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A richer structure of propositions
When talking about mathematical structures like Peano/Heyting
(natural number) arithmetic, we use statements like

for every x, if x ̸= 0 then there exists y such that suc y = x
that involve quantification over individuals, which is not present in
the language of propositional logic.

(The function suc is the successor function on natural numbers.)

This motivates us to extend propositional logic with first-order
quantification, and the result is called first-order logic.

Going from propositional logic to first-order logic requires more
than enriching the language with quantification though.
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Substitution
Variables are to be substituted for. For example, from

for every x, if x ̸= 0 then there exists y such that suc y = x
we should be able to deduce

if 1 ̸= 0 then there exists y such that suc y = 1

by substituting 1 for the variable x.

The structure of (previously) atomic propositions must be refined
so the variable x can be substituted.
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Sub-atomic structure
In the proposition suc y = x,

‘=’ is a predicate symbol that accepts two terms, and
‘suc’ is a function symbol that can be used to construct more
complex terms, which can contain variables.

Each symbol has an associated natural number called its arity,
which specifies the number of sub-terms the symbol expects.
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Terms
Let IV = { x, y, z, . . . } be an infinite set of individual variable
symbols.

Definition. Given a set F of symbols with arities, the set TermF
of terms is inductively defined by the following rules:

v ∈ TermF if v : IV;
for any f ∈ F with arity n,
f t1 . . . tn ∈ TermF if t1, …, tn ∈ TermF .

Example. For terms in Peano/Heyting arithmetic, we choose
F := { zero/0, suc/1, add/2, mult/2 } (where ‘/n’ indicates the
arity of a symbol).
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First-order formulas
Definition. A signature S is a pair of sets (P,F) of symbols with
arities, where elements of P are called predicate symbols and
elements of F are called function symbols.

Definition. Given a signature S = (P,F), the set FormS of
first-order formulas is defined by the following rules:

⊥ ∈ FormS ;
for any p/n ∈ P,
p t1 . . . tn ∈ FormS if t1, …, tn ∈ TermF ;
φ ∧ ψ ∈ FormS if φ, ψ ∈ FormS ;
φ ∨ ψ ∈ FormS if φ, ψ ∈ FormS ;
φ→ ψ ∈ FormS if φ, ψ ∈ FormS ;
∀ v. φ ∈ FormS if v ∈ IV and φ ∈ FormS ;
∃ v. φ ∈ FormS if v ∈ IV and φ ∈ FormS .

III-5



Example: Signature for Peano/Heyting arithmetic

The signature for Peano/Heyting arithmetic consists of
P := { Eq/2 } and F := { zero/0, suc/1, add/2, mult/2 }.

The proposition
for every x, if x ̸= 0 then there exists y such that suc y = x

is written formally as
∀ x. ¬(Eq x zero) → ∃ y. Eq (suc y) x
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Definition of (capture-avoiding) substitution

Definition. Let S = (P,F) be a signature, t ∈ TermF , and
v ∈ IV. The function _[t/v ] : FormS → FormS , which
substitutes t for v in a first-order formula, is defined by
⊥ [t/v ] = ⊥
(p t1 . . . tn) [t/v ] = p (t1 [t/v ]) . . . (tn [t/v ]) for p/n ∈ P
(φ ∧ ψ) [t/v ] = φ [t/v ] ∧ ψ [t/v ]
(φ ∨ ψ) [t/v ] = φ [t/v ] ∨ ψ [t/v ]
(φ→ ψ) [t/v ] = φ [t/v ] → ψ [t/v ]
(∀ u. φ) [t/v ] = ∀ u. φ [t/v ] where u ̸= v and u /∈ FV t
(∃ u. φ) [t/v ] = ∃ u. φ [t/v ] where u ̸= v and u /∈ FV t,

where _[t/v ] : TermF → TermF is defined by
u [t/v ] = if u = v then t else u for u ∈ IV
(f t1 . . . tn) [t/v ] = f (t1 [t/v ]) . . . (tn [t/v ]) for f/n ∈ F .
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The missing definitions

Let S = (P,F) be a signature.

Exercise. Define the function FV on FormS and TermF
mapping a formula or a term to the set of its free variables.

Exercise. Define α-equivalence on FormS .

Now consider Peano/Heyting arithmetic.

Exercise. Simplify
(¬(Eq x zero) → ∃ y. Eq (suc y) x) [add x y/x]

according to the definitions.
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Intuitionistic meaning of quantifiers

We assume a set D, called the domain of discourse, over which we
quantify.

A proof of ∀ v. φ is a method that, for every d ∈ D, produces
a proof of φ about d.
A proof of ∃ v. φ is a value d ∈ D (called the witness) and a
proof of φ about d.

To obtain a deduction system for intuitionistic first-order logic, we
extend NJ with introduction and elimination rules for ‘∀’ and ‘∃’.
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Introducing and eliminating ‘∀’

Γ ⊢ φ (∀I)
Γ ⊢ ∀ v. φ

Γ ⊢ ∀ v. φ (∀E)
Γ ⊢ φ [t/v ]

(∀I) has a side condition that v /∈ FV Γ, where

FV Γ :=
∪
φ∈Γ

FV φ

Exercise. Derive
⊢ (∀ x. ∀ y. P x y) → ∀ y. ∀ x. P x y
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Non-example of (∀I)

Why and how is this derivation wrong?

Eq x zero ⊢ Eq x zero
(∀I)

Eq x zero ⊢ ∀ x. Eq x zero
(→I)

⊢ Eq x zero → ∀ x. Eq x zero
(∀I)

⊢ ∀ x. Eq x zero → ∀ x. Eq x zero
(∀E)

⊢ Eq zero zero → ∀ x. Eq x zero
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Introducing and eliminating ‘∃’

Γ ⊢ φ [t/v ]
(∃I)

Γ ⊢ ∃ v. φ
Γ ⊢ ∃ v. φ Γ, φ ⊢ ψ (∃E)

Γ ⊢ ψ

(∃E) has a side condition that v /∈ FV Γ ∪ FV ψ.

Exercise. Derive
⊢ (∃ x. ∀ y. P x y) → ∀ y. ∃ x. P x y
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Non-example of (∃E)

Why and how is this derivation wrong?

∃ x. P x ⊢ ∃ x. P x ∃ x. P x, P x ⊢ P x (∃E)
∃ x. P x ⊢ P x (∀I)

∃ x. P x ⊢ ∀ x. P x (→I)
⊢ (∃ x. P x) → ∀ x. P x
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Remark on negation and the existential quantifier

We can derive
(∃ v. ¬φ) → (¬∀ v. φ) but not (¬∀ v. φ) → (∃ v. ¬φ).

Intuitionistic existential quantification is stronger than its classical
counterpart.

Exercise. Derive ⊢ (¬∀ v. φ) → (∃ v. ¬φ) assuming the law of
excluded middle or the principle of indirect proof.

Similar to the Glivenko’s theorem for propositional logic, there are
ways to embed classical first-order logic into intuitionistic
first-order logic.
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Instantiating signatures

Definition. Given a signature S = (P,F), an S-structure M
consists of

a nonempty set called the domain, which is simply denoted
by M,
a function [[p ]]M : (M →)n 2 for each predicate symbol
p/n ∈ P, and
a function [[f ]]M : (M →)n M for each function symbol
f/n ∈ F .

Definition. Given a structure M, the set of M-assignments is
defined to be IV → M.
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Classical semantics of first-order logic

Definition. Let S = (P,F) be a signature, M an S-structure,
and σ an M-assignment. The truth-value interpretation
[[_]]M, σ : FormS → 2 of formulas is defined as follows:
[[⊥]]M, σ = 0
[[p t1 . . . tn]]M, σ = [[p ]]M [[t1]]M, σ . . . [[tn]]M, σ for p/n ∈ P
[[φ ∧ ψ]]M, σ = min [[φ]]M, σ [[ψ]]M, σ

[[φ ∨ ψ]]M, σ = max [[φ]]M, σ [[ψ]]M, σ

[[φ→ ψ]]M, σ = if [[φ]]M, σ ⩽ [[ψ]]M, σ then 1 else 0
[[∀ v. φ]]M, σ = if [[φ]]M, σ[m/v ] = 1 for every m ∈ M

then 1 else 0
[[∃ v. φ]]M, σ = if [[φ]]M, σ[m/v ] = 0 for every m ∈ M

then 0 else 1

where [[_]]M, σ : TermF → M is defined as follows:
[[v ]]M, σ = σ v for v ∈ IV
[[f t1 . . . tn]]M, σ = [[f ]]M [[t1]]M, σ . . . [[tn]]M, σ for f ∈ F .
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Semantic definitions
Let S be a signature, φ, ψ ∈ FormS , and Γ ⊆ FormS .
Definition. An S-structure M and an M-assignment σ satisfy φ
exactly when [[φ]]M, σ = 1; they satisfy Γ exactly when they satisfy
every formula in Γ.
Definition. φ is a semantic consequence of Γ exactly when, for
any S-structure M and M-assignment σ, φ is satisfied by
M and σ if Γ is satisfied by M and σ. In this case we write Γ |= φ.
Definition. φ is valid exactly when ∅ |= φ. In this case we also
call φ a tautology and simply write |= φ.
Exercise. Prove

|= (∀ v. ¬φ) → ¬(∃ v. φ)

Exercise. State and prove the soundness theorem of first-order
NJ with respect to the classical semantics.
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Heyting arithmetic

The signature for Heyting arithmetic consists of P := { Eq/2 } and
F := { zero/0, suc/1, add/2, mult/2 }.

We write t1 ≡ t2 for Eq t1 t2, t1 + t2 for add t1 t2, and t1 × t2 for
mult t1 t2.

Properties about these constants are postulated by the Peano
axioms.
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Peano axioms: ‘Eq’ is an equivalence relation

The first three axioms make ‘Eq’ an equivalence relation.
reflexivity := ∀ x. x ≡ x
transitivity := ∀ x. ∀ y. ∀ z. x ≡ y ∧ y ≡ z → x ≡ z
symmetry := ∀ x. ∀ y. x ≡ y → y ≡ x
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Peano axioms: constructors
The next three axioms are about zero and ‘suc’.

disjointness := ∀ x. ¬(suc x ≡ zero)
injectivity := ∀ x. ∀ y. suc x ≡ suc y → x ≡ y
congruence := ∀ x. ∀ y. x ≡ y → suc x ≡ suc y
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Peano axioms: addition and multiplication
The following four axioms characterise ‘plus’ and ‘mult’.

additionZ := ∀ y. zero + y ≡ y
additionS := ∀ x. ∀ y. (suc x) + y ≡ suc (x + y)
multiplicationZ := ∀ y. zero × y ≡ zero
multiplicationS := ∀ x. ∀ y. (suc x)× y ≡ x + (x × y)
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Peano axioms: induction
Finally there is an axiom scheme that generates instances of the
induction principle on natural numbers: for every formula φ and
variable v there is an axiom

inductionφ, v :=
closure (φ [zero/v ] ∧ (∀ v. φ→ φ [suc v/v ]) → ∀ v. φ)

Definition. The universal closure of a formula ψ is defined by
closure ψ := ∀ v1. . . . ∀ vn. ψ where FV ψ = {v1, . . . , vn}.
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Example: 1 + 1 = 2

Let HA be the Peano axioms. We show that
HA ⊢NJ suc zero + suc zero ≡ suc (suc zero).

HA ` transitivity

(8E)
HA ` 8 y. 8 z. suc zero+ suc zero ⌘ y ^ y ⌘ z ! suc zero+ suc zero ⌘ z

(8E)
HA ` 8 z. suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ z ! suc zero+ suc zero ⌘ z

(8E)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ suc (suc zero) ! suc zero+ suc zero ⌘ suc (suc zero)

HA ` additionS (8E)
HA ` 8 y. suc zero+ y ⌘ suc (zero+ y)

(8E)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero)

HA ` congruence

(8E)
HA ` 8 y. zero+ suc zero ⌘ y ! suc (zero+ suc zero) ⌘ suc y

(8E)
HA ` zero+ suc zero ⌘ suc zero ! suc (zero+ suc zero) ⌘ suc (suc zero)

HA ` additionZ (8E)
HA ` zero+ suc zero ⌘ suc zero

(!E)
HA ` suc (zero+ suc zero) ⌘ suc (suc zero)

(^I)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ suc (suc zero)

(!E)
HA ` suc zero+ suc zero ⌘ suc (suc zero)

Informally:
The left-hand side suc zero + suc zero of ‘≡’ is transformed
into suc (zero + suc zero) by additionS.
The sub-term zero + suc zero is just suc zero by additionZ,
so by congruence we can derive that suc (zero+ suc zero) is
equal to suc (suc zero).
The above two equations are concatenated by transitivity.
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Example: HA ⊢NJ ∀ x. x ≡ zero ∨ ∃ y. x ≡ suc y

This requires induction to analyse x.

HA ` induction

x⌘ zero_9 y. x⌘ suc y, x

HA ` reflexivity

(8E)
HA ` zero ⌘ zero (_IL)

HA ` zero ⌘ zero _ 9 y. zero ⌘ suc y

HA, x ⌘ zero _ 9 y. x ⌘ suc y ` reflexivity

(8E)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` suc x ⌘ suc x

(9I)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` 9 y. suc x ⌘ suc y

(_IR)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(!I)
HA ` x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(8I)
HA ` 8 x. x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(^I)
HA ` (zero ⌘ zero _ 9 y. zero ⌘ suc y) ^ (8 x. x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y)

(!E)
HA ` 8 x. x ⌘ zero _ 9 y. x ⌘ suc y

Informally:
We invoke the induction principle on the formula
φ := x ≡ zero ∨ ∃ y. x ≡ suc y and variable x.
The first proof obligation φ [zero/x] is discharged by choosing
the left-hand side zero ≡ zero of ‘∨’ and instantiating
reflexivity.
For the second proof obligation ∀ x. φ→ (φ [suc x/x]), we
choose the right-hand side ∃ y. suc x ≡ suc y, supply x as the
witness, and invoke reflexivity again.
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Theories
Definition. A formula φ is called a sentence if FV φ = ∅.

Definition. A list of sentences is called a theory, whose elements
are called axioms.

Definition. A sentence derivable from a theory T is called a
theorem of T .

Example. HA is a theory;
suc zero + suc zero ≡ suc (suc zero) and
∀ x. x ≡ zero ∨ ∃ y. x ≡ suc y are theorems of HA.
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(Syntactic) consistency and completeness of theories

Definition. A theory T is inconsistent exactly when T ⊢NJ ⊥;
otherwise it is consistent.

Theorem. Let T be a theory. The following statements are
equivalent:

T is inconsistent;
there is a sentence φ such that T ⊢NJ φ and T ⊢NJ ¬φ;
T ⊢NJ φ for every sentence φ.

Definition. A theory T is complete exactly when, for every
sentence φ, either T ⊢NJ φ or T ⊢NJ ¬φ.
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