Functional Programming
Practicals 01: Definition and Proof by Induction

Shin-Cheng Mu
FLOLAC 2020

1. Prove that length distributes into (+):

length (xs + ys) = length xs + length ys .

Solution: Prove by induction on the structure of xs.
Case xs =[]

length ([]+ ys)

{ definition of (+) }
length ys

{ definition of (+) }
0 + length ys

{ definition of length }
length [] + length ys

Case xs = x : xs:

length ((x : xs) + ys)
{ definition of (+) }
length (x : (xs + ys))
{ definition of length }
1 + length (xs + ys)
{ by induction }
1 + length xs + length ys
{ definition of length }

length (x : xs) + length ys

Note that we in fact omitted one step using the associativity of (+).

2. Prove: sum- concat = sum - map sum.

Solution: By extensional equality, sum - concat = sum - map sum if and only if
(sum - concat) xss = (sum - map sum) xss,

for all xss, which, by definition of (-), is equivalent to
sum (concat xss) = sum (map sum Xxss),

which we will prove by induction on xss.
Case xss :=[]:

sum (concat []))

{ definition of concat }
sum|]

{ definition of map }
sum (map sum [])

Case xSS := XS : XSS:

sum (concat (xs : xsS))
{ definition of concat }

sum (xs +(concat xss))
= { lemma: sum distributes over + }

sum xs + sum (concat xss)
= { by induction }

sum xs + sum (map sum xss)
= { definition of sum }

sum (sum xs : map sum Xxss)
= { definition of map }

sum (map sum (Xxs : Xss)).

The lemma that sum distributes over +, that is,

sum (Xs+ ys) = sum xs + sum ys,

needs a separate proof by induction. Here it goes:
Case xs =[]

sum ([]+ ys)

{ definition of (+) }
sum ys

{ definition of (+) }
0+sumys

{ definition of sum }
sum|[]+sum ys.

Case xs = x : xs:

sum ((x : xs) + ys)
= { definition of (#) }
sum (x : (xs+ys))
= { definition of sum }
X + SUM (XS + yS)
= { induction }
X + (Sum xs + sum ys)
= { since (+) is associative }
(X + sum xs) + sum ys
= { definition of sum }
sum (x : xs) + sum ys.

3. Prove: filter p- map f = map f - filter (p - f).
Hint: for calculation, it might be easier to use this definition of filter:

filter p [] =]
filter p (x : xs) = if p x then x : filter p xs
else filter p xs

and use the law that in the world of total functions we have:
f (if g then e, else e;) = if gthen f e; else f e,
You may also carry out the proof using the definition of filter using guards:

filter p (x : xS) | p X = ...
| otherwise = ...

You will then have to distinguish between the two cases: p x and — (p x), which
makes the proof more fragmented. Both proofs are okay, however.

Solution:

filter p- map f = map f - filter (p - f)
= { extensional equality }

(Vxs :: (filter p- map f) xs = (map f - filter (p - f)) xs)
= { definition of () }

(Vxs :: filter p (map f xs) = map f (filter (p -) xs)).

We proceed by induction on xs.
Case xs =[]

filter p (map f [])

{ definition of map }

filter p []

{ definition of filter }

[]

= { definition of map }
map f[]

= { definition of filter }
map f (filter (p-) [])

Case xs = X : XS:

filter p (map f (x : xs))
{ definition of map }
filter p (f x : map f xs)
= { definition of filter }
if p (f x) then f x : filter p (map f xs) else filter p (map f xs)
= { induction hypothesis }
if p (f x) then f x : map f (filter(p - f) xs) else map f (filter (p - f) xs)
= { defintion of map }
if p (f x) then map f (x : filter (p -) xs) else map f (filter (p - f) xs)
= { sincef(ifgthen e, else e;) =ifgthenfe elsefe, }
map f (if p (f x) then x : filter (p - f) xs else filter (p - f) xs)

{ definition of (-) }

map f (if (p-) x then x : filter (p - f) xs else filter (p - f) xs)
{ definition of filter }

map f (filter (p - f) (x : Xs))

4. Reflecting on the law we used in the previous exercise:
f (if g then e, else e;) =if gthen f e; else f e,

Can you think of a counterexample to the law above, when we allow the presence of
1 ? What additional constraint shall we impose on f to make the law true?

Solution: Let f = const 1 (where const x y = x), and g = L. We have:

const 1 (if L then ¢; else &)
{ definition of const }
1
1
{ if is strict on the conditional expression }
if L thenfe,elsefe

The rule is restored if f is strict, thatis, f 1 = L.

5. Prove: take n xs+ drop n xs = xs, for all n and xs.

Solution: By induction on n, then induction on xs.
Casen:=0

take 0 xs + drop 0 xs

{ definitions of take and drop }
[]+ xs

{ definition of (+) }
XS.

Case n:=1, nand xs =]

take (1, n) []+drop (1, n) []

= { definitions of take and drop }
[1-+]

= { definition of () }
[1-

Casen:=1,nand xs:=x : xs

take (1, n) (x : xs) +drop (1, n) (x : xs)
= { definitions of take and drop }

(x : take n xs) + drop n xs
= { definition of (+) }

X : take n xs + drop n xs
= { induction }

X : XS.

6. Define a function fan :: a — List a — List (List a) such that fan x xs inserts x into the
Oth, 1st. .. nth positions of xs, where n is the length of xs. For example:

fan5[1,2,3,4] =[[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1,2,3,4,5]] .

Solution:
fan ::a— List a— List (List a)
fan x [] = [[x]]

fanx (y :ys) =(x:y:ys):map (y:) (fan xys)

7. Prove: map (map f) - fan x = fan (f x) - map f, for all f and x. Hint: you will need the
map-fusion law, and to spot that map - (y :) = (f y :) - map f (why?).

Solution: This is equivalent to proving that, for all f, x, and xs:

map (map f) (fan x xs) = fan (f x) (map f xs) .

Induction on xs.
Case xs =[]

map (map f) (fan x [])

= { definition of fan }
map (map f) [[x]]

= { definition of map }
([x]]

= { definition of fan }
fan(f x) []

= { definition of fan }
fan (f x) (map f[]) .

Case xs =y : ys:

map (map f) (fan x (y : ys))
= { definition of fan }

map (map f) (x : y : ys) : map (y :) (fan x ys))
= { definition of map }

map f(x :y:ys):map (map f) (map (y :) (fan x ys)))
= { map-fusion }

map f(x:y:ys): map(mapf-(y:) (fan x ys)
= { definition of map }

map f (x:y:ys):map ((fy:) - map f) (fan x ys)
= { map-fusion }

map f (x :y:ys):map (fy :) (map (map f) (fan x ys))
= { induction }

map f (x:y:ys):map (fy:) (fan (f x) (map f ys))
= { definition of map }

(fx:fy:mapfys):map (fy:) (fan (f x) (map f ys))
= { definition of fan }

fan (f x) (f y : map f ys)
= { definition of map }

fan (f x) (map f (y : ys)) .

8. Define perms :: List a — List (List a) that returns all permutations of the input list.
For example:

perms [1,2,3]=1[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

Solution:

perms .. List a — List (List a)

perms [] =[[1]
perms (x : xs) = concat (map (fan x) (perms xs))

9. Prove: map (map f) - perm = perm - map f. You may need previously proved results,
as well as a property about concat and map: for all g, we have map g - concat =
concat - map (map g).

Solution: This is equivalent to proving that, for all f and xs:
map (map f) (perm xs) = perm (map f xs) .

Induction on xs.
Case xs =[]

map (map f) (perm [])

= { definition of perm }
map (map f) [[]]

= { definition of map }
[L1]

= { definition of perm }
perm]

= { definition of map }
perm (map f[]) .

Case xs := x : xs:

map (map f) (perm (x : xs))

= { definition of perm }
map (map f) (concat (map (fan x) (perm xs)))

= { since map g - concat = concat - map (map g) }
concat (map (map (map f))(map (fan x) (perm xs)))

= { map-fusion }
concat (map (map (map f) - fan x) (perm xs))

= { previous exercise }
concat (map (fan (f x) - map f) (perm xs))

= { map-fusion }
concat (map (fan (f x)) (map (map f) (perm xs)))

= { induction }
concat (map (fan (f x)) (perm (map f xs)))

= { definition of perm }
perm (f x —map xs)

= { definition of map }
perm (map f (x : xs)) .

10. Define inits :: List a — List (List a) that returns all prefixes of the input list.
Inll‘S nabcdeu = [n u’ uau’ uabu’ naan, nadeu’ ”adee"]-

Hint: the empty list has one prefix: the empty list. The solution has been given in the
lecture. Please try it again yourself.

Solution:
inits .. List a — List (List a)
inits [] =[]l

inits (x : xs) =[] : map (x :) (inits xs) .

11. Define tails :: List a — List (List a) that returns all suffixes of the input list.
tal'/s uabcdeu — ["adee", "dee", queu’ udeu, nen, n u]_

Hint: the empty list has one suffix: the empty list. The solution has been given in the
lecture. Please try it again yourself.

Solution:
tails .. List a — List (List a)
tails [] =[[1]

tails (x : xs) = (x : xs) : tails xs .

12. The function splits :: List a — List (List a, List a) returns all the ways a list can be
split into two. For example,

splits [1,2,3,4] = [([],[1,2,3,4]), ([1],[2,3,4]), ([1.2],[3, 4]),
(1,2, 3], [4]), ([1,2,3,4L[]] -

Define splits inductively on the input list. Hint: you may find it useful to define, in a
where-clause, an auxiliary function f (ys, zs) = ... that matches pairs. Or you may
simply use (X (ys, zs) — ...).

13.

14.

Solution:

splits .. List a — List (List a, List a)

splits [] = [([LID]
splits (x : xs) = ([], x : xs) : map cons1 (splits xs) ,
where const (ys, zs) = (x : ys,zs) .

If you know how to use \ expressions, you may:

splits :: List a — List (List a, List a)

splits [] = [([1[D)]

splits (x : xs) = ([],x : xs) : map (\ (ys, zS) — (X : ys, 28)) (splits xs) .

An interleaving of two lists xs and ys is a permutation of the elements of both lists
such that the members of xs appear in their original order, and so does the members
of ys. Define interleave :: List a — List a — List (List a) such that interleave xs ys is
the list of interleaving of xs and ys. For example, interleave [1, 2, 3] [4, 5] yields:

[[1,2,3,4,5],[1,2,4,3,5],[1,2,4,5,3],[1,4,2,3,5],[1,4,2,5, 3],
[1,4,5,2,3],[4,1,2,3,5],[4,1,2,5,3],[4,1,5,2,3],[4,5,1,2,3]].

Solution:
interleave .. List a— List a — List (List a)
interleave [] ys = [ys]
interleave xs [] = [xs]

interleave (x : xs) (y : ys) = map (x :) (interleave xs (y : ys)) +

map (y :) (interleave (x : xs) ys) .

A list ys is a sublist of xs if we can obtain ys by removing zero or more elements
from xs. For example, [2,4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all
sublists of [1, 2, 3] is:

[0, [31. [2]. [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a — List (List a) that computes the list of all sublists
of the given list. Hint: to form a sublist of xs, each element of xs could either be kept
or dropped.

10

Solution:

sublist .. List a — List (List a)

sublist [] = [[1]

sublist (x : XS) = xsS+ map (X :) xXss
where xss = sublist xs .

The righthand side could be sublist xs+ map (x :) (sublist xs) (but it could be
much slower).

15. Consider the following datatype for externally labelled binary trees:
data ETree a = Tip a | Bin (ETree a) (ETree a)

Define a function leaves :: Tree a — List a such that leaves t returns all labels of ¢t in
a list. What is its worse case time complexity?

16. Consider the following datatype for internally labelled binary trees:
data ITree a = Null | Node a (ITree a) (ITree a) .

(a) Given ({) :: Nat — Nat — Nat, which yields the smaller one of its arguments,
define minT :: ITree Nat — Nat, which computes the minimal element in a tree.
(Note: ({) is actually called min in the standard library. In the lecture we use the
symbol (]) to be brief.)

Solution:
minT :» Tree Nat — Nat
minT Null = maxBound

minT (Node x t u) x!lminT t| minT u .

(b) Define mapT :: (a — b) — ITree a — ITree b, which applies the functional
argument to each element in a tree.

Solution:
mapT (@a— b)— Treea— Tree b
mapT f Null = Null

mapT f (Node x t u) = Node (f x) (mapT ft) (mapT fu) .

11

(c) Can you define () inductively on Nat?

Solution:
) .. Nat — Nat — Nat
0ln =0
1.mi0 =0
(1+m)¢(1+n) =1, (min) -

(d) Prove that for all n and t, minT (mapT (n+) t) = n+ minT t. That is, minT -
mapT (n+) = (n+) - minT.

Solution: Induction on t.
Case t := Null. Omitted.
Case t := Node x t u.

minT (mapT (n+) (Node x t u))
{ definition of mapT }
minT (Node (n+ x) (mapT (n+) t) (mapT (n+) u))
{ definition of minT }
(n+x) 1l minT (mapT (n+) t)) L minT (mapT (n+) u)
= { by induction }
(n+x)L(n+minT t) | (n+ minT u)
= {lemma: (n+x)l(n+y)=n+(x1ly) }
n+(x)minT t] minT u)
{ definition of minT }
n+ minT (Node x t u) .

The lemma (n+x){(n+y) = n+(x]y) can be proved by induction on n, using
inductive definitions of (+) and ().

12

