Lambda Calculus and Types: Homework

陳亮廷 Chen, Liang-Ting

2018 邏輯、語言與計算暑期研習營

Formosan Summer School on Logic, Language, and Computation

- 1. (20%) Let $f: \mathcal{T} \to S$ be a function satisfying $f(\mathbf{0}) = f_{\mathbf{0}}(*)$, $f(\texttt{succ } n) = f_{\texttt{succ}}(f(n))$, and $f(\texttt{add } n m) = f_{\texttt{add}}(f(n), f(m))$. Show that f is the unique function satisfying
 - (a) $f(0) = f_0(*),$
 - (b) $f(\operatorname{succ} n) = f_{\operatorname{succ}}(f(n))$, and
 - (c) $f(add n m) = f_{add}(f(n), f(m)).$

That is, for every $g: \mathcal{T} \to S$ satisfying the same set of conditions, f = g must hold.

- 2. (20%) Show that for every relation R its reflexive and transitive closure R^* is indeed reflexive and transitive. If unsure, use Definition 0.3.
- 3. (40%) Evaluate the following terms step by step (with $\longrightarrow_{\beta_1}$):
 - (a) add $\mathbf{c}_1 \mathbf{c}_1$
 - (b) pred \mathbf{c}_2 where pred := $\lambda n. \lambda f x. n(\lambda g h. h(g f)) (\lambda u. x) (\lambda u. u)$
 - (c) sum \mathbf{c}_2
 - (d) not (and True False)
- 4. (20%) Show that if a given λ -term M can reduce to N_1 and N_2 respectively, i.e. $M \longrightarrow_{\beta*} N_1$ and $M \longrightarrow_{\beta*} N_2$, where N_1 and N_2 are in normal form, then $N_1 = N_2$.

Definition 0.1 (Relation composition). Given relations $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, the *composite* of R and S is defined by

$$R \circ S := \{ (x, z) \in X \times Z \mid \exists y. x \ R \ y \quad \text{and} \quad y \ S \ z \}.$$

Definition 0.2 (Diagonal). Given any set X, the *diagonal* relation is a relation $\Delta \subseteq X \times X$ defined by

$$\Delta_X := \{ (x, x) \in X \times X \mid x \in X \}.$$

That is, Δ_X is exactly the equality relation '=': $x_1 \Delta_X x_2 \iff x_1 = x_2$.

Definition 0.3 (Reflexive and transitive closure). Given any relation $R \subseteq X \times X$, the *reflexive and transitive closure* R^* is a relation defined by

$$R^* := \Delta_X \cup \bigcup_{i=1}^{\infty} R^i$$

where $R^1 = R$ and $R^{n+1} = R \circ R^n$.