
Prerequisites: Basic Functional Programming in Haskell

Liang-Ting Chen

The first part of the following questions requires basic understanding of how to define a
function in Haskell. The second part is a recursive function using techniques you should have
learned from the first 4 chapters of Learn You a Haskell for Great Good!.

Please check your answer using the interactive interpreter ghci before submission. If you are
not familiar with the command-line interface, please read the first chapter of Real World Haskell.

1) Define a function called myFst which takes a tuple and returns the first component.

myFst :: (a, b) -> a
myFst = undefined

2) Define a function myOdd which determines if the input is an odd number or not. Hint: You
may use mod (what is this?).

myOdd :: Int -> Bool
myOdd = undefined

3) Consider the following function.

qs :: Ord a => [a] -> [a]
qs [] = []
qs (x:xs) = qs ys ++ [x] ++ qs zs

where
ys = [y | y <- xs, y <= x]
zs = [z | z <- xs, x < z]

Please answer the following questions concisely either in plain English or Chinese.

(a) What is Ord? What does the type of qs mean?

(b) What is the type of (++)? What does it do?

(c) What are the elements of ys and zs, respectively?

(d) What does the function qs do? Hint: If you are not familiar with recursive functions
(functions which are defined in terms of themselves), run qs on some lists (e.g., [2,
1, 4, 3, 5]) and make a guess.

(e) Please re-write the function qs above and call it qs’ using let expression and case
expression instead of where clause and pattern matching.

1

http://learnyouahaskell.com
http://book.realworldhaskell.org/read/getting-started.html

