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Finite State Automata

e Finite state automata (FSA)

e A self-operating machine with predetermined operations
and a limited amount of memory

e A language recognizer

e A simplest computational model (abstract model of
computers)
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Applications

Lexical analyzer
String processing
Spell checking

Model checking
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Components of FSA

Inputs (words over a finite alphabet)
States

Starting states

Transitions

Final states
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Alphabet

e An alphabet is a set of symbols

e Types of alphabet: classical and propositional
e Examples:

e {a, b}

o {send, receive, ack}

e {(p @), (=pq), (p—9, (—~p 9}
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Words

e Let X be a finite alphabet

o A word wover ¥ (w € ¥*) is a sequence of symbols wowiwn...wy1 with w; €
>

e Length of w, denoted by |w|, is n
e The empty word is denoted by ¢

o Examples (¥ = {a, b}):

e abba

e ababalbd w* : repeat w finitely many times
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Formal Syntax of FSA

e A finite state automaton is a b-tuple (@, >, 6, I, F) where
e ()is a finite set of states,
e Y is a finite alphabet,

e 6: () x X — 2@is the transition function (sometimes written as

a relation 6 : @ x X x Q),

e [/ C ()is the set of initial states, and

e F'C () is the set of accepting (final) states
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Automaton M,
a, b

e Alphabet: {a, b} e Transitions: {(so, a, so0), (S0, a, s1), (s0, b, 0)}

o States: {so, s1} * Accepting states: {si}
e Initial states: {s}
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Automaton M-
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Formal Semantics of FSA

o Let M= (Q, X, 6, I, F) be a finite state automaton

o lLet w = wowrup...wy1 be a word over X
e A run of won M is a sequence of states sps182...5, where
® Sy € i

o (Siy Wi, SZ'+1) € 0
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Runs

a, b

a
SO

e What are the runs of the following words?

® ababd

® abba

FLOLAC 2019 13 Automata Theory



Runs

a, b

a
SO

e What are the runs of the following words?

e ababd S0 S0 So So SO

® abba
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Runs

a, b

e What are the runs of the following words?
e ababd S0 S0 S0 S0 SO

e abba So So S0 So So and Sy Sy So So St
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the run tree of abba on M;
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Formal Semantics of FSA
(cont’d)

M=(Q, X%, I F)
A run spsi18...8n is accepting if s, € F

A word w is accepted by M if there is an accepting run of w
on M

The language of M is the set of strings accepted by A,
denoted by L(M)
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Accepting Runs

a, b
(o
—> S0

e Which run is accepting?

® So) SO SO SO SO

® So) SO SO SO S1
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Automaton M,

a, b
(o
—> S0

e Which word is accepting?

e abbabd

e ababa
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Languages

e \What is the language of M;? b
a?

a
80

e The language recognized by a finite state automaton is a

regular language
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Languages

e \What is the language of M;? b
a?

a
80

L(My) = { wowr...wn | neN and w, = a }

e The language recognized by a finite state automaton is a
regular language

FLOLAC 2019 18 Automata Theory



Languages (cont’'d)

e What is the language of the following automaton?
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Exercise

e Given an alphabet {1, 2, +}, draw a finite state automaton
such that the automaton accepts words evaluated to 3

e Given an alphabet {0, 1,}, draw a finite state automaton
such that the automaton accepts words containing substring
001
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Emptiness and Universality

e M= (Q, %, 6, I, F)
e An automaton M is empty it L(M) = @

e An automaton M is universal it L(M) = ¥*
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Emptiness and Universality

o M = (Q, 2., 0, 1, F) is this automaton empty?
e An automaton M is empty it L(M) = @

e An automaton M is universal it L(M) = ¥*

FLOLAC 2019 21 Automata Theory



Equivalence

e Two automata are equivalent it they recognize the same
language

Se o A

L(M) = L(M)?

FLOLAC 2019 22 Automata Theory



Deterministic Finite Automata
(DFA)

e An automaton M = (Q, X, 6, I, F) is deterministic if
e |/| =1 and
(is complete if |6(s, a)] 2 1)

e |6(s, a)l =1forall se Qand ae X

e Which one is deterministic?

5 o &b
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Determinism VS Nondeterminism

e The language L(D) of a DFA D is accepted by the NFA D (A
DFA is also an NFA)

e Given an NFA N, Can we construct a DFA D such that L(D)
= L(N)?
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Determinism VS Nondeterminism

e The language L(D) of a DFA D is accepted by the NFA D (A
DFA is also an NFA)

e Given an NFA N, Can we construct a DFA D such that L(D)

= (2 ()
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Determinism VS Nondeterminism

e The language L(D) of a DFA D is accepted by the NFA D (A
DFA is also an NFA)

e Given an NFA N, Can we construct a DFA D such that L(D)

= (2 ()

e DFA and NFA have the same expressive power

FLOLAC 2019 24 Automata Theory



Determinization

Let N = (Q, X, 6, I, F).
By subset construction, define D = (29, 3, A, { I }, G) where
o A(S, a) = Uss 6(s, a), and

o G={S5e€20| SnF=*02}

We can show that L(N) = L(D) by induction on the length of
input words
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Subset Construction

e \What is the determinization of M7
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Exercise

e Apply subset construction to determinize the following
automaton

a, b
a
SO

a, b
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e- Transitions

Assume ¢ does not belong to the alphabet

An e-transition is a transition that does not need to consume any

symbol

e-transitions are only allowed in NFA

DFA and NFA with e-transitions have the same expressive power

a, b

€ a
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Elimination of e-Transitions

o M= (Q, X u{e}, 6, I, F) is an NFA with e-transitions
o Let E(X) denote the e-closure of X C @)

o F(X)=1{s|se Xorsisreachable from a state in X through e-

transitions }

e Construct an NFA N = (Q, X, A, J, F) where
o A(s, a) = FE(6(s, a)), and

o J= E(I
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Elimination of e-Transitions

Example

a, b
0
—>{ S0 S1
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Elimination of e-Transitions

Example
a, b
(-

O
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Elimination of e-Transitions

Example
a, b
(-

=
=

FLOLAC 2019 30 Automata Theory




Elimination of e-Transitions

Example

& o%
. ©
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Elimination of e-Transitions

Example
a, b
ToRNo=
a, b
()
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Single Initial State

e NFA may be defined as automata with single initial state

e NFA with multiple initial states does not have more expressive
power

PO
O%
=) O
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Closure Properties

e Regular languages are closed under the following operations.
e union,
® Intersection,
e concatenation,
e Kleene closure, and

e complementation
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Union

My, = (@, X, 61, I, F1), Mo = (Cr, X, 62, I, F?)

Assume ()1 N ()2 = @

Mz = (1 U @, X, 63, 1 U b, F1 U Fy) where (s, a, t) € 63 if
e (s, a,t)€ bl or

e (s, a,t) € b

L(Ms) = L(M)) U L(M)
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Union

Example

a
b

a, b
_é

a
_@
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Intersection

My = (Cn, X, 61, I, F1), Mz = (e, X2, 62, b, F>)

M; = (Q1x @, X3, 63, [ x I2, F1 x F2) where ((s1, s2), a, (t,
tg)) € 03 if

e (s1, a, 1) € 61, and

o (82, a, &2) € 62

L(Mg) — L(Ml) N L(MQ)
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Intersection

Example

a, b
@ :
S0
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Concatenation

o My = (Qh, X, 61, L, F1), Mo = (o, X2, 62, b, F?)

e Assume 1N ()2 = @ and ¢ ¢ X

o M3 = (U @, XU {e}, 63, 1, F2) where (s, a, t) € 63 if
o (s, a,t) € 6,
e (s, a,t) e b or

e a—¢ se I, and t € b.

o L(M3) = L(M\)L(Mz) ={ uv| ue L(M) and ve L(M>) }
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Concatenation

Example
a, b a, b
. a, b -> . "~ ab
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Kleene Closure

e An operation that repeat strings accepted by a FSA arbitrary
number of times (including zero time)
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Kleene Closure

e An operation that repeat strings accepted by a FSA arbitrary
number of times (including zero time)
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Kleene Closure

e An operation that repeat strings accepted by a FSA arbitrary
number of times (including zero time)

€

FLOLAC 2019 39 Automata Theory



Kleene Closure (cont’d)

e M= (Q, %, 6, I, F)

e Assume e ¢ X and s; € ()

o M = (Qu {ss}, X u {e}, 4, {ss}, FFu {ss}) where (s, a, t) € A if
o s— s, tel and a = €,
e (s, a,t)€é,or
e scl'tel and a = €

o L(M) = L(M)*
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Kleene Closure

Example

a, b

o¥oN
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Complementation
DFA

o M= 1(Q, X, 6, I, F)isa DFA @
o M — (Q.5. 6.1 Q\ F) @ @
o L(M)=X*\ L(M)
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Complementation
DFA

o M= 1(Q, X, 6, I, F)isa DFA @

o M =(Q, %, 6 I Q\ F)
o L(M) = X*\ L(M)
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Complementation
NFA

o M= (Q, %, 6,1 F)isan NFA. @
e M —(Q, %, 51 Q\ F) @ @
e L(M) =S¥\ L(M)?
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Complementation
NFA

o M= (Q, %, 6,1 F)isan NFA. @

o M =(Q, %, 6 I Q\ F)
o L(M) =X*\ L(M)?
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Complementation
NFA

o M= (Q, >, 6,1 F)isan NFA. @

o M =(Q, %, 6 I Q\ F)
o L(M) =%\ L(M)NK
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Complementation
NFA

o M= (Q, >, 6,1 F)isan NFA.

w

e M =(Q %61 Q\ F)

o L(M)=3*\ L(MX
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Exercise

o lLet M) = (Q1, >, 01, 11, F1) and My = (Qz, 21, 02, Is, FQ) be
two NFAs

e Construct an NFA M3 such that L(Ms) = L(M:i) \ L(M>)

e Please describe the components of Ms in detail
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Minimization

e Given a DFA M, can we construct a minimal DFA M> such
that L(M1) = L(M2)?

e Given an NFA M, can we construct a minimal NFA Ms such
that L(M1) — L(MQ)?
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Minimization

e Given a DFA M, can we construct a minimal DFA M> such
that L(M) = L(M>)? Q

e Given an NFA M, can we construct a minimal NFA Ms such
that L(M1) — L(MQ)?
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Minimization

e Given a DFA M;i, can we construct a minimal DFA M5 such
that L(M) = L(M>)? Q

e Given an NFA M, can we construct a minimal NFA Ms such

that L(M) = L(M2)? () but harder
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Intuition
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Intuition

b

OVR!
a a
O, 4, D
> Sj
b a, b
—
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Myhill-Nerode Theorem

e Given a language L CX*, define a binary relation Ry over X * as follows

o tRyiffvzeX* (xze L & yze L)

e 27 can be shown to be an equivalence relation
e R; divide the set of string into equivalence classes
e [ is regular iff Rz has a finite number of equivalence classes

e The number of states in the minimal DFA recognizing L is equal to the

number of equivalence classes in Ry
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Minimization
ldea

For a language L C ¥*, compute the equivalence classes of L
Construct a state for each equivalence class

A equivalence class () can take an a-transition to another
equivalence class (3 if there is a string © € (1 such that za €

(o

How to find the equivalence classes?
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Minimization
Hopcroft's Algorithm

P := {F, 0 \ F};
W := {F};
while (W is not empty) do
choose and remove a set A from W
for each c in 2 do
let X be the set of states for which a transition on c leads to a state in A
for each set Y in P for which X n Y is nonempty and Y \ X is nonempty do
replace Y in P by the two sets X N Y and ¥ \ X
if Y is in W
replace Y in W by the same two sets
else
if |X n Y| <= |Y \ X|
add X N ¥ to W
else
add ¥ \ X to W
end;
end;
end;

the pseudocode is taken from https://en.wikipedia.org/wiki/DFA_minimization
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Language Expressions

e So far we know that a regular language can be accepted by a
finite state automaton

e Can we represent a regular language in other forms?
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Language Expressions

e So far we know that a regular language can be accepted by a
finite state automaton

e Can we represent a regular language in other forms?

regular expressions
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Regular Expressions (RE)

e lLet > be an alphabet
e The regular expressions over X are defined as follows

e O is a regular expression denoting the empty set;

e c is a regular expression denoting the set {¢};

e for each o € 3, ais a regular expression denoting the set {a};

e if rand s are regular expressions denoting the sets /2 and S respectively, then
r+s, rs, and ™ are regular expressions denoting RuS, RS, and R* respectively

e The language of a regular expression ¢ is denoted by L(e)
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Regular Expressions

Examples

Let > = {a, b}

a*ba™ = {w | w has exactly a single b}
Y*bY* = {w | w has at least one b}

Y *abaX* = {w | w has a substring aba}

a+b+aX*a+bX*b = {w | w starts and ends with the same
symbol}
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Regular Expressions

Examples (cont’d)

r+o =7
r+e =7
rg — 7

FLOLAC 2019
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Regular Expressions

Examples (cont’d)

r+o =7
r+e =7
rg — 7
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Regular Expressions

Examples (cont’d)

r+o =7
r+e =7
rg — 7
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Regular Expressions

Examples (cont’d)

r+o =7
r+e =7
rg — 7
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Regular Expressions

Examples (cont’d)

r+o =7
r+e =7
rg — 7
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Exercise

e \Write regular expressions to describe the following languages.

(X = {a, 0})
e {w | the length of w is even}

e {w | whas at most two b’s}

e {w | every ain w is followed by b}
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Regular Expressions
VS

Finite State Automata

e A language is recognized by an NFA if and only if some
regular expression describes it

e A language is regular if and only if some regular expression
describes it
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From RE to NFA

~(()

%,

Let A, be an NFA recognizing the language of a regular expression r
r+s. union of A, and A,
rs. concatenation of A, and A,

r*: the Kleene closure of A,
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From NFA to RE

e [ransitive Closure Method
e State Removal Method

e Brzozowski Algebraic Method
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Transitive Closure Method

o Let D= ({s1, ..., su}, X, 6, {s1}, F) be a DFA
e Define

o RP=1A{al| (s, a, sj) €6} ifi#j

o RpP =A{al (s, a,s)edtuietifi=j

o Rt = Rut1(Rik1)* Ryl u Ry

e R;f represents the inputs that cause D to go from s; to s; without passing through a state
higher than s;

e R;# can be denoted by regular expressions
o (D)= Ugjer Rijn
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Rii#

RioF

Roq#

Rook

Transitive Closure Method

Example

()

(b+€)(b+e)*(b+e)+(b+e)
= b*
(b+e)(bte)*ata b*a(b*a+e)*(b*ate)+b*a
— b*q = (a+b)*a
b(b+€)*(b+e)+b
— bl
b(b+€)*a+(ate)
= b*a+e

a-t+€
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State Removal Method

e Make the NFA has a single accepting state

e Make the NFA has a single initial state

e Remove states and change transition labels (may be regular
expressions) until there is only the initial state and the

accepting state

e Compute the regular expression
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State Removal Method

Example
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State Removal Method

Example
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State Removal Method

Example

ab ba
EI b—l—aa)é

a + bb
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State Removal Method

Example

a -+ bb
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State Removal Method

Example

ab + (b + aa)(ba)*(a + bb)

a -+ bb
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State Removal Method

Example

ab + (b + aa)(ba)*(a + bb)

ab -
— (ab+(b+aa)(ba)*(a+bb))*

a + bb
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Brzozowski Algebraic Method

o M= 1(Q, X, 6, {q}, F) is an NFA containing no e-transitions

e For every g;, create the equation

{6}, if q; € F
g, else

Qi = qiﬁmjan + {

e Solve the equation system and find Qo
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Brzozowski Algebraic Method

Example
Qo= bQ1 + a2 + €
(h = aCo + bGe
(2 = bCQo + alh
Q2 = bQoy + alh

= b + a(aQo + bQ»)
= abCe + (b+aa)

by Arden’s Lemma:
L=UL+Vitt L= UV where L,U VC>* with e g U

2 = (ab)*(b+aa)Q
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Brzozowski Algebraic Method
Example (cont’'d)

Qo= bQ1 + a2 + €
(h = aCo + bGe
(2 = bCQo + alh

(2 = (ab)*(b+aa) Q

Qo = bQiL+ aC) + €
= b(aCo + bQr) + alh + €
= baQo + (bb+a)Q: + €
= (ba+(bb+a)(ab)*(b+aa)) Qo + €

by Arden’s Lemma:
L=UL+Viff L =U*Vwhere L,LUVCY* with e ¢ U

Qo = (bat+(bb+a)(ad)*(b+aa))*
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Exercise

e Express the language of the following automaton by a regular
expression
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WS1S

e Syntax of S1S (monadic second-order logic of one successor)

o First-order variable set: V = {z1, 2, ...}

e Second-order variable set: X = {Xi, Xo, ...}

o Terms: t =0 | x

e Formulas: @ := S(t, 1) | Xi(t) | ~@ | @ A @ | Az | 3Xi@
e S'is the successor predicate

e WSI1S: fragment of S1S which allows only quantification over finite sets

FLOLAC 2019 66 Automata Theory



Semantics of S1S

Signature <N7 S>

Interpretation g = (0, 09),01:V = N,op : X — 28

Sat,-sf/abi/,-ty o = X(t) ’l/ﬁ O'(t) c O'(X)
oE=Stt) iff ot)+1=0c(t)
o= iff o
ocEp1Np2 iff o F e and o = @2
o = dr.p iff o|n/x] E ¢ for some n € N
o= dX.p iff o|[N/X]| | ¢ for some N € 2%

Validity

© iff o = @ for all interpretations o
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Abbreviations

p1 V2 = (0L A )

p1— P2 = TPV P2

V.o =  —dr.op

VX.p = —dX.—p

r <y = VX.(ye XAV2VZ(2€e XANS(Z,2) =2 € X)— X(x))
r <y = x<yA-(y<ux)

first(x) = -3y.5(y,x)

last(x) = -3Jy.S(x,y)

XCY = Ve(zeX—>zxeY)

X =Y = XCYAY CX

X=0 = VZ,XCZ
= XAZGAVW(YCX 5 (XCYVY =2))

2
3
=
s
|
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WS1S on Words

Let > be a finite set of alphabet

A word is defined as w = wywy... wn1

A unary predicate P, is defined for every a € ¥ such that P,(i) if and

only if w; = a
Domain of w: dom(w) = {0, ..., n- 1}
Signature of w: (dom(w), S, (Pa)aex?

Biichi Theorem: a language L C >* is regular if and only if L is
expressible in WS1S
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Signatures of Words

e Given an alphabet ¥ = {a, b}, the signature of w = abba is
{0, 1, 2, 3}, Sv, P4, Py with the following interpretation

o S = {(Ov 1)7 (17 2)7 (27 3)}
o P,= {0, 3}

o P,={1,2}
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WS1S Examples

e the last symbol is a
o 31.(Pux) A —3y.(z < y))
e contains substring ab

e 32.3y.(Pu(z) A Pi(y) A S(z,y))
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WS1S Examples (cont’'d)

e has substring ba™b

o dx.Ay.(x < y A Pi(z) A Po(y) A V2((z < 2 A 2 < y) —

Po(2)))

e non-empty word with a even length

o 3fALAX.(first(f) A last(l) A X(f) A = X(]) A Vy.V2.(5(y,2)
— (X(y) & ~X(2))))
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Exercises

e Write WS1S formulas to describe the following words
e Only a's can occur between any two occurrences of b's

e Has an odd length (please start with 3)
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From NFA to WS1S

o Let M = (Q, %, 8, {5}, F) be an NFA

e Assume @) = {so, s, ..., Sn}

e Non-empty accepting words will satisfy the following formula

4Xo ... X,,. ( Nitj \V/JT_'(ZU € XNz € XJ)

A Yx.(first(x) — xz € Xo)

AN Ve.VYy.(S(T,Y) = Visas,)es@ € Xi Az € Py ANy € Xj))
A Va.(last(z) — V(s a,55)e8s,er (@ € Xy ANz € Py)))
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A Better Encoding

Assume |[X| = 2m
A symbol is binary encoded as (t, ti, ..., tm1)
A word is defined as w = wowi... wn1

A unary predicate P; is defined for every i € {0,...,m-1} such that Pi(j) if and only if the
-th track of wjis 1

Example:
e m=2%=A{ab, ¢ d}, a=(00), b= (01), c = (10), d = (11)
o Py={0,3,4}, Pr = {1, 4}

e w = (10)(01)(00)(10)(11) = cbacd
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Non-regular Languages

e Examples of non-regular languages:
o { aw| neN}

o { wHw| we {a, b}* }

e How to prove that a language is non-regular?
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Pumping Lemma

e If L is a regular language, then there is a number p 2 1 (the
pumping length) such that, if s is any string in L and |s| 2 p,
then s may be divided as s = xyz satisfying
e foreach i 2 0, zyiz € L,

e |y > 0, and

* |1yl = p.
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Pumping Lemma

Example

® Let's show that L = { anb» | n € N } is non-regular

e Assume L is regular and let w = arbr

e By pumping lemma, there are z, y, and z such that w = zyz,
e ryize L foreach i =0,
e |yl >0, and
o [zy| < p

e With |zy| £ p, we know that y contains only a

o But 12z ¢ L
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Formal Languages

Chomsky Hierarchy Grammar Language Computation Model
Type-0 Unrestricted Recursively enumerable Turing machine
 pel | Conmtomie | Cotocomwatve | Linarbounded
e Cmotiee | Comethee | Puhdown
e

the list of formal languages in this table is not complete
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Transducers

e Finite state transducers (FST)
e Finite state automata with outputs

e Model the relation between inputs and outputs
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Formal Syntax of FST

e A finite state transducer is a 6-tuple (Q, X, I, 6, I, F) where

e (is a finite set of states,
e Y is a finite input alphabet,

e [ is a finite output alphabet,

e 6:Q x (Xu{e}) x (T'u{e}) — 2Qis the transition function (sometimes
written as a relation 6 : @ x (Xu{e}) x (Tu{e}) x Q),

e /| C Qis the set of initial states, and

e [ C Qis the set of accepting (final) states

FLOLAC 2019 81 Automata Theory



Example: Divide by 2

e Assume the alphabet is {0, 1}

0/0 1/1

0/1




Example: Trim

e Assume the alphabet is {a, b, |}, where , denotes a space

a/a, b/b L/ €
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Tools

¢ MONA (http://www.brics.dk/mona/)

e JFLAP (http://www.jflap.org)

e GOAL (http://goal.im.ntu.edu.tw/wiki/doku.php)
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Infinite Computations

e A reactive system is a system that continuously interacts with
Its environment

e Computations of a reactive system are infinite
e How to model such infinite computations?

e Automata on infinite words
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Infinite Words

e Let X be a finite alphabet

e An infinite word w over ¥ (w € @) is a sequence of symbols wowiws...

with w; € X
o Length of wis w

e Examples (X = {a, b}):
o ab(ba)

o aba(babd)e
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w-Automata

Syntax

e An w-automaton is a tuple (Q, X, 6, qvo, Acc) where
e ()is a finite set of states,
e > is a finite alphabet,
e 6. () X X — 2@ s the transition function,

® (o is the initial state, and

e Acc is the acceptance condition

e Different w-automata can be defined by different acceptance conditions
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w-Automata

Semantics

o Let M = (Q, X, 6, qu, Acc) be an w-automaton

o let w = wywiwe... be an infinite word over X

e A runof won M is a sequence of states qoqiq2... where (g;

Wi, Qi+1) € 6
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w-Automata

Semantics (cont’d)

A run is accepting if the run satisfies the acceptance
condition Acc

A word is accepted if there is a run of M on the word

The language of M, denoted by L(M), is the set of words
accepted by M

Define Inf(p) = {s | s occurs in p infinitely many times}
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Acceptance Conditions

Acceptance
Condition

co-Biichi Acc = F C
Generalized Acc = {F, ..., Fu},
Biichi Fic Q)
Rabin Acc = {(En, F1), ..., (En, Fn)},
Fic Q, EiC @
Streett Acc = {(E1, F1), ..., (En, Fu)},
Fic Q, EiC @
Muller Acc = {Fx, ..., Fu},
Fic Q@
Parity Acc: ()Q—N

FLOLAC 2019

Satisfaction

Inflp) n F # @

Inf(p) n F =@

Inf(p) n F; #= @ for all F;e
F
Inf(p) n i = @ and

Inf(p) n F; = @ for some 1
Inf(p) n F; # @ implies

Inf(p) n E; # @ for all ¢

Inf(p) = F; for some ¢

min parity in p 1s even

Abbrev.

NCW

NGW

NRW

NSW

NMW

Acc(q) is the
parity of ¢

NPW
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Buchi Automata
Example 1

True

S0

accepts infinite words where p holds eventually
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Buchi Automata
Example 2

True

58

accepts infinite words where eventually p will always hold
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Buchi Automata
Example 3

True

accepts infinite words where p holds until ¢ holds
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Exercise

e Draw a Biichi automaton that accepts infinite words where p
holds infinitely many times. (X = {p, —p})
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Deterministic VS Nondeterministic

e Can you find a deterministic Biichi automaton (DBW) that
accepts the same language?

True
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Deterministic VS Nondeterministic

e Can you find a deterministic Biichi automaton (DBW) that
accepts the same language?

True

determinization using

subset construction P
—p
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Deterministic VS Nondeterministic

e Can you find a deterministic Biichi automaton (DBW) that
accepts the same language?

True

determinization using

subset construction P
—p

NBW is more expressive than DBW
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Model VS Specitfication

e So far we already learnt some abstract machines as models of
computations

e We may require that the computations must satisfy some
properties

e How do we check?
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Model Checking

Model the computations of a system as an automaton M
Model the computations allowed by the specification as an automaton S

Check if the system satisfies the specification by checking if L(M) C
L(5)

Or equivalently checking if P is empty where P is the intersection of

e M and

e the complement of S.
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Emptiness Test

e Use double depth-first search to find an accepting lasso

|a
A Y
\
P
P
Y4
v 4
|
l

‘

\ I
p L4
~

Q.-_‘f
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Buchi Automata

Intersection
o My = (Ch, X, 61, qu, F1), Mo = (2, %, 62, qo2, F>)

o Construct M = (Qix Q2x{0,1,2}, 3. 6, (qo1, qo2, 0), Q1 X Q2x{0}) where ((q1, ¢,
1), a, (', @', 7)) € 6if

e (qi, a, qi’) € 61 and (g2, a, ¢2’) € 62,

e j=1ifi=0,

e j —qif¢+ 0and ¢;¢ Fj and

e j=(i+ 1) mod2ifi=*0and qe F;
o L(M)= L(M) n L(M>)
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Buchi Automata

Complementation

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one?
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Buchi Automata

Complementation

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one
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Buchi Automata

Complementation

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one

Complementation of NBW is much harder than that of NFA
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Buchi Automata

Complementation

complementation by dualize

the acceptance set

Does the right one exactly accept the complement of the left one

Complementation of NBW is much harder than that of NFA

We may express specifications using logic formulas
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LTL Model Checking

Express the behavior of a system as a Biichi automaton M
(usually converted from a Kripke structure)

Express the specification as a formula fin /inear temporal
logic (LTL)

Translation —f to a Biichi automaton A-¢ with labels on
states

Check if L(M)nL(A-y) is empty
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Linear Temporal Logic

Syntax

AP is a finite set of atomic propositions

The alphabet X is defined as 24P

A linear temporal logic (LTL) formula is defined as follows
o Forevery pe AP, pisan LTL formula

o If fand g are LTL formulas, thensoare = f, fA g, X f, and f
Uyg

X and U are (future) temporal operators
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Linear Temporal Logic

Semantics

e A state is a subset of AP, containing exactly those propositions that
evaluate to true in that state

e An LTL formula is interpreted over an infinite sequence of states p — spsi....

(p, 1) = p iff p e s

= f it (p, ) ¥ f

= fAg iff (p,7) =fand (p, i) =g

=X f iff (p,1+1)Ef

= f U g iff exists j 2 i such that (p, 7) E ¢ and
forall i <k <y (p, k)= f
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Next and Until

e (p,)EX[fiff (p,i+1)E]

o (p,1)EfUg iff exists j 2 isuch that (p, j) E gandforall i < k <y (p, k) Ef

p Uq
p D P q
| —t——t—1+—+— >
0 i i+ 1 j-1
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e (p, 1)

e (p, 1)

Future and Global

= F f iff (p, ) = ffor some 5 2 i

= G [ iff (p,7) = fforall j =i

Gp
D
|
|
0 ;
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Release

(p, 1) E f R g iff exists j 2 i such that (p, j) = fand forall i £ k< 5, (p, k) E
g;or forall j 24 (p, ) E g

p R g P
g q¢ 9 q q
| ——T—T1T—+—1T >
0 ; j
p R g
g g 9 q q q
>
0
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Abbreviations

® true := p Vv —p Ongizﬁ(_'fUﬁg)
o false := —true o Fg:=true U g
o fv g:=—-(—fA g o G f:= false R f

o f—g:=fvy

¢ fog=(—=9rlg—=)

O=X,0=F,0=0G
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Exercise

Express the following sentences in LTL formulas.
e 'p occurs infinitely often”

e "whenever a message is sent, eventually an
acknowledgement will be received”
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Satisfaction, Validity, and Congruence

e p k&= f. a state sequence p satisfies an LTL formula f

e pEfiff (p,0)=f
e = f an LTL formula fis valid
o =f iff p= fforallp

e = g:two formulas fand g are congruent

o [=ygiftftE G (f< g)
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Congruent Formulas

- Xf=X~f
- Fg= G-g
~Gf=F-]
GGf=Gf
FFqg=Fgq

o f=f
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Expressive Power of LTL

e LTL is strictly less expressive than NBW

e “even p can be expressed in NBW but not LTL

-

True

e NBW is as expressive as QPTL (Quantified Propositional
Temporal Logic)

e ‘even p iNnQPTL: 3t tA G (te X —t) A G (t— p)
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From LTL to Labeled NGW

e Translate an LTL formula fto a labeled NGW (with labels on states)
o Take the negation normal form (NNF) of f
e Expand fynr into basic formulas as the initial states

e Construct successors of states based on X-formulas

e For each subformula g U h, create an acceptance set such that A
will become true eventually

NNF: negation only occurs right before propositions
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Basic Formulas

o A literal is either a proposition or its negation

e A basic formula is either a literal or an X-formula
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Expansion Formulas

o Fg=qgv X Fyg
e Gf=fAXGT
e fUg=ygv (frX(fUy)

e fRg=gn(fvX(fRg)
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From LTL to Labeled NGW

Example
e =G Fp
e GFp=(pvXFpAXGFp=pArXGFp v XFprXGFp)

o Fp=pv X Fp
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From Labeled NGW to NGW

111111111111111111111111111



From NGW to NBW

Apply the same technique in the intersection of NBW

Use an index ¢ to remember the next acceptance set in {F1, Fb,
..., Fn} to be passed

Once a state in F} is passed, increase the index ¢ by 1

If every F; € {F}, F», ..., Fu} has been passed at least once,
change the index to 0 and set the index to 1 in the successors

A run is accepting if the index O is passed infinitely many times
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Tools

LTL2BA (http://www.lsv.fr/~gastin/It|2ba/index.php)

LTL3BA (https://sourceforge.net/projects/ItI3ba/)

SPIN (http://spinroot.com/spin/whatispin.html)

NuSMV (http://nusmv.fbk.eu)

GOAL (http://goal.im.ntu.edu.tw/wiki/doku.php)
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