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1. Prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys .

Solution: Prove by induction on the structure of xs.

Case xs := [ ]:

length ([ ] ++ ys)
= { definition of (++) }

length ys
= { definition of (+) }

0 + length ys
= { definition of length }

length [ ] + length ys

Case xs := x : xs:

length ((x : xs) ++ ys)
= { definition of (++) }

length (x : (xs ++ ys))
= { definition of length }

1 + length (xs ++ ys)
= { by induction }

1 + length xs + length ys
= { definition of length }
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length (x : xs) + length ys

Note that we in fact omitted one step using the associativity of (+).

2. Prove: sum · concat = sum ·map sum.

Solution: By extensional equality, sum · concat = sum ·map sum if and only if

(sum · concat) xss = (sum ·map sum) xss,

for all xss, which, by definition of (·), is equivalent to

sum (concat xss) = sum (map sum xss),

which we will prove by induction on xss.

Case xss := [ ]:

sum (concat [ ]))
= { definition of concat }

sum [ ]
= { definition of map }

sum (map sum [ ])

Case xss := xs : xss:

sum (concat (xs : xss))
= { definition of concat }

sum (xs ++(concat xss))
= { lemma: sum distributes over ++ }

sum xs + sum (concat xss)
= { by induction }

sum xs + sum (map sum xss)
= { definition of sum }

sum (sum xs : map sum xss)
= { definition of map }

sum (map sum (xs : xss)).

The lemma that sum distributes over ++, that is,

sum (xs ++ ys) = sum xs + sum ys,
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needs a separate proof by induction. Here it goes:

Case xs := [ ]:

sum ([ ] ++ ys)
= { definition of (++) }

sum ys
= { definition of (+) }

0 + sum ys
= { definition of sum }

sum [ ] + sum ys.

Case xs := x : xs:

sum ((x : xs) ++ ys)
= { definition of (++) }

sum (x : (xs ++ ys))
= { definition of sum }

x + sum (xs ++ ys)
= { induction }

x + (sum xs + sum ys)
= { since (+) is associative }

(x + sum xs) + sum ys
= { definition of sum }

sum (x : xs) + sum ys.

3. Prove: filter p ·map f = map f · filter (p · f ).
Hint: for calculation, it might be easier to use this definition of filter :

filter p [ ] = [ ]
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

and use the law that in the world of total functions we have:

f (if q then e1 else e2) = if q then f e1 else f e2

You may also carry out the proof using the definition of filter using guards:

...
filter p (x : xs) | p x = ...

| otherwise = ...
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You will then have to distinguish between the two cases: p x and ¬ (p x), which
makes the proof more fragmented. Both proofs are okay, however.

Solution:

filter p ·map f = map f · filter (p · f )
≡ { extensional equality }

(∀xs :: (filter p ·map f ) xs = (map f · filter (p · f )) xs)
≡ { definition of (·) }

(∀xs :: filter p (map f xs) = map f (filter (p · f ) xs)).

We proceed by induction on xs.

Case xs := [ ]:

filter p (map f [ ])
= { definition of map }

filter p [ ]
= { definition of filter }

[ ]
= { definition of map }

map f [ ]
= { definition of filter }

map f (filter (p · f ) [ ])

Case xs := x : xs:

filter p (map f (x : xs))
= { definition of map }

filter p (f x : map f xs)
= { definition of filter }

if p (f x) then f x : filter p (map f xs) else filter p (map f xs)
= { induction hypothesis }

if p (f x) then f x : map f (filter (p · f ) xs) else map f (filter (p · f ) xs)
= { defintion of map }

if p (f x) then map f (x : filter (p · f ) xs) else map f (filter (p · f ) xs)
= { since f (if q then e1 else e2) = if q then f e1 else f e2 }

map f (if p (f x) then x : filter (p · f ) xs else filter (p · f ) xs)

4



= { definition of (·) }
map f (if (p · f ) x then x : filter (p · f ) xs else filter (p · f ) xs)

= { definition of filter }
map f (filter (p · f ) (x : xs))

4. Reflecting on the law we used in the previous exercise:

f (if q then e1 else e2) = if q then f e1 else f e2

Can you think of a counterexample to the law above, when we allow the presence of
⊥? What additional constraint shall we impose on f to make the law true?

Solution: Let f = const 1 (where const x y = x), and q = ⊥. We have:

const 1 (if ⊥ then e1 else e2)
= { definition of const }

1
6= ⊥
= { if is strict on the conditional expression }

if ⊥ then f e1 else f e2

The rule is restored if f is strict, that is, f ⊥ = ⊥.

5. Prove: take n xs ++ drop n xs = xs, for all n and xs.

Solution: By induction on n, then induction on xs.

Case n := 0

take 0 xs ++ drop 0 xs
= { definitions of take and drop }

[ ] ++ xs
= { definition of (++) }

xs.

Case n := 1+ n and xs := [ ]

take (1+ n) [ ] ++ drop (1+ n) [ ]
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= { definitions of take and drop }
[ ] ++[ ]

= { definition of (++) }
[ ].

Case n := 1+ n and xs := x : xs

take (1+ n) (x : xs) ++ drop (1+ n) (x : xs)
= { definitions of take and drop }

(x : take n xs) ++ drop n xs
= { definition of (++) }

x : take n xs ++ drop n xs
= { induction }

x : xs.

6. Define a function fan :: a→ List a→ List (List a) such that fan x xs inserts x into the
0th, 1st. . . nth positions of xs, where n is the length of xs. For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]] .

Solution:

fan :: a→ List a→ List (List a)
fan x [ ] = [[x ]]
fan x (y : ys) = (x : y : ys) : map (y :) (fan xys)

7. Prove: map (map f ) · fan x = fan (f x) ·map f , for all f and x . Hint: you will need the
map-fusion law, and to spot that map f · (y :) = (f y :) ·map f (why?).

Solution: This is equivalent to proving that, for all f , x , and xs:

map (map f ) (fan x xs) = fan (f x) (map f xs) .
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Induction on xs.
Case xs := [ ]:

map (map f ) (fan x [ ])
= { definition of fan }

map (map f ) [[x ]]
= { definition of map }

[[f x ]]
= { definition of fan }

fan(f x) [ ]
= { definition of fan }

fan (f x) (map f [ ]) .

Case xs := y : ys:

map (map f ) (fan x (y : ys))
= { definition of fan }

map (map f ) ((x : y : ys) : map (y :) (fan x ys))
= { definition of map }

map f (x : y : ys) : map (map f ) (map (y :) (fan x ys)))
= { map-fusion }

map f (x : y : ys) : map (map f · (y :)) (fan x ys)
= { definition of map }

map f (x : y : ys) : map ((fy :) ·map f ) (fan x ys)
= { map-fusion }

map f (x : y : ys) : map (fy :) (map (map f ) (fan x ys))
= { induction }

map f (x : y : ys) : map (fy :) (fan (f x) (map f ys))
= { definition of map }

(f x : f y : map f ys) : map (fy :) (fan (f x) (map f ys))
= { definition of fan }

fan (f x) (f y : map f ys)
= { definition of map }

fan (f x) (map f (y : ys)) .

8. Define perms :: List a → List (List a) that returns all permutations of the input list.
For example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.
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Solution:

perms :: List a→ List (List a)
perms [ ] = [[ ]]
perms (x : xs) = concat (map (fan x) (perms xs))

9. Prove: map (map f ) · perm = perm ·map f . You may need previously proved results,
as well as a property about concat and map: for all g, we have map g · concat =
concat ·map (map g).

Solution: This is equivalent to proving that, for all f and xs:

map (map f ) (perm xs) = perm (map f xs) .

Induction on xs.
Case xs := [ ]:

map (map f ) (perm [ ])
= { definition of perm }

map (map f ) [[ ]]
= { definition of map }

[[ ]]
= { definition of perm }

perm [ ]
= { definition of map }

perm (map f [ ]) .

Case xs := x : xs:
map (map f ) (perm (x : xs))

= { definition of perm }
map (map f ) (concat (map (fan x) (perm xs)))

= { since map g · concat = concat ·map (map g) }
concat (map (map (map f ))(map (fan x) (perm xs)))

= { map-fusion }
concat (map (map (map f ) · fan x) (perm xs))

= { previous exercise }
concat (map (fan (f x) ·map f ) (perm xs))

= { map-fusion }
concat (map (fan (f x)) (map (map f ) (perm xs)))

= { induction }
concat (map (fan (f x)) (perm (map f xs)))

= { definition of perm }
perm (f x : map f xs)

= { definition of map }
perm (map f (x : xs)) . 8



10. Define inits :: List a→ List (List a) that returns all prefixes of the input list.

inits "abcde" = ["", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the
lecture. Please try it again yourself.

Solution:

inits :: List a→ List (List a)
inits [ ] = [[ ]]
inits (x : xs) = [ ] : map (x :) (inits xs) .

11. Define tails :: List a→ List (List a) that returns all suffixes of the input list.

tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].

Hint: the empty list has one suffix: the empty list. The solution has been given in the
lecture. Please try it again yourself.

Solution:

tails :: List a→ List (List a)
tails [ ] = [[ ]]
tails (x : xs) = (x : xs) : tails xs .

12. The function splits :: List a → List (List a, List a) returns all the ways a list can be
split into two. For example,

splits [1, 2, 3, 4] = [([ ], [1, 2, 3, 4]), ([1], [2, 3, 4]), ([1, 2], [3, 4]),
([1, 2, 3], [4]), ([1, 2, 3, 4], [ ])] .

Define splits inductively on the input list. Hint: you may find it useful to define, in a
where-clause, an auxiliary function f (ys, zs) = ... that matches pairs. Or you may
simply use (λ (ys, zs)→ ...).
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Solution:

splits :: List a→ List (List a, List a)
splits [ ] = [([ ], [ ])]
splits (x : xs) = ([ ], x : xs) : map cons1 (splits xs) ,

where cons1 (ys, zs) = (x : ys, zs) .

If you know how to use λ expressions, you may:

splits :: List a→ List (List a, List a)
splits [ ] = [([ ], [ ])]
splits (x : xs) = ([ ], x : xs) : map (λ (ys, zs)→ (x : ys, zs)) (splits xs) .

13. An interleaving of two lists xs and ys is a permutation of the elements of both lists
such that the members of xs appear in their original order, and so does the members
of ys. Define interleave :: List a→ List a→ List (List a) such that interleave xs ys is
the list of interleaving of xs and ys. For example, interleave [1, 2, 3] [4, 5] yields:

[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 3, 5], [1, 4, 2, 5, 3],
[1, 4, 5, 2, 3], [4, 1, 2, 3, 5], [4, 1, 2, 5, 3], [4, 1, 5, 2, 3], [4, 5, 1, 2, 3]].

Solution:

interleave :: List a→ List a→ List (List a)
interleave [ ] ys = [ys]
interleave xs [ ] = [xs]
interleave (x : xs) (y : ys) = map (x :) (interleave xs (y : ys)) ++

map (y :) (interleave (x : xs) ys) .

14. A list ys is a sublist of xs if we can obtain ys by removing zero or more elements
from xs. For example, [2, 4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all
sublists of [1, 2, 3] is:

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a → List (List a) that computes the list of all sublists
of the given list. Hint: to form a sublist of xs, each element of xs could either be kept
or dropped.
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Solution:

sublist :: List a→ List (List a)
sublist [ ] = [[ ]]
sublist (x : xs) = xss ++ map (x :) xss ,

where xss = sublist xs .

The righthand side could be sublist xs ++ map (x :) (sublist xs) (but it could be
much slower).

15. Consider the following datatype for externally labelled binary trees:

data ETree a = Tip a | Bin (ETree a) (ETree a)

Define a function leaves :: Tree a → List a such that leaves t returns all labels of t in
a list. What is its worse case time complexity?

16. Consider the following datatype for internally labelled binary trees:

data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Given (↓) :: Nat → Nat → Nat, which yields the smaller one of its arguments,
define minT :: ITree Nat → Nat, which computes the minimal element in a tree.
(Note: (↓) is actually called min in the standard library. In the lecture we use the
symbol (↓) to be brief.)

Solution:

minT :: Tree Nat → Nat
minT Null = maxBound
minT (Node x t u) = x ↓minT t ↓minT u .

(b) Define mapT :: (a → b) → ITree a → ITree b, which applies the functional
argument to each element in a tree.

Solution:

mapT :: (a→ b)→ Tree a→ Tree b
mapT f Null = Null
mapT f (Node x t u) = Node (f x) (mapT f t) (mapT f u) .
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(c) Can you define (↓) inductively on Nat?

Solution:

(↓) :: Nat → Nat → Nat
0 ↓ n = 0
(1+m) ↓ 0 = 0
(1+m) ↓ (1+n) = 1+ (m ↓ n) .

(d) Prove that for all n and t , minT (mapT (n+) t) = n + minT t . That is, minT ·
mapT (n+) = (n+) ·minT .

Solution: Induction on t .
Case t := Null. Omitted.
Case t := Node x t u.

minT (mapT (n+) (Node x t u))
= { definition of mapT }

minT (Node (n + x) (mapT (n+) t) (mapT (n+) u))
= { definition of minT }

(n + x) ↓minT (mapT (n+) t)) ↓minT (mapT (n+) u)
= { by induction }

(n + x) ↓ (n + minT t) ↓ (n + minT u)
= { lemma: (n + x) ↓ (n + y ) = n + (x ↓ y ) }

n + (x ↓minT t ↓minT u)
= { definition of minT }

n + minT (Node x t u) .

The lemma (n +x)↓ (n +y ) = n +(x ↓y ) can be proved by induction on n, using
inductive definitions of (+) and (↓).
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