Exercises

[Compiled on August 30, 2017]

- 1. Use the semantic method to argue the validity of the following Σ_E -formulae, or identify a counterexample (a falsifying T_E -interpretation).
 - (a) $f(x,y) = f(y,x) \to f(a,y) = f(y,a)$
 - (b) $f(g(x)) = g(f(x)) \wedge f(g(f(y))) = x \wedge f(y) = x \rightarrow g(f(x)) = x$
- 2. Given the following 3×3 grid, we would like to find a way to fill the grid with numbers from 1 to 9 such that
 - summations of every row, every column, and every diagonal are the same, and
 - each number can appear only once.

Try to write an SMT formula such that the way exists if the SMT formula is satisfiable.

- 3. Apply the decision procedure for T_E to the following Σ_E -formulae. Provide a level of details as in slides.
 - (a) $f(x,y) = f(y,x) \land f(a,y) \neq f(y,a)$
 - (b) $f(g(x)) = g(f(x)) \wedge f(g(f(y))) = x \wedge f(y) = x \wedge g(f(x)) \neq x$
 - (c) $f(f(f(a))) = f(f(a)) \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$
 - (d) $p(x) \wedge f(f(x)) = x \wedge f(f(f(x))) = x \wedge \neg p(f(x))$
- 4. Apply the decision procedure for T_{cons} to the following T_{cons} -formulae. Please write down the call sequence to the *MERGE* procedure, draw the final DAG, and draw the final DAG.
 - (a) $car(x) = y \wedge cdr(x) = z \wedge x \neq cons(y, z)$
 - (b) $\neg atom(x) \land car(x) = y \land cdr(x) = z \land x \neq cons(y, z)$
- 5. Apply the decision procedure for quantifier-free T_A to the following Σ_A -formulae.
 - (a) $a\langle i \triangleleft e \rangle[j] = e \land i \neq j$
 - (b) $a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [k] = g \land j \neq k \land i = j \land a[k] \neq g$