Exercises

[Compiled on August 29, 2017]

1. Given an alphabet $\{1,2,+\}$, draw a finite state automaton such that the automaton accepts words evaluated to 3 .
2. Apply subset construction to determinize the following automaton.

3. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right)$ and $M_{1}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$ be two NFAs. Construct an NFA M_{3} such that $L\left(M_{3}\right)=L\left(M_{1}\right) \backslash L\left(M_{2}\right)$. Please describe the components of M_{3} in detail.
4. Write regular expressions to describe the following languages. $(\Sigma=\{a, b\})$
(a) $\{w \mid$ the length of w is even $\}$
(b) $\{w \mid w$ has at most two b 's $\}$
(c) $\{w \mid$ every a in w is followed by $b\}$
5. Express the language of the following automaton by a regular expression.

6. Write WS1S formulas to describe the following words.
(a) Only a 's can occur between any two occurrences of b 's
(b) Has an odd length (please start with \exists)
7. Draw a Büchi automaton that accepts infinite words where p holds infinitely many times. ($\Sigma=\{p, \neg p\}$)
8. Express the following sentences in LTL formulas.
(a) " p occurs infinitely often"
(b) "whenever a message is sent, eventually an acknowledgement will be received"
