Outline

Elementary Computation Theory

Ming-Hsien Tsai

Institute of Information Science Academia Sinica

FLOLAC 2017

- Finite state automata
- Regular Expressions
- WS1S
- *w*-Automata
- Linear temporal logic

FLOLAC 2017 2 Elementary Computation Theory

Computation

3

- What is the model of a computation machine?
- What is the result of a computation?

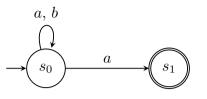
Computation

- What is the model of a computation machine?
- What is the result of a computation?
- The simplest model of computation machinery
 - *Finite state automata* (FSA), or equivalently nondeterministic finite automata (NFA), *nondeterministic finite word automata* (NFW)

FLOLAC 2017

FLOLAC 2017

Automaton M_1



- This automaton recognizes *words* (strings) end with an "a".
 - Alphabet: $\{a, b\}$ Transitions: $\{(s_0, a, s_0), (s_0, a, s_1), (s_0, b, s_0)\}$
 - States: {*s*₀, *s*₁} Ac
 - Accepting states: {*s*₁}
 - Initial states: {s₀}
 FLOLAC 2017

Elementary Computation Theory

Words

4

- Let Σ be a finite alphabet.
- A word w over Σ ($w \in \Sigma^*$) is a sequence of symbols $a_0a_1a_2...a_{n-1}$ with $a_i \in \Sigma$.
 - Length of w is n.
 - The empty word is denoted by ϵ .
- Examples $(\Sigma = \{a, b\})$:
 - a b b a
 - *a b a b a b*

FLOLAC 2017

 w^* : repeat w finitely many times

6

Elementary Computation Theory

Alphabet

- An *alphabet* is a set of symbols.
- Types of alphabet: *classical* and *propositional*
- Examples:
 - $\{a, b\}$
 - {send, receive, ack}
 - $\{(p \ q), \ (\neg p \ q), \ (\neg p \ \neg q), \ (\neg p \ \neg q)\}$

FLOLAC 2017 5

Elementary Computation Theory

Finite State Automata Syntax

- A finite state automaton is a 5-tuple $(Q, \Sigma, \delta, I, F)$ where
 - Q is a finite set of *states*,
 - Σ is a finite *alphabet*,
 - δ : Q × Σ → 2^Q is the transition function (sometimes written as a relation δ : Q × Σ × Q),

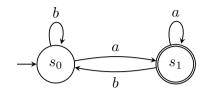
7

- $I \subseteq Q$ is the set of *initial states*, and
- $F \subseteq Q$ is the set of *accepting (final) states*

FLOLAC 2017

I

Automaton M_2



$$A = (Q, \Sigma, \delta, I, F)$$

 $\Sigma = \{a, b\}$

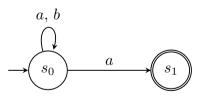
- Q = ? I = ?
- $\delta = ?$ F = ?
- FLOLAC 2017 8 Elementary Computation Theory

Finite State Automata Semantics

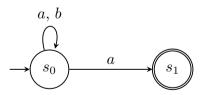
- Let $M = (Q, \Sigma, \delta, I, F)$ be a finite state automaton.
- Let $w = a_0 a_1 a_2 \dots a_{n-1}$ be a word over Σ .
- A *run* of w on M is a sequence of states $s_0s_1s_2...s_n$ where
 - $s_0 \in I$
 - $(s_i, a_i, s_{i+1}) \in \delta$

FLOLAC 2017	9	Elementary Computation Theory

Runs

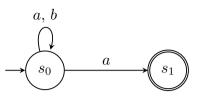


- What are the runs of the following words?
 - $\bullet \ a \ b \ a \ b$
 - $\bullet \ a \ b \ b \ a$



- What are the runs of the following words?
- $\bullet \ a \ b \ b \ a$

Runs



- What are the runs of the following words?

 - a b b a $s_0 s_0 s_0 s_0 s_0$ and $s_0 s_0 s_0 s_1$

FLOLAC 2017	10	Elementary Computation Theory

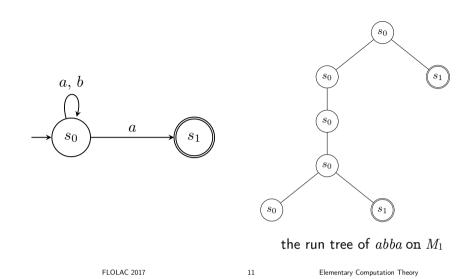
Finite State Automata Semantics (cont'd)

- $M = (Q, \Sigma, \delta, I, F)$
- A run $s_0s_1s_2...s_n$ is *accepting* if $s_n \in F$.
- A word w is accepted by M if there is an accepting run of w on M.

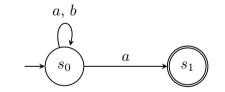
12

• The *language* of *M* is the set of strings accepted by *M*, denoted by *L*(*M*).

Run Tree



Accepting Runs



- Which run is accepting?
 - $\bullet \quad S_0 \quad S_0 \quad S_0 \quad S_0 \quad S_0$
 - *s*₀ *s*₀ *s*₀ *s*₀ *s*₁

FLOLAC 2017

Languages

• What is the language of M_1 ?

a, b a, b s_0 a s_1

• The language recognized by a finite state automaton is a *regular language*.

FLOLAC 2017	14	Elementary Computation Theory

Exercise

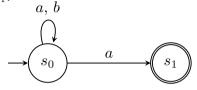
• Given an alphabet {1, 2, +}, draw a finite state automaton such that the automaton accepts words evaluated to 3.

15

Elementary Computation Theory

Languages

• What is the language of *M*₁?



 $L(M_1) = \{ a_0a_1...a_n \mid n \in \mathbb{N} \text{ and } a_n = a \}$

• The language recognized by a finite state automaton is a *regular language*.

FLOLAC 2017 14 Elementary Computation Theory

Emptiness and Universality

- $M = (Q, \Sigma, \delta, I, F)$
- An automaton M is *empty* if $L(M) = \emptyset$.
- An automaton M is *universal* if $L(M) = \Sigma^*$.

Emptiness and Universality

• $M = (Q, \Sigma, \delta, I, F)$

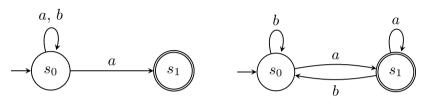
FLOLAC 2017

is this automaton empty?

- An automaton M is empty if $L(M) = \emptyset$.
- An automaton M is *universal* if $L(M) = \Sigma^*$.

Equivalence

• Two automata are *equivalent* if they recognize the same language.



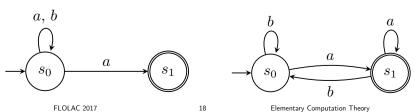
16	Elementary Computation Theory	FLOLAC 2017	17	Elementary Computation Theory

Deterministic Finite Automata (DFA)

- An automaton $M = (Q, \Sigma, \delta, I, F)$ is *deterministic* if
 - |I| = 1, and

(is complete if $|\delta(s, a)| \ge 1$)

- $|\delta(s, a)| = 1$ for all $s \in Q$ and $a \in \Sigma$.
- Which one is deterministic?



Determinism VS Nondeterminism

- Let D be a DFA. The language L(D) is accepted by the NFA D. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that L(D) = L(N)?

19

Determinism VS Nondeterminism

- Let D be a DFA. The language L(D) is accepted by the NFA D. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that L(D) = L(N)?

Determinism VS Nondeterminism

- Let *D* be a DFA. The language *L*(*D*) is accepted by the NFA *D*. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that L(D) = L(N)?
- DFA and NFA have the same expressive power.

FLOLAC 2017	19	Elementary Computation Theory

FLOLAC 2017 19 Elementary Computation Theory

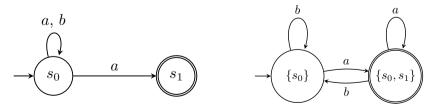
Determinization

- Let $N = (Q, \Sigma, \delta, I, F)$.
- By subset construction, define $D = (2^Q, \Sigma, \Delta, \{I\}, G)$ where
 - $\Delta(S, a) = \cup_{s \in S} \delta(s, a)$, and
 - $\bullet \ \ G=\{ \ S\in 2^Q \mid S\,\cap\, F\neq \varnothing \ \}.$
- We can show that L(N) = L(D) by induction on the length of input words.

20

Subset Construction

• What is the determinization of M_1 ?

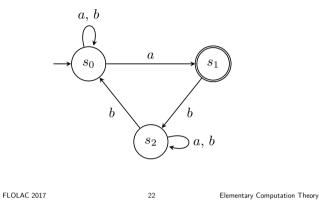


FLOLAC 2017

FLOLAC 2017

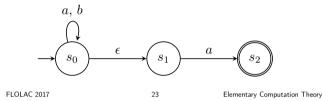
Exercise

• Apply subset construction to determinize the following automaton



c-Transitions

- Assume ϵ does not belong to the alphabet.
- An *e*-transition is a transition that does not need to consume any symbol.
- ϵ -transitions are only allowed in NFA.
- DFA and NFA with *e*-transitions have the same expressive power.



Elimination of ϵ -Transitions

- $M = (Q, \Sigma \cup {\epsilon}, \delta, I, F)$ is an NFA with ϵ -transitions.
- Let E(X) denote the ϵ -closure of $X \subseteq Q$.
 - E(X) = { s | s ∈ X or s is reachable from a state in X through εtransitions }

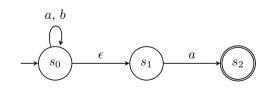
24

- Construct an NFA $N = (Q, \Sigma, \Delta, J, F)$ where
 - $\Delta(s, a) = E(\delta(s, a))$, and
 - J = E(I)

FLOLAC 2017

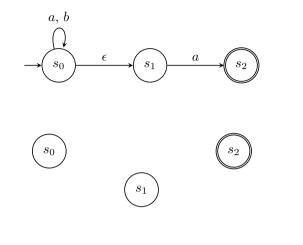
Elementary Computation Theory

Elimination of *e*-Transitions Example



Elimination of *e*-Transitions

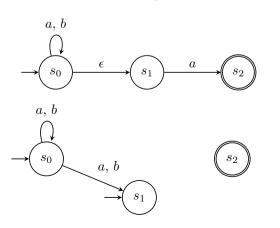
Example



FLOLAC 2017 25 Elementary Computation Theory

Elimination of *e*-Transitions

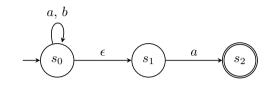
Example

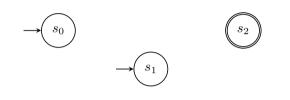


25

Elimination of *e*-Transitions

Example

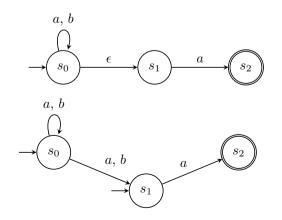




FLOLAC 2017 25 Elementary Computation Theory

Elimination of ϵ -Transitions

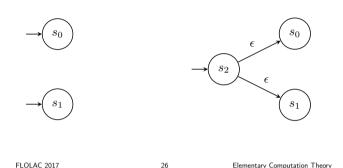
Example



25

Single Initial State

- NFA may be defined as automata with single initial state.
- NFA with multiple initial states does not have more expressive power.



Closure Properties

- Regular languages are closed under the following operations.
 - union.
 - intersection,
 - concatenation,
 - Kleene closure, and
 - complementation.

FLOLAC 2017

Elementary Computation Theory

Union

- $M_1 = (Q_1, \Sigma, \delta_1, I_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$
- Assume $Q_1 \cap Q_2 = \emptyset$.
- $M_3 = (Q_1 \cup Q_2, \Sigma, \delta_3, I_1 \cup I_2, F_1 \cup F_2)$ where $(s, a, t) \in \delta_3$ if

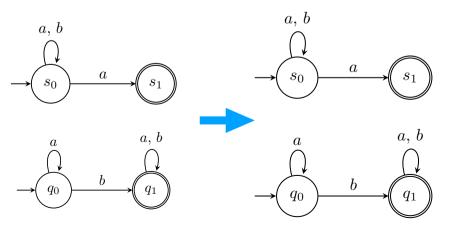
28

- $(s, a, t) \in \delta_1$, or
- $(s, a, t) \in \delta_2$
- $L(M_3) = L(M_1) \cup L(M_2)$

FLOLAC 2017

Union Example

27



FLOLAC 2017

Intersection

- $M_1 = (Q_1, \Sigma, \delta_1, I_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$
- $M_3 = (Q_1 \times Q_2, \Sigma, \delta_3, I_1 \times I_2, F_1 \times F_2)$ where $((s_1, s_2), a, (t_1, t_2)) \in \delta_3$ if
 - $(s_1, a, t_1) \in \delta_1$, and
 - $(s_2, a, t_2) \in \delta_2$
- $L(M_3) = L(M_1) \cap L(M_2)$

FLOLAC 2017	30	Elementary Computation Theory

Concatenation

- $M_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$
- Assume $Q_1 \cap Q_2 = \emptyset$ and $\epsilon \notin \Sigma$.
- $M_3 = (Q_1 \cup Q_2, \Sigma \cup \{\epsilon\}, \delta_3, I_1, F_2)$ where $(s, a, t) \in \delta_3$ if
 - $(s, a, t) \in \delta_1$,
 - $(s, a, t) \in \delta_2$, or
 - $a = \epsilon$, $s \in F_1$, and $t \in I_2$.
- $L(M_3) = L(M_1)L(M_2) = \{ uv \mid u \in L(M_1) and v \in L(M_2) \}$

32

FLOLAC 2017

Intersection

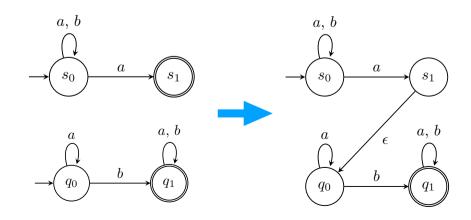
Example



FLOLAC 2017 31 Elementary Computation Theory

Concatenation

Example



FLOLAC 2017

33

Kleene Closure

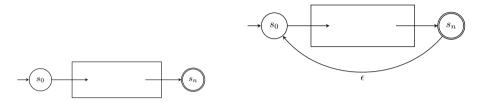
• An operation that repeat a string arbitrary number of times (including zero time).

 s_n

FLOLAC 2017

Kleene Closure

• An operation that repeat a string arbitrary number of times (including zero time).

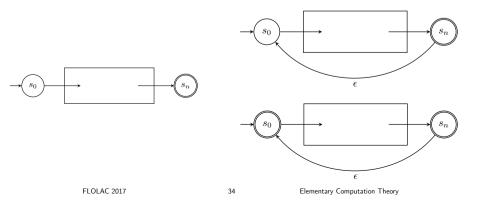


Elementary Computation Theory	FLOLAC 2017	34	Elementary Computation Theory

Kleene Closure

34

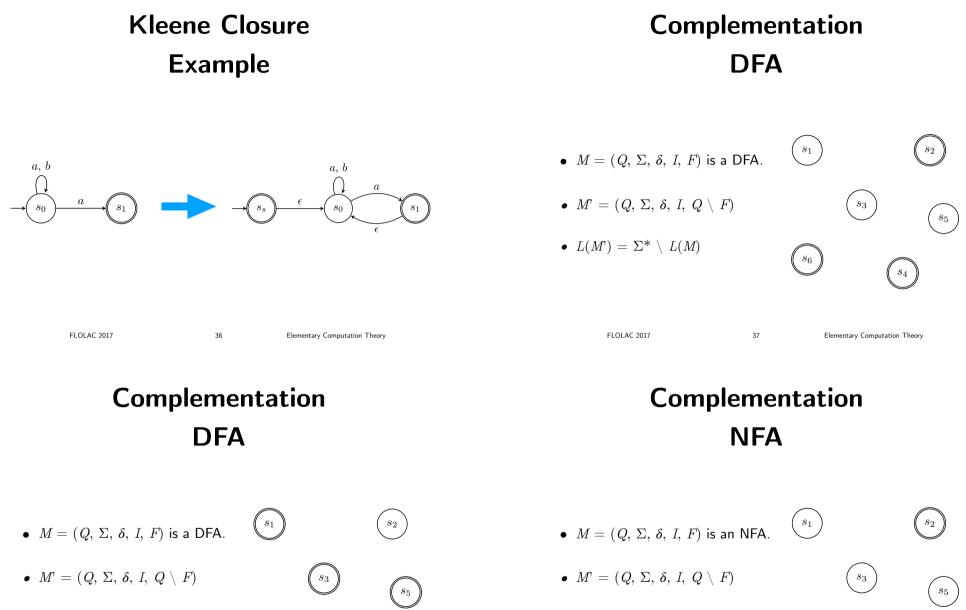
• An operation that repeat a string arbitrary number of times (including zero time).



Kleene Closure (cont'd)

- $M = (Q, \Sigma, \delta, I, F)$
- Assume $\epsilon \notin \Sigma$ and $s_s \notin Q$.
- $M = (Q \cup \{s_s\}, \Sigma \cup \{\epsilon\}, \Delta, \{s_s\}, F \cup \{s_s\})$ where $(s, a, t) \in \Delta$ if
 - $\bullet \ s=s_{\rm s}, \ t\in {\it I}, \ {\rm and} \ a=\epsilon,$
 - $(s, a, t) \in \delta$, or
 - $s \in F$, $t \in I$, and $a = \epsilon$.
- $L(M') = L(M)^*$

FLOLAC 2017



• $L(M') = \Sigma^* \setminus L(M)$

FLOLAC 2017

 s_6

 s_4

FLOLAC 2017

• $L(M') = \Sigma^* \setminus L(M)$?

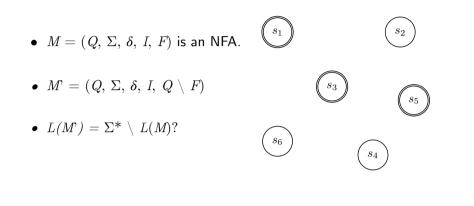
38

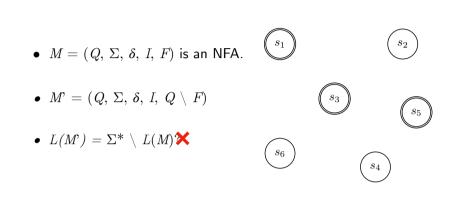
 s_4

 s_6

Complementation NFA

Complementation NFA

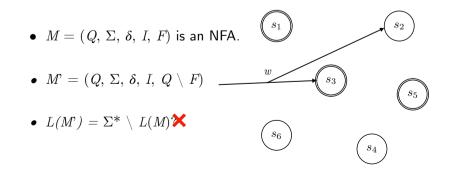




Complementation NFA

38

38



38

• Let $M_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ be two NFAs. Construct an NFA M_3 such that $L(M_3) = L(M_1)$ $\setminus L(M_2)$. Please describe the components of M_3 in detail.

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

Minimization

- Given a DFA M_1 , can we construct a minimal DFA M_2 such that $L(M_1) = L(M_2)$?
- Given an NFA M_1 , can we construct a minimal NFA M_2 such that $L(M_1) = L(M_2)$?

Minimization

- Given a DFA M_1 , can we construct a minimal DFA M_2 such that $L(M_1) = L(M_2)$?
- Given an NFA M_1 , can we construct a minimal NFA M_2 such that $L(M_1) = L(M_2)$?

FLOLAC 2017	40	Elementary Computation Theory
-------------	----	-------------------------------

Minimization

40

- Given a DFA M_1 , can we construct a minimal DFA M_2 such that $L(M_1) = L(M_2)$?
- Given an NFA M_1 , can we construct a minimal NFA M_2 such that $L(M_1) = L(M_2)$? **but harder**

40

Myhill-Nerode Theorem

- Given a language $L \subseteq \Sigma^*$, define a binary relation R_L over Σ^* as follows.
 - $xR_Ly \text{ iff } \forall z \in \Sigma^* (xz \in L \leftrightarrow yz \in L)$
- R_L can be shown to be an equivalence relation.
- R_L divide the set of string into *equivalence classes*.
- L is regular iff R_L has a finite number of equivalence classes.
- The number of states in the minimal DFA recognizing L is equal to the number of equivalence classes in R_L .

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

Minimization Idea

- For a language $L \subseteq \Sigma^*$, compute the equivalence classes of L.
- Construct a state for each equivalence class.
- A equivalence class C₁ can take an *a*-transition to another equivalence class C₂ if there is a string x ∈ C₁ such that xa ∈ C₂.
- How to find the equivalence classes?

FLOLAC 2017	42	Elementary Computation Theory

Language Expressions

• So far we know that a regular language can be accepted by a finite state automaton.

44

• Can we represent a regular language in other forms?

Minimization Hopcroft's Algorithm

$\mathbf{P} := \{\mathbf{F}, \mathbf{Q} \setminus \mathbf{F}\};$ $\mathbf{W} := \{\mathbf{F}\};$
while (W is not empty) do
choose and remove a set A from W
for each c in Σ do
let X be the set of states for which a transition on c leads to a state in A
for each set Y in P for which X \cap Y is nonempty and Y \setminus X is nonempty do
replace Y in P by the two sets X \cap Y and Y \setminus X
if Y is in W
replace \mathbf{Y} in \mathbf{W} by the same two sets
else
if $ \mathbf{X} \cap \mathbf{Y} <= \mathbf{Y} \setminus \mathbf{X} $
add X ∩ Y to W
else
add Y \ X to W
end;
end;
end;
the pseudocode is taken from <u>https://en.wikipedia.org/wiki/DFA_minimization</u>

FLOLAC 2017 43 Elementary Computation Theory

Language Expressions

- So far we know that a regular language can be accepted by a finite state automaton.
- Can we represent a regular language in other forms?

regular expressions

FLOLAC 2017

Regular Expressions (RE)

- Let Σ be an alphabet.
- The regular expressions over $\boldsymbol{\Sigma}$ are defined as follows.
 - Ø is a regular expression denoting the empty set;
 - ϵ is a regular expression denoting the set $\{\epsilon\}$;
 - for each $a \in \Sigma$, a is a regular expression denoting the set $\{a\}$;
 - if r and s are regular expressions denoting the sets R and S respectively, then r+s, rs, and r^* are regular expressions denoting $R \cup S$, RS, and R^* respectively.
- The language of a regular expression e is denoted by L(e).

Regular Expressions Examples (cont'd)

• $r+\varnothing = ?$ • $r+\varnothing = ?$ • $r+\varepsilon = ?$ • r = ?• r = ?• r = ?• r = ?

Regular Expressions Examples

- Let $\Sigma = \{a, b\}$.
- $a^*ba^* = \{w \mid w \text{ has exactly a single } b\}$
- $\Sigma^* b \Sigma^* = \{ w \mid w \text{ has at least one } b \}$
- $\Sigma^* aba\Sigma^* = \{w \mid w \text{ has a substring } aba\}$
- a+b+aΣ*a+bΣ*b = {w | w starts and ends with the same symbol}

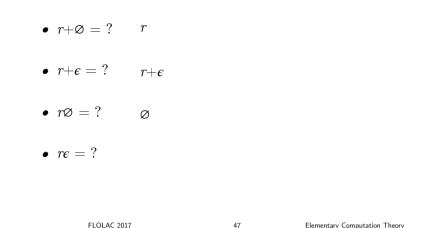
FLOLAC 2017 46 Elementary Computation Theory

Regular Expressions Examples (cont'd)

Regular Expressions Examples (cont'd)

Elementary Computation Theory

Regular Expressions Examples (cont'd)



Regular Expressions Examples (cont'd)

47

- $r+\emptyset = ?$ r
- $r+\epsilon = ?$ $r+\epsilon$

FLOLAC 2017

- $r \emptyset = ? \qquad \emptyset$
- $r\epsilon = ?$ r

Exercise

- Write regular expressions to describe the following languages. $(\Sigma = \{a, b\})$
 - $\{w \mid \text{the length of } w \text{ is even}\}$
 - $\{w \mid w \text{ has at most two } b$'s $\}$
 - $\{w \mid \text{every } a \text{ in } w \text{ is followed by } b\}$

FLOLAC 2017

Regular Expressions VS Finite State Automata

• A language is recognized by an NFA if and only if some

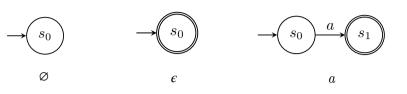
• A language is regular if and only if some regular expression

regular expression describes it.

describes it.

FLOLAC 2017

From RE to NFA



Let A_r be an NFA recognizing the language of a regular expression r.

r+s: union of A_r and A_s

rs: concatenation of A_r and A_s

 r^* : the Kleene closure of A_r

Elementary Computation Theory

From NFA to RE

51

49

- Transitive Closure Method
- State Removal Method
- Brzozowski Algebraic Method

Transitive Closure Method

50

- Let $D = (\{s_1, ..., s_n\}, \Sigma, \delta, \{s_1\}, F)$ be a DFA.
- Define
 - $R_{ij}^{0} = \{a \mid (s_i, a, s_j) \in \delta\}$ if $i \neq j$
 - $R_{ij}^{\ 0} = \{a \mid (s_i, \ a, \ s_j) \in \delta\} \cup \{\epsilon\}$ if i = j
 - $R_{ij}^{\ \ k} = R_{ik}^{\ \ k-1} (R_{kk}^{\ \ k-1})^* R_{kj}^{\ \ k-1} \cup R_{ij}^{\ \ k-1}$
- R_{ij}^{k} represents the inputs that cause D to go from s_i to s_j without passing through a state higher than s_k .
- $R_{ij}^{\ k}$ can be denoted by regular expressions.
- $L(D) = \bigcup_{Sj \in F} R_{1j}^n$.

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

Transitive Closure Method

Example

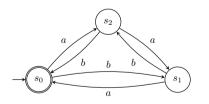
b a a s_2 b b s_2

	k=0	k = 1	k=2
R_{11}^k	$b{+}\epsilon$	$egin{array}{lll} (b{+}\epsilon)(b{+}\epsilon)^*(b{+}\epsilon)+(b{+}\epsilon)\ &=b^* \end{array}$	
$R_{12}{}^k$	a	$egin{array}{lll} (b{+}\epsilon)(b{+}\epsilon)^*a{+}a\ =b^*a \end{array}$	$egin{array}{ll} b^{st}a(b^{st}a+\epsilon)^{st}(b^{st}a+\epsilon)+b^{st}a\ =(a+b)^{st}a \end{array}$
R_{21}^k	b	$egin{array}{ll} b(b{+}\epsilon)^{st}(b{+}\epsilon){+}b\ =\ b^+ \end{array}$	
$R_{22}{}^k$	$a{+}\epsilon$	$egin{array}{ll} b(b{+}\epsilon)^*a{+}(a{+}\epsilon)\ &=b^*a{+}\epsilon \end{array}$	
	FLOLAC 2017	53	Elementary Computation Theory $b^+=bb^{st}$

State Removal Method

Example

55

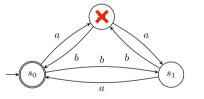


State Removal Method

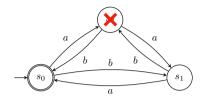
- Make the NFA has a single accepting state.
- Make the NFA has a single initial state.
- Remove states and change transition labels (may be regular expressions) until there is only the initial state and the accepting state.
- Compute the regular expression.

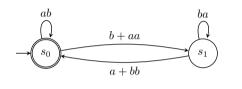
FLOLAC 2017 54 Elementary Computation Theory

State Removal Method Example



State Removal Method Example



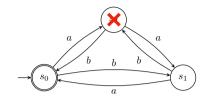


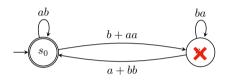
FLOLAC 2017

Elementary Computation Theory

State Removal Method

Example





FLOLAC 2017 55

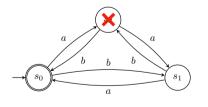
State Removal Method

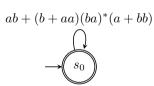
Example

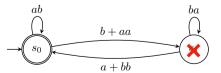
Elementary Computation Theory

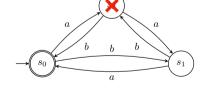
State Removal Method Example

55

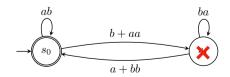








 $ab + (b + aa)(ba)^*(a + bb)$ $\rightarrow (s_0)$



 $(ab+(b+aa)(ba)^*(a+bb))^*$

FLOLAC 2017

55

Elementary Computation Theory

FLOLAC 2017

55

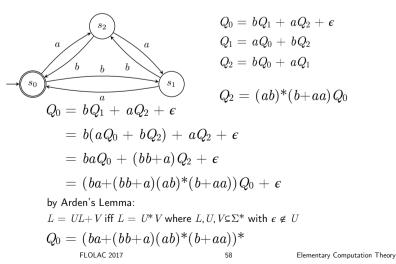
Brzozowski Algebraic Method

- $M = (Q, \Sigma, \delta, \{q_0\}, F)$ is an NFA containing no ϵ transitions.
- For every q_i , create the equation

$$Q_i = +_{q_i \stackrel{a}{\rightarrow} q_j} a Q_j + \begin{cases} \{\epsilon\}, \text{if } q_i \in F \\ \emptyset, \text{else} \end{cases}$$

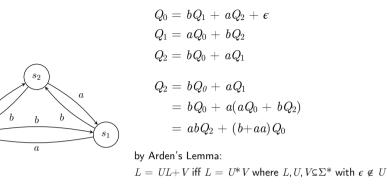
• Solve the equation system and find Q_0 .

Brzozowski Algebraic Method Example (cont'd)



Brzozowski Algebraic Method

Example



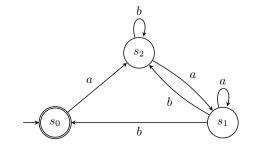
 $Q_2 = (ab)^*(b+aa)Q_0$

FLOLAC 2017

Elementary Computation Theory

57

• Express the language of the following automaton by a regular expression.



FLOLAC 2017	59
-------------	----

WS1S

- Syntax of S1S (monadic second-order logic of one successor)
 - First-order variable set: $V = \{x_1, x_2, ...\}$
 - Second-order variable set: $X = \{X_1, X_2, ...\}$
 - Terms: $t ::= 0 \mid x_i$
 - Formulas: $\varphi ::= S(t, t) \mid X_i(t) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists X_i.\varphi \mid \exists X_i.\varphi$
- S is the successor predicate.
- WS1S: fragment of S1S which allows only quantification over finite sets

Abbreviations

 $\varphi_1 \lor \varphi_2 := \neg (\neg \varphi_1 \land \neg \varphi_2)$ $\varphi_1 \to \varphi_2 := \neg \varphi_1 \lor \varphi_2$ $:= \neg \exists x. \neg \varphi$ $\forall x.\varphi$ $\forall X.\varphi$ $:= \neg \exists X. \neg \varphi$ $:= \forall X. (y \in X \land \forall z. \forall z'. (z \in X \land S(z', z) \to z' \in X) \to X(x))$ $x \leq y$ $:= x \le y \land \neg (y \le x)$ x < y $first(x) := \neg \exists y. S(y, x)$ $:= \neg \exists y.S(x,y)$ last(x) $X \subseteq Y$ $:= \forall x. (x \in X \to x \in Y)$ $X = Y \qquad := \quad X \subseteq Y \land Y \subseteq X$ $X = \emptyset$:= $\forall Z, X \subseteq Z$ $sing(X) := X \neq \emptyset \land \forall Y.(Y \subseteq X \to (X \subseteq Y \lor Y = \emptyset))$

62

Semantics of S1S

- Signature $\langle \mathbb{N}, S \rangle$
- Interpretation $\sigma = \langle \sigma_1, \sigma_2 \rangle, \sigma_1 : V \to \mathbb{N}, \sigma_2 : X \to 2^{\mathbb{N}}$

• Satisfiability $\sigma \models X(t)$ iff $\sigma(t) \in \sigma(X)$ $\sigma \models S(t,t')$ iff $\sigma(t) + 1 = \sigma(t')$ $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$ $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$

- $\begin{array}{ll} \sigma \models \exists x.\varphi & i\!f\!f \quad \sigma[n/x] \models \varphi \text{ for some } n \in \mathbb{N} \\ \sigma \models \exists X.\varphi & i\!f\!f \quad \sigma[N/X] \models \varphi \text{ for some } N \in 2^{\mathbb{N}} \end{array}$
- Validity $\models \varphi$ iff $\sigma \models \varphi$ for all interpretations σ FLOLAC 2017 61 Elementary Computation Theory

WS1S on Words

- Let Σ be a finite set of alphabet.
- A word is defined as $w = a_0 a_1 \dots a_{n-1}$.
- A unary predicate P_a is defined for every $a \in \Sigma$ such that $P_a(i)$ if and only if $a_i = a$.
- Domain of $w: dom(w) = \{0, ..., |w| 1\}$
- Word model of $w: \langle dom(w), S^w, (P_a)_{a \in \Sigma} \rangle$
- Büchi Theorem: a language $L \subseteq \Sigma^*$ is regular if and only if L is expressible in WS1S.

WS1S Examples

- the last symbol is \boldsymbol{a}
 - $\exists x.(P_a(x) \land \neg \exists y.(x < y))$
- contains substring *ab*
 - $\exists x. \exists y. (P_a(x) \land P_b(y) \land S(x,y))$
- has substring ba*b
 - $\exists x. \exists y. (x < y \land P_b(x) \land P_b(y) \land \forall z((x < z \land z < y) \rightarrow P_a(z)))$
- non-empty word with a even length
 - $\bullet \ \exists f. \exists l. \exists X. (first(f) \land last(l) \land X(f) \land \neg X(l) \land \forall y. \forall z. (S(y,z) \to (X(y) \leftrightarrow \neg X(z))))$

FLOLAC 2017 64	Elementary Computation Theory
----------------	-------------------------------

From NFA to WS1S

- Let $M = (Q, \Sigma, \delta, \{s_0\}, F)$ be an NFA.
- Assume $Q = \{s_0, s_1, ..., s_n\}$.

FLOLAC 2017

• Non-empty accepting words will satisfy the following formula.

 $\exists X_0 \dots X_n. \quad (\land_{i \neq j} \quad \forall x \neg (x \in X_i \land x \in X_j)$

- $\land \quad \forall x.(first(x) \to x \in X_0)$
- $\wedge \quad \forall x. \forall y. (S(x, y) \to \lor_{(s_i, a, s_j) \in \delta} (x \in X_i \land x \in P_a \land y \in X_j))$
- $\wedge \quad \forall x.(last(x) \to \lor_{(s_i,a,s_f) \in \delta; s_f \in F} (x \in X_i \land x \in P_a)))$

Exercises

- Write WS1S formulas to describe the following words.
 - Only *a*'s can occur between any two occurrences of *b*'s
 - Has an odd length (please start with ∃)

FLOLAC 2017

Elementary Computation Theory

A Better Encoding

65

- Assume $|\Sigma| = 2^m$.
- A symbol is binary encoded as $(t_0, t_1, ..., t_{m-1})$.
- A word is defined as $w = a_0 a_1 \dots a_{n-1}$.
- A unary predicate P_i is defined for every $i \in \{0,...,m-1\}$ such that $P_i(j)$ if and only if the *i*-th track of a_j is 1.
- Example:
 - m = 2, $\Sigma = \{a, b, c, d\}$, a = (00), b = (01), c = (10), d = (11)
 - $P_0 = \{0, 3, 4\}, P_1 = \{1, 4\}$
 - w = (10)(01)(00)(10)(11) = cbacd

FLOLAC 2017

Non-regular Languages

- Examples of non-regular languages:
 - { $a^nb^n \mid n \in \mathbb{N}$ }
 - { $w \# w \mid w \in \{a, b\}^*$ }
- How to prove that a language is non-regular?

Pumping Lemma

- If L is a regular language, then there is a number p ≥ 1 (the pumping length) such that, if s is any string in L and |s| ≥ p, then s may be divided as s = xyz satisfying
 - for each $i \ge 0$, $xy^i z \in L$,
 - |y| > 0, and
 - $|xy| \leq p$.

FLOLAC 2017	68	Elementary Computation Theory

Pumping Lemma Example

70

- Let's show that $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is non-regular.
- Assume L is regular and let $w = a^p b^p$.
- By pumping lemma, there are x, y, and z such that w = xyz,
 - $xy^i z \in L$ for each $i \ge 0$,
 - $|y| \ge 0$, and
 - $|xy| \leq p$.
- With $|xy| \leq p$, we know that y contains only a.
- But $xy^2z \notin L$.

FLOLAC 2017

FLOLAC 2017 69 Elementary Computation Theory

Formal Languages

Chomsky Hierarchy	Grammar	Language	Computation Model
Type-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	Linear-bounded
Type-2	Context-free	Context-free	Pushdown
Type-3	Regular	Regular	Finite

the list of formal languages in this table is not complete

FLOLAC 2017

71

Tools

Infinite Computations

- A *reactive system* is a system that continuously interacts with its environment.
- Computations of a reactive system are infinite.
- How to model such infinite computations?
 - Automata on infinite words

FLOLAC 2017 72 Elementary Computation Theory FLOLAC 2017 73 Elementary Computation Theory

Infinite Words

• Let Σ be a finite alphabet.

MONA (http://www.brics.dk/mona/)

• JFLAP (http://www.jflap.org)

• An infinite word w over Σ ($w \in \Sigma^{\omega}$) is a sequence of symbols $a_0 a_1 a_2 \dots$ with $a_i \in \Sigma$.

74

- Length of w is ω .
- Examples $(\Sigma = \{a, b\})$:
 - $a b (b a)^{\omega}$
 - $a b a (b a b)^{\omega}$

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

75

- ω -Automata **Syntax**
- An ω -automaton is a tuple $(Q, \Sigma, \delta, q_0, Acc)$ where
 - Q is a finite set of states,
 - Σ is a finite alphabet.

 - q_0 is the initial state, and
 - Acc is the acceptance condition.
- Different ω-automata can be defined by different acceptance conditions.

- $\delta: Q \times \Sigma \to 2^Q$ is the transition function,

ω-AutomataSemantics

- Let $M = (Q, \Sigma, \delta, q_0, Acc)$ be an ω -automaton.
- Let $w = a_0 a_1 a_2 \dots$ be an infinite word over Σ .
- A run of w on M is a sequence of states $q_0q_1q_2...$ where $(q_i, a_i, q_{i+1}) \in \delta$.

ω-Automata Semantics (cont'd)

- A run is accepting if the run satisfies the acceptance condition *Acc*.
- A word is accepted if there is a run of M on the word.
- The language of M, denoted by L(M), is the set of words accepted by M.
- Define $Inf(\rho) = \{s \mid s \text{ occurs in } \rho \text{ infinitely many times}\}.$

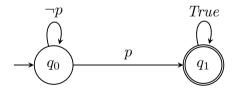
FLOLAC 2017	76	Elementary Computation Theory	FLOLAC 2017

Acceptance Conditions

Acceptance Condition	Acc	Satisfaction	Abbrev.	Note
	$Acc = F \subseteq Q$	$Inf(\rho) \cap F \neq \emptyset$	NBW	
co-Büchi	$Acc = F \subseteq Q$	$\mathit{Inf}(\rho) \cap F = \varnothing$	NCW	
Generalized Büchi	$Acc = \{F_1,, F_n\}, \ F_i \subseteq Q$	$Inf(\rho) \cap F_i \neq \emptyset \text{ for all } F_i \in F$	NGW	
Rabin	$Acc = \{ (E_1, F_1),, (E_n, F_n) \}, F_i \subseteq Q, E_i \subseteq Q$	$Inf(\rho) \cap E_i = \emptyset \text{ and}$ $Inf(\rho) \cap F_i \neq \emptyset \text{ for some } i$	NRW	
Streett	$Acc = \{(E_1, F_1),, (E_n, F_n)\},\ F_i \subseteq Q, E_i \subseteq Q$	$Inf(\rho) \cap F_i \neq \emptyset \text{ implies}$ $Inf(\rho) \cap E_i \neq \emptyset \text{ for all } i$	NSW	
Muller	$Acc = \{F_1,, F_n\}, \ F_i \subseteq Q$	$\mathit{Inf}(ho) = F_i ext{ for some } i$	NMW	
Parity	Acc: $Q \rightarrow \mathbb{N}$	min parity in ρ is even	NPW	Acc(q) is the parity of q
	FLOLAC 2017	78 Elementary Cor	nputation Theory	

Büchi Automata Example 1

77

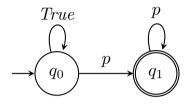


accepts infinite words where p holds eventually

FLOLAC 2017

Elementary Computation Theory

Büchi Automata Example 2

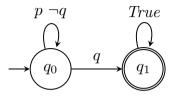


accepts infinite words where eventually p will always hold

FLOLAC 2017	80	Elementary Computation Theory
TEOEAC 2017	00	Elementary compatation meory

Exercise

Büchi Automata Example 3

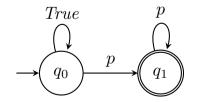


accepts infinite words where p holds until q holds

FLOLAC 2017	81	Elementary Computation Theory

Deterministic VS Nondeterministic

• Can you find a deterministic Büchi automaton (DBW) that accepts the same language?



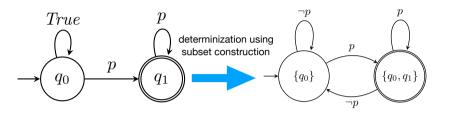
 Draw a Büchi automaton that accepts infinite words where p holds infinitely many times. (Σ = {p, ¬p})

82

FLOLAC 2017

Deterministic VS Nondeterministic

• Can you find a deterministic Büchi automaton (DBW) that accepts the same language?



FLOLAC 2017 83 Elementary Computation Theory

Model VS Specification

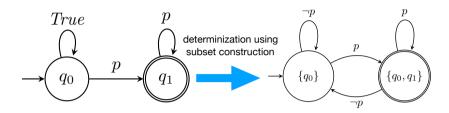
- So far we already learnt some abstract machines as models of computations.
- We may require that the computations must satisfy some properties.

84

• How do we check?

Deterministic VS Nondeterministic

• Can you find a deterministic Büchi automaton (DBW) that accepts the same language?



NBW is more expressive than DBW

FLOLAC 2017	83	Elementary Computation Theory
-------------	----	-------------------------------

Model Checking

- Model the computations of a system as an automaton M.
- Check if the system satisfies the specification by checking if $L(M) \subseteq L(S)$.
- Or equivalently checking if P is empty where P is the intersection of

85

- M and
- the complement of *S*.

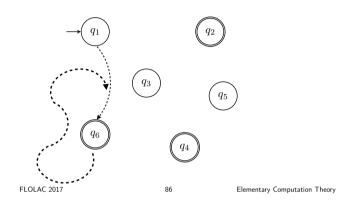
FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

Emptiness Test

• Use double depth-first search to find an accepting lasso.



Büchi Automata Intersection

- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$
- Construct $M = (Q_1 \times Q_2 \times \{0,1,2\}, \Sigma, \delta, (q_{01}, q_{02}, 0), Q_1 \times Q_2 \times \{0\})$ where $((q_1, q_2, i), a, (q_1', q_2', j)) \in \delta$ if
 - $(q_1, a, q_1') \in \delta_1$ and $(q_2, a, q_2') \in \delta_2$,
 - j = 1 if i = 0,
 - j = i if $i \neq 0$ and $q_i \notin F_i$, and
 - $j = (i + 1) \mod 2$ if $i \neq 0$ and $q_i \in F_i$.
- $L(M) = L(M_1) \cap L(M_2)$

FLOLAC 2017

87 Elementary Computation Theory

Büchi Automata Complementation

Büchi Automata Complementation



Does the right one exactly accept the complement of the left one

Does the right one exactly accept the complement of the left one?

88

FLOLAC 2017

Büchi Automata Complementation

Büchi Automata Complementation

Does the right one exactly accept the complement of the left one Complementation of NBW is much harder than that of NFA.

FLOLAC 2017 88 Elementary Computation Theory

LTL Model Checking

- Express the behavior of a system as a Büchi automaton *M* (usually converted from a Kripke structure).
- Express the specification as a formula *f* in *linear temporal logic* (LTL).
- Translation ¬f to a Büchi automaton A¬f with labels on states.

89

• Check if $L(M) \cap L(A_{\neg f})$ is empty.

FLOLAC 2017

Does the right one exactly accept the complement of the left one Complementation of NBW is much harder than that of NFA.

We may express specifications using logic formulas.

FLOLAC 2017

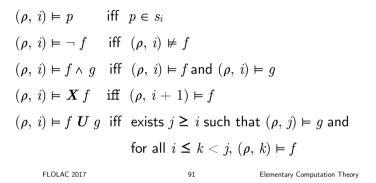
Elementary Computation Theory

Linear Temporal Logic Syntax

- *AP* is a finite set of atomic propositions.
- The alphabet Σ is defined as 2^{AP} .
- A linear temporal logic (LTL) formula is defined as follows.
 - For every $p \in AP$, p is an LTL formula.
 - If f and g are LTL formulas, then so are $\neg f$, $f \land g$, X f, and f U g.
- X and U are (future) temporal operators.

Linear Temporal Logic Semantics

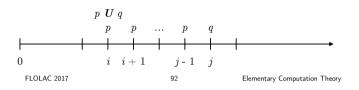
- A state is a subset of *AP*, containing exactly those propositions that evaluate to true in that state.
- An LTL formula is interpreted over an infinite sequence of states $ho = s_0 s_1 ...$



Next and Until

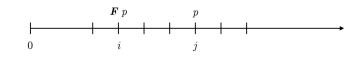
• $(\rho, i) \models X f$ iff $(\rho, i + 1) \models f$

• $(\rho, i) \models f \ U \ g$ iff exists $j \ge i$ such that $(\rho, j) \models g$ and for all $i \le k < j, \ (\rho, k) \models f$

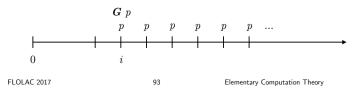


Future and Global

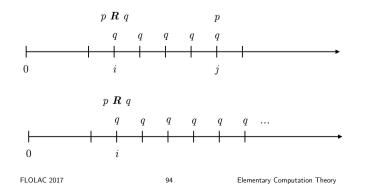
• $(\rho, i) \models F f$ iff $(\rho, j) \models f$ for some $j \ge i$



• $(\rho, i) \models G f$ iff $(\rho, j) \models f$ for all $j \ge i$



- Release
- $(\rho, i) \models f \mathbf{R} g$ iff exists $j \ge i$ such that $(\rho, j) \models f$ and for all $i \le k \le j$, $(\rho, k) \models g$; or for all $j \ge i$, $(\rho, j) \models g$



Abbreviations

- true := p ∨ ¬p
 f R g := ¬(¬f U ¬g)
 false := ¬true
 F g := true U g
- $f \lor g := \neg(\neg f \land \neg g)$ $G f := false \ R f$
- $\bullet \ f \to g := \neg f \lor g$
- $f \leftrightarrow g := (f \rightarrow g) \land (g \rightarrow f)$

 $\bigcirc = {\it X},\,\diamondsuit = {\it F},\,\square = {\it G}$ FLOLAC 2017 95 Elementary Computation Theory

Exercise

- Express the following sentences in LTL formulas.
 - "p occurs infinitely often"
 - "whenever a message is sent, eventually an acknowledgement will be received"

FLOLAC 2017 96 Elementary Computation Theory

Congruent Formulas

Satisfaction, Validity, and Congruence

97

- $\rho \models f$: a state sequence ρ satisfies an LTL formula f
 - $\rho \vDash f$ iff $(\rho, 0) \vDash f$
- \models *f*: an LTL formula *f* is *valid*
 - $\models f \text{ iff } \rho \models f \text{ for all } \rho$
- $f \approx g$: two formulas f and g are *congruent*
 - $f \cong g \text{ iff} \vDash G (f \leftrightarrow g)$

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017

• $\neg X f \cong X \neg f$

• $\neg F g \cong G \neg g$

• $\neg G f \cong F \neg f$

• $G G f \cong G f$

• $\boldsymbol{F} \boldsymbol{F} \boldsymbol{q} \cong \boldsymbol{F} \boldsymbol{q}$

• $\neg \neg f \cong f$

98

Basic Formulas

- A *literal* is either a proposition or its negation.
- A basic formula is either a literal or an X-formula.

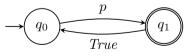
Expansion Formulas

- $\boldsymbol{F} g \cong g \vee \boldsymbol{X} \boldsymbol{F} g$
- $G f \cong f \land X G f$
- $f \boldsymbol{U} g \cong g \lor (f \land \boldsymbol{X} (f \boldsymbol{U} g))$
- $f \mathbf{R} g \cong g \land (f \lor \mathbf{X} (f \mathbf{R} g))$

FLOLAC 2017	99	Elementary Computation Theory

Expressive Power of LTL

- LTL is strictly less expressive than NBW.
- "even p" can be expressed in NBW but not LTL.



101

- NBW is as expressive as QPTL (Quantified Propositional Temporal Logic).
- "even p" in QPTL: $\exists t. t \land G (t \leftrightarrow X \neg t) \land G (t \rightarrow p)$

FLOLAC 2017

FLOLAC 2017

Elementary Computation Theory

From LTL to Labeled NGW

100

- Translate an LTL formula f to a labeled NGW (with labels on states).
 - Take the *negation normal form* (NNF) of *f*.
 - Expand *f*_{NNF} into basic formulas as the initial states.
 - Construct successors of states based on X-formulas.
 - For each subformula g U h, create an acceptance set such that h will become true eventually.

NNF: negation only occurs right before propositions

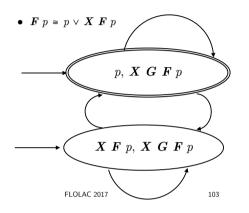
FLOLAC 2017

102

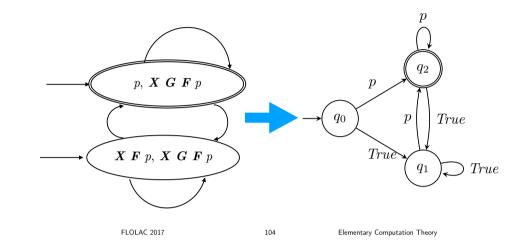
From LTL to Labeled NGW Example

• $f := \boldsymbol{G} \boldsymbol{F} p$

• $G \ F \ p \cong (p \lor X \ F \ p) \land X \ G \ F \ p \cong (p \land X \ G \ F \ p) \lor (X \ F \ p \land X \ G \ F \ p)$



From Labeled NGW to NGW



From NGW to NBW

- Apply the same technique in the intersection of NBW.
- Use an index i to remember the next acceptance set in $\{F_1,\ F_2,\ \ldots,\ F_n\}$ to be passed.
- Once a state in F_i is passed, increase the index i by 1.
- If every F_i ∈ {F₁, F₂, ..., F_n} has been passed at least once, change the index to 0 and set the index to 1 in the successors.
- A run is accepting if the index $\boldsymbol{0}$ is passed infinitely many times.

105

Tools

- LTL2BA (<u>http://www.lsv.fr/~gastin/ltl2ba/index.php</u>)
- LTL3BA (<u>https://sourceforge.net/projects/ltl3ba/</u>)
- SPIN (<u>http://spinroot.com/spin/whatispin.html</u>)
- NuSMV (<u>http://nusmv.fbk.eu</u>)
- GOAL (<u>http://goal.im.ntu.edu.tw/wiki/doku.php</u>)

FLOLAC 2017

Elementary Computation Theory

FLOLAC 2017