

Logic

Curry-Howard correspondence

17 July 2018

柯向上

(日本) 国立情報学研究所 hsiang-shang@nii.ac.jp

$$\begin{array}{c|c} \hline \textbf{A}, \ \textbf{A} \rightarrow \textbf{B} \vdash \textbf{A} \rightarrow \textbf{B} & \hline \textbf{A}, \ \textbf{A} \rightarrow \textbf{B} \vdash \textbf{A} \\ \hline \textbf{A}, \ \textbf{A} \rightarrow \textbf{B} \vdash \textbf{B} & \hline \textbf{A}, \ \textbf{A} \rightarrow \textbf{B} \vdash \textbf{A} \\ \hline \textbf{A} \vdash (\textbf{A} \rightarrow \textbf{B}) \rightarrow \textbf{B} & (\rightarrow \textbf{I}) \\ \hline \hline \textbf{A} \vdash (\textbf{A} \rightarrow \textbf{B}) \rightarrow \textbf{B} & (\rightarrow \textbf{I}) \\ \hline \end{array}$$

• Label elements in contexts with (distinct) names.

$$\label{eq:relation} \hline \hline \mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y}:\mathbf{A} \to \mathbf{B} \hline \hline \mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{x}:\mathbf{A} \\ \hline \hline \frac{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{B}}{\mathbf{x}:\mathbf{A} \vdash (\mathbf{A} \to \mathbf{B}) \to \mathbf{B}} (\to \mathbf{I}) \\ \hline \hline \mathbf{x}:\mathbf{A} \vdash (\mathbf{A} \to \mathbf{B}) \to \mathbf{B} \\ \hline \vdash \mathbf{A} \to (\mathbf{A} \to \mathbf{B}) \to \mathbf{B} \end{array} (\to \mathbf{I})$$

- Label elements in contexts with (distinct) names.
- Represent (assum) by the name of the assumption used.

$$\frac{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y}:\mathbf{A} \to \mathbf{B}}{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{x}:\mathbf{A}} (\to \mathsf{E})$$

$$\frac{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y} \ \mathbf{x}:\mathbf{B}}{\mathbf{x}:\mathbf{A} \vdash (\mathbf{A} \to \mathbf{B}) \to \mathbf{B}} (\to \mathsf{I})$$

$$\frac{\mathbf{x}:\mathbf{A} \vdash (\mathbf{A} \to \mathbf{B}) \to \mathbf{B}}{\vdash \mathbf{A} \to (\mathbf{A} \to \mathbf{B}) \to \mathbf{B}} (\to \mathsf{I})$$

- Label elements in contexts with (distinct) names.
- Represent (assum) by the name of the assumption used.
- Represent $(\rightarrow E)$ by juxtaposing the representations of its two sub-derivations.

$$\frac{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y}:\mathbf{A} \to \mathbf{B}}{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{x}:\mathbf{A}} (\to \mathsf{E}) \\
\frac{\mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y} \ \mathbf{x}:\mathbf{B}}{\mathbf{x}:\mathbf{A} \vdash \lambda \ \mathbf{y}. \ \mathbf{y} \ \mathbf{x}:(\mathbf{A} \to \mathbf{B}) \to \mathbf{B}} (\to \mathsf{I}) \\
\frac{\mathbf{x}:\mathbf{A} \vdash \lambda \ \mathbf{y}. \ \mathbf{y} \ \mathbf{x}:(\mathbf{A} \to \mathbf{B}) \to \mathbf{B}}{\vdash \lambda \ \mathbf{x}. \ \lambda \ \mathbf{y}. \ \mathbf{y} \ \mathbf{x}:\mathbf{A} \to (\mathbf{A} \to \mathbf{B}) \to \mathbf{B}} (\to \mathsf{I})$$

- Label elements in contexts with (distinct) names.
- Represent (assum) by the name of the assumption used.
- Represent (→E) by juxtaposing the representations of its two sub-derivations.
- Represent (→I) by prefixing λ v. to the representation of its sub-derivation, where v is the name of the new assumption.

$$\begin{array}{c} \hline \mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y}:\mathbf{A} \to \mathbf{B} & (\mathsf{var}) \\ \hline \mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y}:\mathbf{A} \to \mathbf{B} & (\mathsf{var}) \\ \hline \mathbf{x}:\mathbf{A}, \ \mathbf{y}:\mathbf{A} \to \mathbf{B} \vdash \mathbf{y} \ \mathbf{x}:\mathbf{B} \\ \hline \mathbf{x}:\mathbf{A} \vdash \lambda \ \mathbf{y}, \ \mathbf{y} \ \mathbf{x}:(\mathbf{A} \to \mathbf{B}) \to \mathbf{B} \\ \hline \hline \mathbf{h} \lambda \mathbf{x}, \ \lambda \mathbf{y}, \ \mathbf{y} \ \mathbf{x}:\mathbf{A} \to (\mathbf{A} \to \mathbf{B}) \to \mathbf{B} \end{array} (abs)$$

- Label elements in contexts with (distinct) names.
- Represent (assum) by the name of the assumption used.
- Represent $(\rightarrow E)$ by juxtaposing the representations of its two sub-derivations.
- Represent (→I) by prefixing λ v. to the representation of its sub-derivation, where v is the name of the new assumption.

This is a typing derivation for the λ -term $\lambda \mathbf{x}$. $\lambda \mathbf{y}$. \mathbf{y} \mathbf{x} !

Simply typed λ -calculus (á la Curry)

Let the set of *types* be the *implicational fragment* of PROP, i.e., the subset of the propositional language generated by variables and implication only.

A λ -term t is said to have type τ under context Γ if, using the following rules, there is a closed typing derivation whose conclusion is $\Gamma \vdash t : \tau$. In this case we simply write $\Gamma \vdash t : \tau$.

$$\overline{\Gamma \vdash \mathbf{v} : \tau}$$
 (var) if $(\mathbf{v} : \tau) \in \Gamma$

$$\frac{\Gamma, \mathbf{v} : \sigma \vdash t : \tau}{\Gamma \vdash \lambda \, \mathbf{v} . \, t : \sigma \to \tau} \text{ (abs)} \quad \frac{\Gamma \vdash t : \sigma \to \tau \quad \Gamma \vdash s : \sigma}{\Gamma \vdash t \, s : \tau} \text{ (app)}$$

Curry–Howard correspondence

Deduction systems and programming calculi can be put in correspondence — a corresponding pair of a deduction system and a programming calculus can be regarded as logical and computational interpretations of essentially the same set of syntactic objects.

Slogan: propositions are types; proofs are programs.

Natural deduction for full propositional logic corresponds to simply typed λ -calculus with constants: defining the set of types to be PROP, the derivations in natural deduction (the proofs) correspond exactly to the well-typed λ -terms (the programs).

Cartesian products

Conjunctions correspond to cartesian products: the introduction rule gives type to the pairing operator,

$$\frac{\Gamma \vdash \boldsymbol{s} : \boldsymbol{\sigma} \quad \Gamma \vdash \boldsymbol{t} : \boldsymbol{\tau}}{\Gamma \vdash \langle \boldsymbol{s}, \boldsymbol{t} \rangle : \boldsymbol{\sigma} \land \boldsymbol{\tau}} (\land \mathsf{I})$$

and the two elimination rules give types to the projections.

$$\frac{\Gamma \vdash t : \sigma \land \tau}{\Gamma \vdash \text{outl } t : \sigma} (\land \text{EL}) \qquad \frac{\Gamma \vdash t : \sigma \land \tau}{\Gamma \vdash \text{outr } t : \tau} (\land \text{ER})$$

Note that we are adding the constants $\langle _, _ \rangle$, outl, and outr into the language of λ -calculus.

Disjoint sums

Disjunctions correspond to disjoint sums (unions): the introduction rules give types to the injections,

$$\frac{\Gamma \vdash s : \sigma}{\Gamma \vdash \text{inl } s : \sigma \lor \tau} (\lor \text{IL}) \qquad \frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{inr } t : \sigma \lor \tau} (\lor \text{IR})$$

and the elimination rule gives type to the conditional operator.
$$\Gamma \vdash c : \sigma \lor \tau \qquad \Gamma \ u : \sigma \vdash s : \vartheta \qquad \Gamma \ v : \tau \vdash t : \vartheta$$

$$\frac{\vdash c: \sigma \lor \tau \qquad \Gamma, u: \sigma \vdash s: \vartheta \qquad \Gamma, v: \tau \vdash t: \vartheta}{\Gamma \vdash \text{case } c \left[\begin{array}{c} u \rightsquigarrow s \\ v \rightsquigarrow t \end{array} \right]} (\lor \mathsf{E})$$

Again we add the constants inl, inr, and case $\begin{bmatrix} - & & - \\ - & & - \end{bmatrix}$ to the language of λ -calculus.

Example: distributivity

The type

$$\mathtt{A} \land (\mathtt{B} \lor \mathtt{C}) \to (\mathtt{A} \land \mathtt{B}) \lor (\mathtt{A} \land \mathtt{C})$$

is inhabited by the $\lambda\text{-term}$

$$\begin{array}{l} \lambda \, \texttt{x. case (outr x)} \left[\begin{array}{c} \texttt{y} \rightsquigarrow \texttt{inl (outl x, y)} \\ \texttt{z} \rightsquigarrow \texttt{inr (outl x, z)} \end{array} \right. \end{array}$$

Empty set

 \perp is interpreted as the empty set. The elimination rule gives type to a variant of Dijkstra's abort operator.

$$\frac{\Gamma \vdash t : \bot}{\Gamma \vdash \texttt{abort} \ t : \varphi} (\bot \mathsf{E})$$

Example. The type \top , i.e., $\bot \to \bot$, is inhabited by λx . abort x.

δ -reduction

In pure λ -calculus we have β -reduction that rewrites β -redexes.

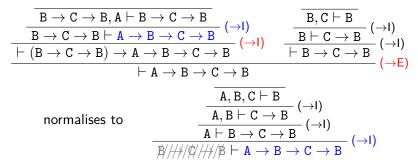
$$(\lambda v. s) t \rightsquigarrow_{\beta} s [t/v]$$

Note that this is how an introduction form (λ -abstraction) interacts with an elimination form (application).

For λ -calculus with constants, we should also specify how to reduce the δ -redexes, which involve the introduction and elimination forms of the additional constants.

Proof normalisation

 β - $/\delta$ -redexes in λ -terms correspond to *detours* in derivations, and evaluation of λ -terms corresponds to *proof normalisation*.



The corresponding reduction is

 $(\lambda\,\mathtt{x}.\,\,\lambda\,\mathtt{y}.\,\,\mathtt{x})\,\,(\lambda\,\mathtt{z}.\,\,\lambda\,\mathtt{w}.\,\,\mathtt{z})\ \rightsquigarrow_{\beta}\ \lambda\,\mathtt{y}.\,\,\lambda\,\mathtt{z}.\,\,\lambda\,\mathtt{w}.\,\,\mathtt{z}.$

Detours

We need a substitution function on derivations which has type

 $\Gamma, \varphi \vdash_{\mathrm{NJ}} \psi \ \rightarrow \ \Gamma \vdash_{\mathrm{NJ}} \varphi \ \rightarrow \ \Gamma \vdash_{\mathrm{NJ}} \psi,$

corresponding to substitution on $\lambda\text{-terms.}$

Wherever the assumption φ is used in the first derivation we plug in a suitably weakened version of the second derivation.

Detours

Corresponding to the β -/ δ -redexes, the possible forms of detours are:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} (\rightarrow I) \qquad \Gamma \vdash \varphi \\
\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi} (\rightarrow I) \qquad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \psi} (\rightarrow I) \\
\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land IL) \qquad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \psi} (\land IR) \\
\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor IL) \qquad \frac{\Gamma, \varphi \vdash \vartheta \quad \Gamma, \psi \vdash \vartheta}{\Gamma \vdash \vartheta} (\lor E) \\
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} (\lor IR) \qquad \Gamma, \varphi \vdash \vartheta \quad \Gamma, \psi \vdash \vartheta \\
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} (\lor IR) \qquad \Gamma, \varphi \vdash \vartheta \quad \Gamma, \psi \vdash \vartheta \quad (\lor E)$$

Subject reduction and strong normalisation

For simply typed λ -calculus we have the following results.

Theorem (subject reduction). If $\Gamma \vdash t : \tau$ and $t \rightsquigarrow_{\beta\delta} t'$, then $\Gamma \vdash t' : \tau$.

Theorem (strong normalisation). Every reduction sequence of a well-typed λ -term terminates at a normal form.

They are readily translated into theorems about derivations.

Theorem. Elimination of a detour produces a derivation with the same conclusion.

Theorem. Every derivation can be normalised (to a derivation that does not contain detours).

Canonicity

Definition. A λ -term is in *canonical form* if its head position is an introduction form, i.e., one of the following:

- λ-abstraction,
- pairing $\langle _, _ \rangle$, and
- injections inl and inr.

Theorem (canonicity). If $\vdash t : \tau$ and t is in normal form, then t is in canonical form.

Induction on the typing derivation of t. The elimination forms give rise to redexes, in contradiction to the assumption that t is in normal form.

Underivability

Corollary. NJ is consistent, i.e., $\not\vdash_{NJ} \perp$.

PROOF If $\vdash_{NJ} \perp$, then there is a λ -term of type \perp in canonical form. But none of the canonical forms can have type \perp .

Corollary (disjunction property). If $\vdash_{NJ} \varphi \lor \psi$, then either $\vdash_{NJ} \varphi$ or $\vdash_{NJ} \psi$.

PROOF A λ -term of type $\varphi \lor \psi$ under the empty context can be reduced to either inl p where $\vdash p : \varphi$ or inr q where $\vdash q : \psi$.

Remark. The disjunction property does not hold for NK.

Corollary. A $\vee \neg A$ is underivable in NJ.

PROOF

If $\vdash_{NJ} A \lor \neg A$, then either $\vdash_{NJ} A$ or $\vdash_{NJ} \neg A$ by the disjunction property, and thus either $\models A$ or $\models \neg A$ by soundness. But neither A nor $\neg A$ is a tautology.

Unifying programming and reasoning

The Curry–Howard correspondence suggests that programs and proofs be identified. Both of them are *mental constructions*, which are all that intuitionistic mathematics cares about.

Per Martin-Löf: "If programming is understood

- not as the writing of instructions for this or that computing machine
- but as the design of methods of computation that it is the computer's duty to execute
 - (a difference that Dijkstra has referred to as the difference between computer science and computing science),

then it no longer seems possible to distinguish the discipline of programming from constructive mathematics."

Martin-Löf Type Theory

Martin-Löf Type Theory is an influential framework in which programs and proofs are treated uniformly. It is simultaneously

- a computationally meaningful higher-order logic system and
- a very expressively typed functional programming language.

There are numerous variations, extensions, and applications of MLTT. The *dependently typed* programming language Agda that we will see next is one of its descendants.