
Programming Language Theory
Primitive Recursion, General Recursion, and
Polymorphism

陳亮廷 Chen, Liang-Ting
2020邏輯、語言與計算暑期研習營
Formosan Summer School on Logic, Language, and Computation

Institute of Information Science, Academia Sinica

1

Gödel’s T: Simply typed λ-calculus
with naturals

The limit of λ→

Can you write this in λ→ using Church numerals?

sum(0) = 0
sum(1+ n) = (1+ n) + f(n)

It is not definable in λ→, since fixpoint operator is not allowed
any more.

But, sum is definable via primitive recursion: for some c and
function g

rec(0, c,g(x, y)) = c
rec(1+ n, c,g(x, y)) = g(n,rec(n, c,g(x, y)))

λ→ with primitive recursion is called Gödel’s T.

2

T: Types and terms

Definition 1 (Types)

B ∈ V (tvar)B : Type

(nat)N : Type

σ : Type τ : Type
(fun)

σ → τ : Type

Definition 2 (Terms)
Additional term formation rules are added to λ→ as follows.

zero : TermT
M

suc M : TermT

L : TermT M : TermT N : TermT x ∈ V y ∈ V
rec(M; x. y.N) L : TermT

3

T: Typing rules

Definition 3
Additional term typing rules are added to λ→ as follows.

Γ ⊢ zero : N
Γ ⊢ M : N

Γ ⊢ suc M : N

Γ ⊢ L : N Γ ⊢ M : τ Γ, x : N, y : τ ⊢ N : τ

Γ ⊢ rec(M; x. y.N) L : τ

• Substitution for T is defined similarly.
• Substitution respects typing judgements, i.e. Γ ⊢ N : τ and
Γ, x : τ ⊢ M : σ, then Γ ⊢ M[N/x] : σ.

4

T: Dynamics

β-conversion for T is extended with two rules

rec(M, x. y.N) zero −→β M
rec(M, x. y.N) suc L −→β N[L,rec(M; x. y.N) L/x, y]

Similarly, a β-reduction −→β1 extends −→β to all parts of a
term and −→β∗ indicates finitely many β-reductions.

Theorem 4
T enjoys the strong and weak normalisation properties as
well as type safety.

5

Example: Addition and summation

add : N → N → N can be defined in T as

λn. λm.rec (m; x. y.suc y) n m

sum : N → N can be defined in T as

λn.rec (zero; x. y.add (suc x) y) n

Exercise
Evaluate sum (suc zero).

6

PCF— System of Recursive Functions

PCF: λ→ with naturals and general recursion

T does not include all computable functions, since all terms
terminate eventually. Programming language in reality allows
us to do general recursion including infinite loops.

What to do if we want type and general recursion at the same
time?

7

PCF: Types and terms

Definition 5 (Types)
PCF has the same class of types as T.

Definition 6 (Terms)
Additional term formation rules are added to λ→ as follows.

zero : TermPCF
M : TermPCF

suc M : TermPCF

L : TermPCF M : TermPCF N : TermPCF x ∈ V
ifz(M; x.N) L

M : TermPCF x ∈ V
fix x.M : TermPCF

8

PCF: Typing rules

Definition 7
Additional term typing rules are added to λ→ as follows.

Γ ⊢ zero : N
Γ ⊢ M : N

Γ ⊢ suc M : N

Γ ⊢ L : N Γ ⊢ M : τ Γ, x : N ⊢ N : τ

Γ ⊢ ifz(M; x.N) L : τ

Γ, x : τ ⊢ M : τ

Γ ⊢ fix x.M : τ

• Substitution for PCF is defined similarly.
• Substitution respects typing judgements, i.e. Γ ⊢ N : τ and
Γ, x : τ ⊢ M : σ, then Γ ⊢ M[N/x] : σ.

9

PCF: Dynamics

β-conversion for PCF is extended with three rules

fix x.M −→β M[fix x.M/x]
ifz(M; x.N) zero −→β M

ifz(M; x.N) (sucM) −→β N[M/x]

Similarly, a β-reduction −→β1 extends −→β to all parts of a
term and −→β∗ indicates finitely many β-reductions.

Theorem 8
PCF enjoys type safety.

10

Example

A term which never terminates can be defined easily.

fix x. x −→β1 x[fix x. x/x]
≡ fix x. x −→β1 x[fix x. x/x]
≡ fix x. x −→β1 x[fix x. x/x]
≡ . . .

11

Example: Predecessor and negation

pred ··= λn : N.ifz(zero; x. x) n : N → N

not ··= λn : N.ifz(suc zero; x.zero) n : N → N

Exercise
Evaluate the following terms to their normal forms.

1. pred zero
2. pred (suc suc suc zero)
3. not (suc suc zero)

12

F — Polymorphic Typed λ-Calculus

Polymorphic types

Given type variables V, τ : Type is defined by defined by

t ∈ V (tvar)t : Type

σ : Type τ : Type
(fun)

σ → τ : Type

σ : Type t ∈ V
(poly)∀t. σ : Type

where t may or may not appear in σ.

The polymorphic type ∀t. σ provides a generic type for every
instance σ[τ/t] whenever t is instantiated by an actual type τ .

13

Examples

• id : ∀t. t → t
• proj1 : ∀t.∀u. t → u → t
• proj2 : ∀t.∀u. t → u → u
• length : ∀t.list t → nat
• singleton : ∀t.t → list(t)

14

Free and bound variables, again

Definition 9
The free variable FV(τ) of τ is defined inductively by

FV(t) = t
FV(σ → τ) = FV(σ) ∪ FV(τ)
FV(∀t. σ) = FV(σ)− {t}

For convenience, the function extends to contexts:

FV(Γ) = { t ∈ V | ∃(x : σ) ∈ Γ ∧ t ∈ FV(σ) }.

1. FV(t1) = {t1}.
2. FV(∀t. (t → t) → t → t) = ∅.
3. FV(x : t1, y : t2, z : ∀t. t) = {t1, t2}. 15

Capture-avoiding substitution for type

Definition 10
The (capture-avoidance) substitution of a type ρ for the free
occurrence of a type variable t is defined by

t[ρ/t] = ρ

u[ρ/t] = u if u ̸= t
(σ → τ)[ρ/t] = σ[ρ/t] → τ [ρ/t]
(∀t.σ)[ρ/t] = ∀t.σ
(∀u.σ)[ρ/t] = ∀u.σ[ρ/t] if u ̸= t,u ̸∈ FV(ρ)

Recall that u ̸∈ FV(ρ) means that u is fresh for ρ.

16

Typed terms

Definition 11
On top of λ→, F has additional term formation rules as
follows.

M : TermF t : V (gen)
Λ t. M : TermF

M : TermF τ : Type
(inst)M τ : TermF

1. Λt.M for type abstraction, or generalisation.
2. M τ for type application, or instantiation.

17

Example

Suppose length : ∀t.list t → nat.
Then,

1. length nat
2. length bool
3. length (nat → nat)

are instances of length with types

1. list nat → nat
2. list bool → nat
3. list (nat → nat) → nat

18

System F: Typing judgement

A type context is a sequence of pairs of type variable and a type

t : τ

F has two kinds of typing judgements.

• ∆ ⊢ τ for τ for a valid type under the type context ∆
• ∆; Γ ⊢ M : τ for a well-typed term under the context Γ and
the type context ∆.

For example,
t : τ1 ⊢ t → t

is a judgement saying that t → is a valid type under the type
context (t : τ1).

Then, we have to justify why this judgement holds.
19

System F: Type formation

The justification of ∆ ⊢ τ is constructed inductively by
following rules.

t ∈ ∆
∆ ⊢ t

∆ ⊢ τ1 ∆ ⊢ τ2
∆ ⊢ τ1 → τ2

∆, t ⊢ τ

∆ ⊢ ∀t. τ

Exercise
Derive the judgement

t : τ ⊢ t → t

20

System F: Typing rules

The justification of ∆; Γ ⊢ M : σ is defined inductively by
following rules.

x : σ ∈ Γ
∆; Γ ⊢ x : σ

∆; Γ ⊢ M : σ → τ ∆; Γ ⊢ N : σ
∆; Γ ⊢ M N : τ

∆ ⊢ σ ∆; Γ, x : σ ⊢ M : τ

∆; Γ ⊢ λx : σ. M : σ → τ

∆, t; Γ ⊢ M : σ
(∀-intro)

∆; Γ ⊢ Λt. M : ∀t. σ

∆; Γ ⊢ M : ∀t. σ ∆ ⊢ τ (∀-elim)
∆; Γ ⊢ M τ : σ[τ/t]

For convenience, ⊢ M : τ stands for ·; · ⊢ M : τ .

21

Typing derivation

The typing judgement ⊢ Λt.Λu. λ(x : t)(y : u). x : ∀t. t → u → t
is derivable from the following derivation:

t ∈ t,u
t,u ⊢ t

u ∈ t,u
t,u ⊢ u

x : t ∈ (x : t, y : u)
t,u; x : t, y : u ⊢ x : t

t,u; x : t ⊢ λ(y : u). x : u → t
t,u; · ⊢ λ(x : t)(y : u). x : t → u → t

t; · ⊢ Λu. λ(x : t)(y : u). x : ∀u. t → u → t
⊢ Λt.Λu. λ(x : t)(y : u). x : ∀t.∀u. t → u → t

22

Exercise

Derive the following judgements:

1. ⊢ Λt. λ(x : t). x : ∀t. t → t
2. σ;a : σ ⊢ (Λt. λ(x : t)(y : t). x) σ a : σ → σ

3. ⊢ Λt. λ(f : t → t)(x : t). f (f x) : ∀t. (t → t) → t → t

Hint. F is syntax-directed, so the type inversion holds.

23

System F: β-reduction

The β-conversion has two rules

(λ(x : τ).M)N −→β M[x/N] and (Λt.M) τ −→β M[τ/t]

For example,

(Λt.λx : t. x) τ a −→β (λx : t. x)[τ/t] a ≡ (λx : τ. x) a −→β x[a/x] ≡ a

Similarly, β-conversion extends to subterms of a given term,
introducing symbols −→β1 and −→β∗ in the same way.

24

Self application

Self-application is not typable in simply typed λ-calculus.

λ(x : t). x x

However, self-application is possible in System F.

λ(x : ∀t.t → t). x (∀t.t → t) x

Exercise
Instantiate the first t with the type ∀t. t → t.

25

Sum type

Definition 12
The sum type is defined by

σ + τ ··= ∀t.(σ → t) → (τ → t) → t

It has two injection functions: the first injection is defined by

leftσ+τ ··= λ(x : σ). Λt. λ(f : σ → t)(g : τ → t). f x
rightσ+τ

··= λ(y : τ). Λt. λ(f : σ → t)(g : τ → t).g y

Exercise
Define

either : ∀u. (σ → u) → (τ → u) → (σ + τ → u) → u

26

Product type

Definition 13 (Product Type)
The product type is defined by

σ × τ ··= ∀t.(σ → τ → t) → t

The pairing function is defined by

⟨_, _⟩ ··= λ(x : σ)(y : τ).Λt. λ(f : σ → τ → t). f x y

Exercise
Define projections

proj1 : σ × τ → σ and proj2 : σ × τ → τ

27

Natural Numbers i

The type of Church numerals is defined by

nat ··= ∀t. (t → t) → t → t

Church numerals

cn : nat
cn ··= Λt. λ(f : t → t) (x : t). fn x

28

Natural Numbers ii

Successor

suc : nat → nat
suc ··= λ(n : nat).Λt. λ(f : t → t) (x : t) . f (n t f x)

Addition

add : nat → nat → nat
add ··= λ(n : nat) (m : nat) Λt. λ(f : t → t) (x : t).

(m t f) (n t f x)

29

Natural Numbers iii

Multiplication

mul : nat → nat → nat
mul ··=?

Conditional

ifz : ∀t.nat → t → t → t
ifz ··=?

30

Natural Numbers iv

System F allows us to define iterator like fold in Haskell.

foldnat : ∀t. (t → t) → t → nat → t
foldnat ··= Λt. λ(f : t → t)(e0 : t)(n : nat).n t f e0

Exercise
Define add and mul using foldnat and justify your answer.

1. add′ ··= ? : nat → nat → nat
2. mul′ ··= ? : nat → nat → nat

31

Lists

Definition 14
For any type σ, the type of lists over σ is

listσ ··= ∀t. t → (σ → t → t) → t

with “list constructors”:

nilσ ··= Λt.λ(h : t)(f : σ → t → t).h

and

consσ ··= λ(x : σ)(xs : listσ).Λt.λ(h : t)(f : σ → t → t).f x (xs t h f)

of type σ → list σ → list σ.

32

Type safety and normalisation

Theorem 15 (Type safety)
Suppose ⊢ M : σ. Then,

1. M −→β1 N implies ⊢ N : σ;
2. M is in normal form or there exists N such that M −→β1 N

Type safety is proved by induction on the derivation of ⊢ M : σ.

Theorem 16 (Normalisation properties)
F enjoys the weak and strong normalisation properties.

Proved by Girard’s reducibility candidates.

33

Type erasure

Definition 17
The erasing map is a function defined by

|x| = x
|λ(x : τ).M| = λx. |M|

|M N| = (|M| |N|)
|Λt.M| = |M|
|M τ | = |M|

Proposition 18
Within System F, if ⊢ M : σ and |M| −→β1 N′, then there exists
a well-typed term N with ⊢ N : σ and |N| = N′.

34

Undecidability of type inference

Theorem 19
It is undecidable whether, given a closed term M of the
untyped lambda-calculus, there is a well-typed term M′ in
System F such that |M′| = M.

Arbitrary Rank Polymorphism ∀ can appear anywhere (GHC
with -XRankNType).

Rank-1 Polymorphism ∀ only appear in the outermost
position.

Hindley-Milner type system adapted by Haskell 98, Standard
ML, etc. supports only rank-1 polymorphism, so type inference
is still decidable.

35

Parametricity

What functions can you write for the following type?

∀t. t → t

Since t is arbitrary, we cannot inspect the content of t. What we
can do with t is simply return it.

Theorem 20
Every term M of type ∀t. t → t is observationally equivalent1 to
Λt. λx : t. x.

1The notion of observational equivalence is beyond the scope of this
lecture.

36

Parametricity: Theorems for free2

Assume F extended with the list type list τ for τ and the type
N of naturals, denoted Flist,N.

Then head ◦ map f = f ◦ head for any f : τ → σ where
head : ∀t.list t → t can be proved by just reading the type of
head and tail!
Theorem 21
For any type σ in F (with lists) and · ⊢ M : σ, then

M ∼ M : Rσ,σ

2Philip Wadler. 1989. Theorems for free! In Proceedings of the fourth
international conference on Functional programming languages and
computer architecture (FPCA ’89). ACM, New York, NY, USA, 347–359.

37

Homework

1. (25%) Extend PCF with the type B of boolean values with
ifz(M;N) true =β M and ifz(M;N) false =β N
including term formation rules, typing rules, and dynamics
for B.

2. (25%) Define pred in T such that pred zero = zero and
pred (suc n) = n.

3. (25%) Define even in PCF such that even n = suc zero if
n is an even number; even n = zero otherwise.

4. (25%) Define lengthσ : list σ → nat calculating the
length of a list.

5. (0%) Read the paper by Wadler (1989).

38

	Gödel's T: Simply typed -calculus with naturals
	PCF— System of Recursive Functions
	F — Polymorphic Typed -Calculus

