Exercises

[Compiled on August 29, 2017]

- 1. Given an alphabet $\{1, 2, +\}$, draw a finite state automaton such that the automaton accepts words evaluated to 3.
- 2. Apply subset construction to determinize the following automaton.

- 3. Let $M_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $M_1 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ be two NFAs. Construct an NFA M_3 such that $L(M_3) = L(M_1) \setminus L(M_2)$. Please describe the components of M_3 in detail.
- 4. Write regular expressions to describe the following languages. $(\Sigma = \{a, b\})$
 - (a) $\{w \mid \text{the length of } w \text{ is even}\}$
 - (b) $\{w \mid w \text{ has at most two } b$'s $\}$
 - (c) $\{w \mid \text{every } a \text{ in } w \text{ is followed by } b\}$
- 5. Express the language of the following automaton by a regular expression.

- 6. Write WS1S formulas to describe the following words.
 - (a) Only a's can occur between any two occurrences of b's
 - (b) Has an odd length (please start with \exists)
- 7. Draw a Büchi automaton that accepts infinite words where p holds infinitely many times. $(\Sigma = \{p, \neg p\})$

- 8. Express the following sentences in LTL formulas.
 - (a) "p occurs infinitely often"
 - (b) "whenever a message is sent, eventually an acknowledgement will be received"