Distributed

Systems Session Types . Types

MULTIPARTY SESSION TYPES

Scribble and applications

’Mu[tigarﬂ Session T ypes o

‘Motivation

Binary Session Types and Duality

Quote contr

>

Delegate T

Address

The only problem is...
communication is more like this ...

2
——a W

A

- -

Or... even like this

Original (Binary) Session Types Paper

ESOP'98]

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR
STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA*, VASCO T. VASCONCELOST, AND MAKOTO KUBO*

ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous m-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline & la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

Multiparty Session Types Paper

Multiparty Asynchronous Session Types

Kohei Honda

Queen Mary, University of London
kohei@dcs.qmul.ac.uk

Abstract

Communication is becoming one of the central elements in soft-
ware development. As a potential typed foundation for structured
communication-centred programming, session types have been
studied over the last decade for a wide range of process calculi and
programming languages, focussing on binary (two-party) sessions.
This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical
communication-centred applications. Presented as a typed calculus
for mobile processes, the theory introduces a new notion of types in
which interactions involving multiple peers are directly abstracted
as a global scenario. Global types retain a friendly type syntax of
binary session types while capturing complex causal chains of mul-
tiparty asynchronous interactions. A global type plays the role of a
shared agreement among communication peers, and is used as a ba-

Nobuko Yoshida

Imperial College London
yoshida@doc.ic.ac.uk

Marco Carbone

Queen Mary, University of London
carbonem@dcs.gmul.ac.uk

vices (Carbone et al. 2006, 2007; WS-CDL; Sparkes 2006; Honda
et al. 2007a). A basic observation underlying session types is that
a communication-centred application often exhibits a highly struc-
tured sequence of interactions involving, for example, branching
and recursion, which as a whole form a natural unit of conversa-
tion, or session. The structure of a conversation is abstracted as a
type through an intuitive syntax, which is then used as a basis of
validating programs through an associated type discipline.

As an example, the following session type describes a simple
business protocol between Buyer and Seller from Buyer’s view-
point: Buyer sends the title of a book (a string), Seller sends a quote
(an integer). If Buyer is satisfied by the quote, then sends his ad-
dress (a string) and Seller sends back the delivery date (a date);
otherwise it quits the conversation.

Istring; 7int; ®{0K :!string; ?date;end, quit : end} (D

e e e e kS ceeeeeeeeeeeeeeeeeee——

Cea?e ;s MBtal | ABIa;BCTb o BC7biCA?C

M”hrwm SQS&‘OV\ -Ty”s [Honda, Yoshida, Carbone QOOSJ
s BIS I STEP

B2
| G) Wrrte Global Type
3 S — B2 Char

Nulﬂl"”‘y Session TYPeS [ronds, fsda, Gurbone 2005]
B|—S .. STEFI

d
O Write Global T)’Pe-
H S ==l 82 Cﬁar

STEP 2
| Fd* Project to Local
Pr OJGCﬂ (, By ?lnt, B22 Char Type.s
v " v
T1 :9. T3

|

H"“‘Pm SQSSIO" -'7”5 [Honda, Yoshida, Carbone 2008:]

| W oba e
S — B2 Char rite Global Typ
STEP 2
(\I B ?Inf. Bz’ Char Project o Local
- Tree
STEP 3

g X « Static Check.

> Generate Code
o Run-tme Check

%’7’
b Y
o
&
%
e
J
.= - ."’4":?

ol

AV 2 EATIDR Y
),‘ i O)
3
=
v
3
1 -
p |
/"(” ‘ -

axadp™

Aice ABTa ; cAfc

NO
Peadl

Bob AB?Q; BCTb

Binary Session Types and Duality

Multiparty Session Types and Projection

Pl has type G rP1

P2 has type G [PJ

P3 has ty]be G \

P4 has type G |

P1 | P2 ‘ P3 ‘ P4 1S typable

Properties of Session Types

1. Communication Error-Freedom
No communication mismatch

2. Session Fidelity
The communication sequence in a session follows the scenario
declared in the types.

3. Progress
No deadlock/ Stuck in a session

i

‘well-typed channels are free from communication errors”

Errors (by example)

=z Communication mismatch

A B
send (B, Div, int) recv (A, Add, int) @ wWrong label
send (B, Div, int) recv (A, Add, string) € Wrong payload
send (C, Div, 1nt) recv (A, Div, 1nt) 0 Wrong role
@ Orphan messages
A B

send (B) | send (A)

@ Deadlock
A B C

recv (B) |l recv (A)
recv (C) |recv(C) |1f (n=0) then send(A) else send (B)

Session T ypes o
?(pjo[icau’ons

22

Type Checking
[OOPSLA’15, ECOOP’16, ECOOP’17, COORDINATION’17]

Global Type
Projection
Local Type Local Type Local Type
3 Y 3
Type - Type Type
Checking Checking Checking
— mm— —
Program Program Program
Alice Bob Carol

\ v

/

_

v

Dynamic Monitoring
[RV°13, COORDINATION’14, FMSD’15, LMCS’17, CC’17]

Global Type
Projection
Local Type Local Type Local Type
s s z
Dynamic Dynamic Dynamic
Monitoring ! Monitoring Monitoring
2 ' ™ f ' \ s ' \
Program Program Program
Alice Bob Carol
\ y - Y - Y

(Generation

Projection

Code Generation
[CC’15, FASE’16, CC’18]

Local Type

A

R

Program

Alice
_

/

Global Type

Local Type

it

Generation ,

v
.

-

Program

Bob

/

Local Type

3¢

(GGeneration ,

\ 4

(

_

B

Program

Carol
_J

Synthesis
[POPL’15, CONCUR’15, TACAS’16, CC’16, POPL’18, ICSE’18]

Global Type
Synthesis
Local Type Local Type Local Type
3 Y A
Type : Type ype
Inference Inference Inference ,
4 l N 4 I R 4 i ~N
Program Program Program
Alice Bob Carol
\. J g Y, _ J

MPST (. Scribble

- Applications
- Deadlock Detection (Go)
- Recovery strategies(Erlang)
- Type-driven programming (Java, Scala, F#)
- Static Verification (C, OCaml, Rust)
~ Runtime monitoring (Python)

= [w

Java ERLANG ERabb|t
% python QOL

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Applications

(S Scribble

Session Type Based Tools

OO0l Governance

¥ |

Process .; ﬂm
OOI ‘ Business Logic ‘ i \y

| Governance control — B
i Interceptor — | Knowledge i
i Base :

{ Specs

1 (ACL)

annotate |

o Specs
Lstate |nf°j’—|:—M°':“t°r—}W[(Sc?ibble) i

- I

| Messaging Client ‘

Message Broker

Actor Verification

Monitors ONTLR

Session (protocol mailboxes)
Session (Roles) (& scribble
Actor Model (Processes and mailboxes) : @ python” &

Session Actor

ZDLC: Process Modeling

JVM Logs,
Application
Logs

System logs,
DB Logs

C/C++
JAVA

| MAINFRAME

| i1BMBPM

COBOL
TANDEM
| ORACLE DB

MQs

il

MPI code generations

Communication protocol

a-2

(a-1)

Custom Pabble

Common protocols

or .
global protocols | repository

I — .
. 1
I .
. I
I .
- 1
w I .
| . S—— I
) " .
2 |
[v4 | .
b4 . N
v 1 .
. I
I -
. 1
I .
. 1
I -
. 1
e o o 2 -
UML & BPMN2
Model
Sequential code
b
Sequential
kernels (C99
D (38 Output(s)

(

Pabble tool j

¥

Endpoint protocol

—_—

MPI codegen

)

C) ¥

MPI backbone

Protocol compiler

(Automatic)

d.e
LARA weaver

Optimised MPI
application

/

Non-Optimised MPI
application

Session Type based Tools

Java API Generation [FASE’16] @

Simple Mail Transfer

TABLE OF CONTENTS

4.1. SNTP Commands ..

4.1.1. Command Semantics

312, Command Syntax

22, STP Replie:

4.2.1. Reply Codes by Functicn Group

4.2.2. Reply Codes in Numeric Order

33 Seguencing of Commandz and Replie:

4.4, Stave Diagrams .

35, Dewail: - .

451 inimum Implementation

53 TrENIREREnTy oo

4.3.). SiTWE ..cccceccccccnccncccnccccccccccans
o

Sugust 1982
fer Protecel

B EEEEE .

Al ks

—
a
i
a
S

¥ (> channels
&C
» (> ioifaces
EndSocket.java

Smtp_C_1_Future.java

Smtp_C_1.java
Smtp_C_10.java

|J] Smtp_C_11_Cases.java
Smtp_C_11_Handler.java

Smtp_C_11.java
|41 Smtp_C 12.java

.send(Smtp.S, new DatalLine("Session
.send(Smtp.S, new EndOfData())

Deadlock Detection for Go [CC’16, POPL’17, ICSE’18]

.receive(Smtp.S, Smtp._250, new Buf

.S

© send(S role, Mail m) : Smtp_C_11 - Smtp_C_10
@ send(S role, Quit m) : EndSocket - Smip C_10

is multiparty

0K < compatible?

Global Session Graph

' 4
Synthesis

> deadlock

Goroutine Automata }

2 | Convert

Local Session Types

1 | infer

SSA IR (go/ssa)

Go source code

Safe Recovery for Erlang [CC’'15]

i Protocol recovery algorithm implementation
ﬁ Dependency Graph a Recovery Table “ Erlang Runtim
(B:1) (C:2)
n | r | recovery points
0 A; [{A;:0} ‘ Protocol Supervisor]
0|4, {AzZO,Allo} o, NN
1|4 {Az:O,Alio} /// / \
1| ¢ {C:1,A;:0,A;:0} -z A Ja
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
3| D {{D:3,B:2,B;:2}
4| c [{c:1,A,:0,4,:0} (A:3)
4| E ({C:1,A,:0,4,:0,D:3,B,:2,B;:2,E:4}
5| D [{D:3,B,:2,B;:2} 0 \
5| E [{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} 1 3 R v
6 |CE|{C:1,A;:0,A2:0,D:3,B;:2,B; :2,E:4} Process Process Process| |Process
7 |D,E|{C:1,A::0,A5:0,D:3,B;:2,B, :2,E: 4} t 7 B c D
8 |[ED|{C:1,A;:0,A>:0,D:3,B;:2,B;:2,E:4}
9 |any |@
10

1%

|Initia| Failurel |Recovered| |Ignore FaiIure”Unaffectedl

{ Channel Automata
i

Link participants with channels’

This work

Applications

Java API Generation [FASE'16] /U Deadlock Detection for Go [CC’16, POPL'17]

is multiparty :
- Global Session Graph >
0K compatible? P deadlock
1 Zuguzt 1982 ¥ (> channels * ’)
Sieple Mai1 Trameter Prosmcel ~ Synthesis
i or comme > = ioifaces

: :) EndSocketiava | Goroutine Automata | | Channel Automata
. |4} Smtp_C_1_Future.java i
: . |J) Smtp_C_1.java X

: [J) Smtp_C_10.java 2 Convert !

i |d] Smtp_C_11_Cases.java :

:_ |J) Smtp_C_11_Handler.java Local Session Typ&s _____ 3 Link o ith ch | "

=) Smtp_C_11.java 7 ink participants with channels

= |41 Smtp C 12.java lﬁ
: u | canAdAl Cm+n € naw NAaral s nal"Cacedinn T lace - This work

ﬂ Dependency Graph ﬂ Recovery Table & Erlang Runtim
(B:1) (C:2)
n | r | recovery points
Y S 0| A; [{A;:0} | Protocol Supervisor
0|4, {AzIO,Al 0} o, .
T ko> T B oED 1|4 [{A2:0,4;:0} P / \
7 1|c {c:1,A;:0,A;:0} P) T
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
ECoE> GF:iBobo 3| D |[{D:3,B,:2,B;:2} (A:3)
4| c [{C:1,A;:0,4,:0} :
t‘m 4| E [{C:1,A;:0,4,:0,D:3,B,:2,B; :2,E:4}
5| D |{D:3,B,:2,B,:2} i |
EESCD 5| E [{C:1,A::0,4,:0,D:3,B,:2,B; :2,E: 4} | Y o v v
6 |CE|{C:1,A1:0,A2:0,D:3,B;:2,B;:2,E:4} Process Process| |Process| |Process
7 |D,E{C:1,A;:0,A:0,D:3,B,:2,B;:2,E: 4} t A B C D
i 8 |ED|{C:1,A;:0,A:0,D:3,B,:2,B; :2,E:4} N N T
Q: end > 10: end > 9 i
T end> T0:_end> 10 zi o |Initia| Failurel |Recovered| |Ignore Failure”Unaffectedl

Session T ZEQS

(. scribble

32

Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World:;
Hello from You to World:;

wWww.Sscribble.org

Scribble

Protocol Lanﬂuaﬂe

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural

construction come from that unconscious moment, when you do not realise what it is, when there is no concrete Documents

shape, only & whisper which is not 8 whisper, an image which is not an image, somehow it starts to urge you in your Protocol L. anﬁuaae Guide
mind, in s0 small & voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

Downloads
P 2

What is Scribble+ e
Scribble is a Ianguage to describe application-level protocols among Communicating

systems. A protocol represents an agreement on how participating systems interact with ComnHy

each other. Without a prOtOCOI. itis hard todo a meaningful interaction: participants simply Discussion Forum
cannot communicate effectively, since they do not know when to expect the other parties to Java Tools

send their data, or whether the other party IS ready fo receive a datum it is Sending. In fact :;ue:

e i . : : . Ikl

it is not clear what kinds of data is to be used for each interaction. It is too costly to carry Py+hon Tools

out communications based on guess works and with inevitable communication mismatch lGsues
(synchronisation bugs). Simply. it is not feasible as an engineering practice. WiKi

http://www.scribble.org/

Meet Scribble www.scribble.org

(. scribble

N

What is Scribble?

Scribble is a langusge to descaibe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do meaningful interaction: participants
simply cannot communicate effectively, since they do not know when to expect the
other parties to send dats, or whether the other party is ready to receive dats.

However, having a desaription of a protocol has further benefits. It enables verification
to ensure that the protocol can be implemented without resulting in unintended
consequences, such as deadlooks.

Find out more __.

Language Guide Specification

Describe ¢

Scribble is a language
for describing
multiparty protocols

Verify 15

Scribble has a theoretical foundation,
based on the Pi Calculus and Session
Types, to ensure that protocols

~ LI
Projecte «
Endpoint projection is

the term used for
identifying the

An example

module examples;

global protocol Helloworld({role Me, role wWerld) {
hello(Greetings) from Me to wWorld;
choice at world {
hello{GoodMorning) from World to Me;
yor{
hello(Goodafternoon) from wWorld to Me;

A very simply example, but this illustrates the basic syntax for 8 hello world interaction,
where 3 party performing the role Me sends 3 message of type Greefings to another
party performing the role "World', who subsequently makes a decision which determines
which path cf the choice will be followed, resulting in 8 GoodMoming or
GoodAftemoon message being exchanged.

Monitor Q

Use the endpoint
projection for roles
defined within a

Implement &

Various options exist, including (a)
using the endpoint projection for a
role to generate a skeleton code, (b)

http://www.scribble.org

Let’S th SOme pPOtOCOlS http://scribble.doc.ic.ac.uk/

module examples}

-~ global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldjs
v choice at World {
goodMorningl() from World to Mej
~ }or{
goodMorningl() from World to Mej
}
}

Load a sample ﬁ Check Protocol: examples.Helloworld Role: Me Project Generate Graph

http://scribble.doc.ic.ac.uk/

Example

- Q&A(role me, role you)
recursion . rae loop {
Se“fj' ask(string) from you to me;
choice choice at me
{ response (string) from me to you;
continue loop; }
or { enough() from me to you; }}

(. scribble
Protocol Validation -

38

Good/Bad MPST by example

- Communication model:
- asynchronous, reliable, role-to-role ordering
- MPST applies to transports that fit this model
- TCP, HTTP, ..., AMQP, ...shared memory
- MPST protocols should be fully specified

- no implicit messages needed to conduct a session

Next....

- Core Scribble constructs

- What can go wrong ?

- MPST safety and liveness errors (informally)
- How are they ruled out (syntactically)

Scribble constructs:
Role-to-role Message passing

B A
123(Int, String) from A to B; @ @
&

Y
Pay|oad ’[ypes A?123(Int, Str)

Operator (label, header, ...)

B!123 (Int, Str)
& @

- Empty operator and/or payload is allowed

() from A to B;

Scribble constructs:
“Located” choice

choice at A {
1() from A to
2() from A to

} or |

M

A?1() A?3()

3() from A to B; 2
4() from A to C; | |
} .
} C?ZN Y ;

© Internal choice by global choice subject

- External choice for all other roles

Condition

© Only enabled roles can send messages 1n choice paths
- Start role enabled, other disabled
© arole 1s enabled by receiving a message from an enabled role

Scribble constructs:
“Located” choice

choice at A {
1() from A to
2() from A to

} or {

B;
C;

A?1() A?2()

4() from A to

' 3() from A to

C;
B;

;
}

© Internal choice by global choice subject

C?ZN K

- External choice for all other roles

Condition

© Only enabled rol
~ Start role ena!

es can send messages 1n choice paths
vled, other disabled

~ arole 1s enabl

ed by receiving a message from an enabled role

Scribble constructs:
“Located” choice

choice at A { |

buyerl(int) from A to|B; |// Total to pay
(int) from B to A;// B will pay that much

““—ﬂ

buyerl(int) from A to|C; V// C pays the remainder

yoor |
buyer2(x:int, y:int) from A to|C; V/ Total to pay
a

(Int) from C to A; // C pays that much
buyer2(x:int, y:int) from A to| B;V/ B pays the remainder

(

More flexible than directed choice

p—q :{li: Gi}ier Branching

- Branching via different payloads not allowed

choice at A {1() from A to B;} or {1(int) from A to B;} <

Exercise:
“Located” choice

Condition

Only enabled roles can send messages in choice paths
Start role enabled, other disabled
a role 1s enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;
poor |
2() from B to A; € Role B not enabled
choice at B {
2() from B to C;
y or |
3() from B to C;

}
4() from C to A;

}
UWhat actvally goes wrong 7

'~ MPST Safety errors:
- © reception error, orphan message, deadlock

Exercise:
“Located” choice

What actvally goes wrong ?

© MPST Safety errors:
© reception error, orphan message, deadlock

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;

or
} 2(){from B to A: @ Role B not enabled
choice at B { A
2() from B to C; —
;oor |

3() from B to C;

;

4() from C to A: 372 0)

[s this protocol OK? 1/4

choice at A {

1() from A to B;

3() from B to C;

4() from C to A;
}oor |

2() from A to B;

3() from B to C;

5() from C to A;

}
Errore explained 7

- Ambitious choice for C

- Should Csend a4 or 5to A?

- potential reception errors (4, 5) if interpreted non-deterministically
- Non-deterministic choice at C inconsistent with the choice by A

- Not mergeable in syntactic projections

- has to merge continuations (undefined for distinct outputs)

[s this protocol OK? 1/4

choice at A {

1()_ifom A to B;
- 3() from B to C;

4() from C to A;
}oor |

2() from A to B;
" 3() from A to C;

5() from A to C;

}

[s this protocol OK? 1/4

choice at A {
1() from A to B;
3a() from B to C;
4() from C to A;
}oor |
2() from A to B;
3b() from A to C;
5() from A to C;

[s this protocol OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge (A, C);
poor |
2() from A to B;
3() from B to C;
do Merge(A, C);
}

global protocol Merge(role A, role C){
4() from A to C;

}

- Duplicate cases inherently mergeable, e.g [POPL'11]

[s this protocol OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);
}oor |
2() from A to B;
3() from B to C;
do Merge(A, C);
}

global protocol Merge(role A, role (C){
choice at A {
4() from A to C;
} oor |
5() from A to C;
}
}

- Duplicate cases inherently mergeable, e.g [POPL'11]

[s this protocol OK? 3/4

choice at A {
la() from A to B;
2() from A to C;
3() from B to C; €
4() from C to A;

} oor {
1b() from A to B;
3() from B to C; €
4() from C to A;

}
Errors explained 7

© “Race condition” on choice on C due to asynchrony

© What should C do after receiving a 3?

© Potential orphan message (2) if interpreted as multi-queue FIFO
~ Inconsistent external choice subject

© (trivially non-mergeable in standard MPST)

© Arole must be enabled by the same role 1n choice paths

»

[s this protocol OK? 4 /4

choice at A {

1() from A to B;

2() from A to C; €
poor |

3() from A to B;

}

Errore explained 7

- Unrealisable choice at C
- No implicit message can be assumed, e.g end of session
- How can C determine if a message is coming?

- Potential deadlock (C waiting for A), or potential orphan (2),
depending on the interpretation

- Empty action option to terminal state
can’t merge end type with anything else

Quiz: Mergeability

choice at A {

.
1() from A to choice at A {

1() from A to

oo O

B;

2() from C to 2() from C to D; —
s o o

3() from A to D; ” .

4 f D to B 3() from A to B;
} () from D to B; 4() from C to D:

}

choice at A { choice at A {

1() from A to C; 1() from A to C;

2() from C to D; 2() from B to C;
} or { “:> } or {

3() from A to B; 3() from A to B;

2() from C to D; 4() from B to C;

} }

Scribble construct: Recursion

- Tail recursion with recursive scopes A .

rec X { C}
1() from A to B;

continue X;

}
2() from A to B; @ Dead code

Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)

Scribble construct: Recursion

- Talil recursion with recursive scopes

rec X {
1() from A to B;
continue X;

}
2() from A to B; € Dead code

rec X { a
1() from A to B; — B!1()

continue X;

}
2() from C to D:

Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)

[s this protocol ok? 1/4

rec X {
choice at A {
1() from A to B;
continue X;
//2() from A to B;
}oor |
3() from A to B;
}

4() from A to B;

}
5() from A to B;

Condition

e Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
© Regular interaction structure at endpoints (CFSM)

I[s this protocol OK? 2/4

rec X {
choice at A {
1() from A to B;
continue X;
poor |
1() from A to B;
}
}

I[s this protocol ok? 3/4

choice at A {
rec X {
1() from A to B;
1() from B to C;
continue X;

Y

}oor {

2() from A to B;
2() from B to C;

}

~ Safety errors? (reception errors, orphan messages, deadlock)
© Consider the FSM at A?

I[s this protocol ok? 3/4

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;

}

}oor |
2() from A to B;
2() from B to C;

}

© Safety errors?
© hint: Consider the FSM at A?

- How about now?

I[s this protocol ok? 3/4

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;
}oor |
2() from A to B;
2() from B to C; €

;

Safety errors?
~ hint: Consider the FSM at A?
-~ How about now?

© Liveness errors?
~ Role progress

I[s this protocol ok? 4 /4

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;

}
}oor {
2() from A to B;

Y 2() from C to B; €

© Safety errors? © Liveness errors?

© hint: Consider the FSM at A? - Role progress
~ How about now? © Message liveness (Eventual reception)

I[s this protocol ok? 4 /4

rec X {
choice at A {
1() from A to B;
continue X;
poor |
2() from A to B;
2() from B to C;

}
}

© But 1s this a good protocol
© depends ...fairness of output choices

Homework

rec X {
choice at A {
1() from A to B;
2() from B to C;
3() from C to B;
yoor |
4() from A to C;
5() from C to B;
}

continue X;}

(. scribble

Trogmm \/eriﬁcau’on

or....
How to program SMTP 1n 5 min

64

Scribble Endpoint APl generation toolchain

, Global
» Protocol spec. as Scribble protocol (asynchronous MPST) brotocol
|
» Global protocol validation Projection
(safely distributable asynchronous protocol) l
» Syntactic projection to local protocols :I)C;Zilol
(static session typing if supported) P |
» Endpoint FSM (EFSM) translation FSM translation
(dynamic session typing by monitors) |
Endpoint
» Protocol states as state-specific channel types FSM

» Call chaining API to link successor states |
API generation

» Java APIs for implementing the endpoints l
Endpoint

API

Scribble Endpoint APl generation toolchain

, Global
» Protocol spec. as Scribble protocol (asynchronous MPST) brotocol
|
» Global protocol validation Projection
(safely distributable asynchronous protocol) l
» Syntactic projection to local protocols :I)C;Zilol
(static session typing if supported) P |
» Endpoint FSM (EFSM) translation FSM translation
(dynamic session typing by monitors) |
Endpoint
» Protocol states as state-specific channel types FSM

» Call chaining API to link successor states |
API generation

» Java APIs for implementing the endpoints l
Endpoint

API

Example: Adder

global protocol Adder(role C, role S) {

}

Global
protocol

Local
protocol

Endpoint
FSM

(validation, projection)

Endpoint
API

choice at C {

}

}

Add(Integer, Integer) from C to S;

Res(Integer) from S to C;

do Adder(C, S);

or {

Bye() from C to S;
Bye() from S to C;

Global Local | Endpoint | Endpoint
protocol protocol | FSM API

(validation, projection)

global protocol Adder(role C, role S) { ilocal protocol Adder_C(role C, role S) {

choice at C { choice at C {
Add(Integer, Integer) —frem—C to S; Add(Integer, Integer) to S:

Res(Integer) from S-te—GC+ _
do Adder(C, S): Res(Integer) from S;

} oor { do Adder(C, S);
Bye() from€ to S; }or{
Bye() from S te—65— Bye() to S;

} Bye() from S;

’ b

Global | Local Endpoint | Endpoint
protocol | protocol FSM API

(FSM translation)

local protocol Adder_C(role C, role S) {
choice at C {
Add(Integer, Integer) to S;
Res(Integer) from S;
do Adder(C, S);
yor{
Bye() to S;
Bye() from S;
b3

Global | Local | Endpoint Endpoint
protocol | protocol | FSM API

APl generation

Adder_C._1

STAdd(Integer, Integer) /S”Res(Integer) \S'Bye()

Adder_C_3

‘Turn each state into a class

Adder C-1

Adder_C_2

EndSocket
Adder_C_1

Adder_C_2 send(S role, Add op, Integer arg0O, Integer argl)
Adder_C_3 send(S role, Bye op) throws

Adder_C_1

Adder_C_3
Adder_C_2
P ——— S7Bye()
EndSocket

Adder_C_2

Adder_C_1 receive(S role, Res op, Buf<? super Integer> argl)

Adder_C_1

Adder C_ 1 cl1 = new Adder C_1(...);

+i, The value of the local vanable c1 1s not used

Adder_C_1

Adder_C_2

Adder_C_1 c1 = new Adder_C_1(...);

@ send(5 role, Bye op) : Adder_C_3 - Adder_C_]
@ send(5 role, Add op, Integer argl, Integer argl) : Adder_C_2 - Adder_C_]

Adder_C_1

EndSocket

Adder C_ 1 cl1 = Adder C_1(...);
Buf<Integer> i = new Buf<>(1);
cl.send(S, Add, i.val, i.val);

@ Adder_C_2 Adder_C_1.send(5 role, Add op. Integer arg0,
Integer arg1) throws ScribbleRuntimeException, 10Exception

Adder_C_1

Adder_C_2

o s e e S

Adder C 1 cl1 = new Adder C_1(...);
Buf<Integer> i = new Buf<>(1);
cl.send(S, Add, i.val, i.val)

.
oo

@ recerve(5 role, Res op, Buf<? super Integer> argl) : Adder_C_1 - Adder C_/

Adder_C_1

Adder_C_2

Adder C 1 cl1 = new Adder C_1(...);
Buf<Integer> i = new Buf<>(1);
cl.send(S, Add, i.val, i.val)
.receive(S, Res, 1)
.send (S, Add, i.val, i.val)
.receive(S, Res, 1)
.send (S, Add, i.val, i.val)
.receive(S, Res, 1)

.
oo

@ send(5 role, Bye op) : Adder_C_5 - Adder_C_1
@ send(5 role, Add op, Integer arg0, Integer arg1) : Adder_C_2 - Adder C_1

Adder_C_2

EndSocket

Adder C_ 1 cl1 = Adder C_1(...);
Buf<Integer> i = Buf<>(1) ;
cl.send(S, Add, i.val, i.val)
.receive(S, Res, 1)
.send (S, Add, i.val, i.val)
.receive(S, Res, i)
//.send(S, Add, i.val, i.val)
.receive(S, Res, 1)

o

£ The method receive(S, Res, Buf<Integer>) 1s undefined for the type Adder_C_1 '

Adder_C_1

Adder_C_3
S7Bye()
EndSocket
Adder C_1 cl1 = Adder C_1(...);
Buf<Integer> i = Buf<>(1);

while (i.val < N)
cl = cl.send(S, Add, i.val, i.val) .receive(S, Res, 1i);

cl.send(S, Bye).receive(S, Bye);

Create a new session channel (V 5)

Adder adder =

try (SessionEndpoint<Adder, C> ep
= new SessionEndpoint<>(adder, C, ...)) { v

Send it on a shared channel:

Adder () ; v

ep.connect (S, SocketChannelEndpoint::new, host, port);

Adder C 1 c1

= Adder_C_1(ep);

Buf<Integer> i = Buf<>(1);
(1. < N)
cl = c1. (S, , 1. , 1.) . (S, , 1)
cl. (S,) . (S,) ;

}

~

