defining a weaker representation invariant CI and a weaker abstraction
relation CR. CI and CR should be weak enough to be established by crashed
operations, but strong enough to allow successful recovery.

We reformulate our per-operation correctness to incorporate CI and CR.
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Per-operation correctness

Functional correctness (for successful write, flush and GC)

∀s, s′. s op→ s′ ∧ RI(s) =⇒ RI(s′)

∀s, s′, t. s op→ s′ ∧ RI(s) ∧ AR(s, t) =⇒ ∃t′.t op→ t′ ∧ AR(s′, t′)

Crash invariance (for crashed write, flush and GC)

∀s, s′. s opc→ s′ ∧ RI(s) =⇒ CI(s′)

∀s, s′, t. s opc→ s′ ∧ RI(s) ∧ AR(s, t) =⇒ ∃t′.t opc→ t′ ∧ CR(s′, t′)

Recovery correctness (for successful recovery)

∀s, s′. s r→ s′ ∧ CI(s) =⇒ RI(s′)

∀s, s′, t. s r→ s′ ∧ CI(s) ∧ CR(s, t) =⇒ ∃t′.t r→ t′ ∧ AR(s′, t′)

Recovery idempotence (for crashed recovery)

∀s, s′. s rc→ s′ ∧ CI(s) =⇒ CI(s′)

∀s, s′, t. s rc→ s′ ∧ CI(s) ∧ CR(s, t) =⇒ ∃t′.t rc→ t′ ∧ CR(s′, t′)

Observational equivalence (for read)

∀s, t. RI(s) ∧ AR(s, t) =⇒ ∀a ∈ Addr. read(s) = read(t) 27



Per-operation correctness

Functional correctness

S

CI

RI
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Per-operation correctness

Crash invariance

S

CI

RI
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Per-operation correctness

Recovery correctness

S

CI

RI
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Per-operation correctness

Recovery idempotence

S

CI

RI
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Are we all prepared to verify our program?

Functional correctness (for successful write, flush and GC)

∀s, s′. s op→ s′ ∧ RI(s) =⇒ RI(s′)

∀s, s′, t. s op→ s′ ∧ RI(s) ∧ AR(s, t) =⇒ ∃t′.t op→ t′ ∧ AR(s′, t′)

Crash invariance (for crashed write, flush and GC)

∀s, s′. s opc→ s′ ∧ RI(s) =⇒ CI(s′)

∀s, s′, t. s opc→ s′ ∧ RI(s) ∧ AR(s, t) =⇒ ∃t′.t opc→ t′ ∧ CR(s′, t′)

Transition relations of successful operations and specification operations are
automatically generated by standard symbolic execution.

Representation invariants and abstraction relations are manually found by us.

How about transition relations of crashed operations? We need to formalize crash
behaviors.
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Modeling crash behaviors

Crash behavioral models should capture all states that can be observed after a crash.

First attempt (Yxv6’s approach)

• Using ites and fresh boolean variables: Can be efficiently solved by SMT solvers
• Only allow single old value: Concurrency is limited in one single operation

Second attempt (FSCQ’s approach)

• Using lists: Lists can’t be efficiently solved by SMT solvers
• Allow multiple old values: Concurrency is allowed across operations

Final attempt

• Using a synced function to record which parts of the disk a contain single
value, and which parts contain multiple values (although we have no idea what
the values actually are)

• On crash, one value remains unchanged; multiple values can become any value
• Functions can be efficiently solved by SMT solvers and concurrency is allowed
across operations

Over-approximation: If we can prove our program correct for any value; then we
have proved our program correct for multiple values.
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Finding invariant

We have defined our formal specification, formalized our correctness definition, and
modeled crash behaviors. Finally, we need to find the proper representation
invariant and abstraction relation. This is often the most time-consuming part.

∀s, s′. s op→ s′ ∧ C0(s) =⇒ C0(s′)

∀s, s′. s op→ s′ ∧ C0(s) ∧ C1(s) =⇒ C0(s′) ∧ C1(s′)
...

∀s, s′. s op→ s′ ∧ C0(s) ∧ C1(s) ∧ ... ∧ Cn(s) =⇒ C0(s′) ∧ C1(s′) ∧ ... ∧ Cn(s′)
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Finding invariant

x ≥ y

x ≤ C

x ≤ 2y

Now that we know the states of our system will never leave this
blue area, we have verified that our system indeed satisfies x ≥ y.

x

y

Start from the property of interest

Ask SMT solver to verify the formulaSucceed!

Obtain a counterexampleFix the program

Find a stronger invariant to
rule out the counterexample

unsat

satprogram is buggy

invariant too weak
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Scaling automatic reasoning

There are certain forms of formulae that SMT solvers are particularly bad at, e.g.,

• quantifier alternation (∀x.∃y.∀z....)
• deeply nested function application (f1(f2(f3(...(fn(x))))))
• non-deterministic transition

We can ...

• find a more efficient encoding of invariants and relations
• rewrite formulae
• modify specification
• tune the parameters of the SMT solver
• do anything to make the SMT happy (as long as it’s correct!)
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Conclusion

I have covered our experience on verifying a flash translation layer:

• Design the specification based on what your system is trying to achieve
• Choose a proper correctness definition
• Several aspects should be considered when modeling behaviors
• Automatic verification is an iterated process of finding invariants, fixing the
program, and solving automatic reasoning bottleneck
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