Suggested Solutions \#1

[Compiled on September 5, 2017]

1. Use the semantic method to argue the validity of the following Σ_{E}-formulae, or identify a counterexample (a falsifying T_{E}-interpretation).
(a) $f(x, y)=f(y, x) \rightarrow f(a, y)=f(y, a)$
(b) $f(g(x))=g(f(x)) \wedge f(g(f(y)))=x \wedge f(y)=x \rightarrow g(f(x))=x$

Solution.
(a) There is a falsifying interpretation where $f(m, n)=m^{n}$ for all $m, n \in \mathbb{N}, x=2$, $y=2$, and $a=3$.
(b) Assume there is an interpretation M such that $M \not \vDash f(g(x))=g(f(x)) \wedge f(g(f(y)))=$ $x \wedge f(y)=x \rightarrow g(f(x))=x$. Then,

1. $M=f(g(x))=g(f(x)) \wedge f(g(f(y)))=x \wedge f(y)=x$
2. $M \not \vDash g(f(x))=x$
3. $M \neq f(y)=x \quad$ (by 1)
4. $M \neq g(f(y))=g(x) \quad$ (by 3 and function congruence)
5. $M \neq f(g(f(y)))=f(g(x)) \quad$ (by 4 and function congruence)
6. $M \models f(g(f(y)))=x$
7. $M \models f(g(x))=f(g(f(y)))$ (by 1)
8. $M=f(g(x))=x$
(by 5 and symmetry)
9. $M \models f(g(x))=g(f(x))$
(by 6, 7 and transitivity)
10. $M=f(g(x))=g(f(x))$ (by 1)
11. $M \models g(f(x))=f(g(x))$
(by 9 and symmetry)
12. $M \models g(f(x))=x$
(by 10, 8 and transitivity)
Since we find a contradiction, the formula is T_{E}-valid.
13. Given the following 3×3 grid, we would like to find a way to fill the grid with numbers from 1 to 9 such that

- summations of every row, every column, and every diagonal are the same, and
- each number can appear only once.

Try to write an SMT formula such that the way exists if the SMT formula is satisfiable.

Solution. Let $x_{i, j}$ denote the number in the cell at i-th row and j-th column. Assume that there is a sum sum. Each number can be from 1 to 9 .

$$
\begin{equation*}
\bigwedge_{i=\{1,2,3\}, j=\{1,2,3\}}\left(\bigvee_{1 \leq k \leq 9} x_{i, j}=k\right) \tag{Range}
\end{equation*}
$$

Summations of every row, every column, and every diagonal are the same.

$$
\begin{array}{ll}
& \left(\bigwedge_{1 \leq i \leq 3}\left(+_{1 \leq j \leq 3} x_{i, j}=\text { sum }\right)\right) \\
\wedge & \left(\bigwedge_{1 \leq j \leq 3}\left(+_{1 \leq i \leq 3} x_{i, j}=\text { sum }\right)\right) \tag{Equal}\\
\wedge & \left(\bigwedge_{i \in\{1,3\}}\left(x_{1, i}+x_{2,2}+x_{3,4-i}=\text { sum }\right)\right)
\end{array}
$$

Each number can appear only once.

$$
\begin{equation*}
\bigwedge_{1 \leq i, j, n, m \leq 3}\left((i=n \wedge j=m) \vee\left(x_{i, j} \neq x_{n, m}\right)\right) \tag{Distinct}
\end{equation*}
$$

Then, we can find a solution if the SMT formula Range \wedge Equal \wedge Distinct is satisfiable.
3. Apply the decision procedure for T_{E} to the following Σ_{E}-formulae. Provide a level of details as in slides.
(a) $f(x, y)=f(y, x) \wedge f(a, y) \neq f(y, a)$
(b) $f(g(x))=g(f(x)) \wedge f(g(f(y)))=x \wedge f(y)=x \wedge g(f(x)) \neq x$
(c) $f(f(f(a)))=f(f(a)) \wedge f(f(f(f(a))))=a \wedge f(a) \neq a$
(d) $p(x) \wedge f(f(x))=x \wedge f(f(f(x)))=x \wedge \neg p(f(x))$

Solution.
(a)

$$
\begin{aligned}
& \{\{a\},\{x\},\{y\},\{f(x, y)\},\{f(y, x)\},\{f(a, y)\},\{f(y, a)\}\} \\
& \{\{a\},\{x\},\{y\},\{f(x, y), f(y, x)\},\{f(a, y)\},\{f(y, a)\}\} \quad(f(x, y)=f(y, x))
\end{aligned}
$$

$T_{E \text {-satisfiable }}$
(b)

$$
\begin{aligned}
& \{\{x\},\{y\},\{f(x)\},\{g(x)\},\{f(y)\},\{f(g(x))\},\{g(f(x))\},\{g(f(y))\},\{f(g(f(y)))\}\} \\
& \quad(f(g(x))=g(f(x))) \\
& \{\{x\},\{y\},\{f(x)\},\{g(x)\},\{f(y)\},\{f(g(x)), g(f(x))\},\{g(f(y))\},\{f(g(f(y)))\}\} \\
& \quad(f(g(f(y)))=x) \\
& \{\{x, f(g(f(y)))\},\{y\},\{f(x)\},\{g(x)\},\{f(y)\},\{f(g(x)), g(f(x))\},\{g(f(y))\}\} \\
& \quad(f(y)=x) \\
& \{\{x, f(g(f(y))), f(y)\},\{y\},\{f(x)\},\{g(x)\},\{f(g(x)), g(f(x))\},\{g(f(y))\}\} \\
& \quad \text { (function congruence) } \\
& \{\{x, f(g(f(y))), f(y), f(g(x)), g(f(x))\},\{y\},\{f(x)\},\{g(x), g(f(y))\}\}
\end{aligned}
$$

T_{E}-unsatisfiable
(c)

$$
\begin{array}{ll}
\{\{a\},\{f(a)\},\{f(f(a))\},\{f(f(f(a)))\},\{f(f(f(f(a))))\}\} & \\
\{\{a\},\{f(a)\},\{f(f(a)), f(f(f(a)))\},\{f(f(f(f(a))))\}\} & (f(f(f(a)))=f(f(a))) \\
\{\{a\},\{f(a)\},\{f(f(a)), f(f(f(a))), f(f(f(f(a))))\}\} & \text { (function congruence) } \\
\{\{a, f(f(a)), f(f(f(a))), f(f(f(f(a))))\},\{f(a)\}\} & \text { (f(f(f(f(a))))=a)} \\
\{\{a, f(f(a)), f(f(f(a))), f(f(f(f(a)))), f(a)\}\} & \text { (function congruence) }
\end{array}
$$

T_{E}-unsatisfiable
(d) Consider the formula $f_{p}(x)=\bullet \wedge f(f(x))=x \wedge f(f(f(x)))=x \wedge f_{p}(f(x)) \neq \bullet$ instead.

```
\(\left\{\{\bullet\},\{x\},\{f(x)\},\left\{f_{p}(x)\right\},\{f(f(x))\},\left\{f_{p}(f(x))\right\},\{f(f(f(x)))\}\right\}\)
\(\left\{\left\{\bullet, f_{p}(x)\right\},\{x\},\{f(x)\},\{f(f(x))\},\left\{f_{p}(f(x))\right\},\{f(f(f(x)))\}\right\} \quad\left(f_{p}(x)=\bullet\right)\)
\(\left\{\left\{\bullet, f_{p}(x)\right\},\{x, f(f(x))\},\{f(x)\},\left\{f_{p}(f(x))\right\},\{f(f(f(x)))\}\right\} \quad(f(f(x))=x)\)
\(\left\{\left\{\bullet, f_{p}(x)\right\},\{x, f(f(x))\},\{f(x), f(f(f(x)))\},\left\{f_{p}(f(x))\right\}\right\} \quad\) (function congruence)
\(\left\{\left\{\bullet, f_{p}(x)\right\},\{x, f(f(x)), f(x), f(f(f(x)))\},\left\{f_{p}(f(x))\right\}\right\} \quad(f(f(f(x)))=x)\)
\(\left\{\left\{\bullet, f_{p}(x), f_{p}(f(x))\right\},\{x, f(f(x)), f(x), f(f(f(x)))\}\right\} \quad\) (function congruence)
```

T_{E}-unsatisfiable
4. Apply the decision procedure for $T_{\text {cons }}$ to the following $T_{\text {cons }}$-formulae. Please write down the call sequence to the MERGE procedure, draw the final DAG, and draw the final DAG.
(a) $\operatorname{car}(x)=y \wedge c d r(x)=z \wedge x \neq \operatorname{cons}(y, z)$
(b) $\neg \operatorname{atom}(x) \wedge \operatorname{car}(x)=y \wedge c d r(x)=z \wedge x \neq \operatorname{cons}(y, z)$

Solution.

(a) The following is the initial DAG.

The following is the merge sequences.
(1) Add node $7: \operatorname{car}(\operatorname{cons}(y, z))$ and MERGE 75 (by left projection)
(2) Add node $8: c d r(\operatorname{cons}(y, z))$ and MERGE 86 (by right projection)
(3) MERGE 15 (by $\operatorname{car}(x)=y)$
(4) MERGE 26 (by $c d r(x)=z$)

The following is the final DAG.

Consider $x \neq \operatorname{cons}(y, z)$, we have FIND $3 \neq$ FIND 4 . Thus, the formula is $T_{\text {cons }}{ }^{-}$ satisfiable.
(b) Preprocess the formula and get the following one:

$$
x=\operatorname{cons}(a, b) \wedge \operatorname{car}(x)=y \wedge \operatorname{cdr}(x)=z \wedge x \neq \operatorname{cons}(y, z) .
$$

Below is the initial DAG.

(1) Add nodes $10: \operatorname{car}(\operatorname{cons}(a, b))$ and $12: \operatorname{car}(\operatorname{cons}(y, z))$, and MERGE 105 and MERGE 128 (by left projection)
(2) Add nodes $11: \operatorname{cdr}(\operatorname{cons}(a, b))$ and $13: c d r(c o n s(y, z))$, and MERGE 116 and MERGE 139 (by right projection)
(3) MERGE 34 (by $x=\operatorname{cons}(a, b)$)
(3-1) MERGE 110 (by function congruence)
(3-2) MERGE 211 (by function congruence)
(4) MERGE 18 (by $\operatorname{car}(x)=y)$
(5) MERGE 29 (by $c d r(x)=z)$
(5-1) MERGE 47 (by function congruence)

Consider $x \neq \operatorname{cons}(y, z)$, we have FIND $3=$ FIND $7=7$. Thus, the formula is $T_{\text {cons-unsatisfiable. }}$
5. Apply the decision procedure for quantifier-free T_{A} to the following Σ_{A}-formulae.
(a) $a\langle i \triangleleft e\rangle[j]=e \wedge i \neq j$
(b) $a\langle i \triangleleft e\rangle\langle j \triangleleft f\rangle[k]=g \wedge j \neq k \wedge i=j \wedge a[k] \neq g$

Solution.
(a) Consider the following two cases.

- Case 1: $i=j$. The formula becomes

$$
i=j \wedge e=e \wedge i \neq j
$$

which is T_{E}-unsatisfiable.

- Case 2: $i \neq j$. The formula becomes

$$
i \neq j \wedge a[j]=e \wedge i \neq j
$$

which is T_{A}-satisfiable because the following formula

$$
i \neq j \wedge f_{a}(j)=e \wedge i \neq j
$$

is T_{E}-satisfiable.
Conclusion: T_{A}-satisfiable.
(b) Consider the following cases where the conversion from T_{A} formulas (without writing operations) to T_{E} formulas is applied by not shown here.

- Case 1: $j=k$. The formula becomes

$$
j=k \wedge f=g \wedge j \neq k \wedge i=j \wedge a[k] \neq g
$$

which is T_{A}-unsatisfiable.

- Case 1: $j \neq k$. The formula becomes

$$
j \neq k \wedge a\langle i \triangleleft e\rangle[k]=g \wedge j \neq k \wedge i=j \wedge a[k] \neq g
$$

We have two sub-cases.

- Case 1(a): $i=k$. The formula becomes

$$
i=k \wedge j \neq k \wedge e=g \wedge j \neq k \wedge i=j \wedge a[k] \neq g
$$

which is T_{A}-unsatisfiable.

- Case 1(b): $i \neq k$. The formula becomes

$$
i \neq k \wedge j \neq k \wedge a[k]=g \wedge j \neq k \wedge i=j \wedge a[k] \neq g
$$

which is T_{A}-unsatisfiable.
Conclusion: T_{A}-unsatisfiable.

