Suggested Solutions

[Compiled on September 4, 2017]

1. Given an alphabet $\{1,2,+\}$, draw a finite state automaton such that the automaton accepts words evaluated to 3 .
Solution.

2. Apply subset construction to determinize the following automaton.

Solution.

3. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$ be two NFAs. Construct an NFA M_{3} such that $L\left(M_{3}\right)=L\left(M_{1}\right) \backslash L\left(M_{2}\right)$. Please describe the components of M_{3} in detail.

Solution. Observe that $L\left(M_{3}\right)=L\left(M_{1}\right) \cap\left(\Sigma^{*} \backslash L\left(M_{2}\right)\right)$. The automaton M_{3} can be obtained by taking the intersection of M_{1} and the complement of M_{2}. The complement of M_{2} can be obtained by subset construction followed by complementing accepting states. Define $M_{3}=\left(Q_{1} \times 2^{Q_{2}}, \Sigma, \Delta, I_{1} \times\left\{I_{2}\right\}, G\right)$ where

- $\left(q^{\prime}, r s^{\prime}\right) \in \Delta((q, r s), a)$ for all $a \in \Sigma$ if and only if
$-q^{\prime} \in \delta_{1}(q, a)$, and
$-r s^{\prime}=\bigcup_{r \in r s} \delta_{2}(r, a)$, and
- $G=\left\{(q, r s) \mid q \in F_{1}, r s \subseteq Q_{2}\right.$, and $\left.r s \cap F_{2}=\varnothing\right\}$

4. Write regular expressions to describe the following languages. $(\Sigma=\{a, b\})$
(a) $\{w \mid$ the length of w is even $\}$
(b) $\{w \mid w$ has at most two b 's $\}$
(c) $\{w \mid$ every a in w is followed by $b\}$

Solution.
(a) $(\Sigma \Sigma)^{*}$
(b) $\left(a^{*}\right)+\left(a^{*} b a^{*}\right)+\left(a^{*} b a^{*} b a^{*}\right)$
(c) $\left(b^{*}(a b)^{*}\right)^{*}$
5. Express the language of the following automaton by a regular expression.

Solution. Define the following equation system.

$$
\begin{align*}
Q_{0} & =a Q_{2}+\epsilon \tag{1}\\
Q_{1} & =a Q_{1}+b Q_{0}+b Q_{2} \tag{2}\\
Q_{2} & =a Q_{1}+b Q_{2} \tag{3}
\end{align*}
$$

By equations 2 and 1, we have

$$
\begin{aligned}
Q_{1} & =a Q_{1}+b Q_{0}+b Q_{2} \\
& =a Q_{1}+b\left(a Q_{2}+\epsilon\right)+b Q_{2} \\
& =a Q_{1}+b Q_{2}+b
\end{aligned}
$$

By Ardens Lemma,

$$
\begin{equation*}
Q_{1}=a^{*}\left(b Q_{2}+b\right) \tag{4}
\end{equation*}
$$

By equations 3 and 4, we have

$$
\begin{aligned}
Q_{2} & =a Q_{1}+b Q_{2} \\
& =a\left(a^{*}\left(b Q_{2}+b\right)\right)+b Q_{2} \\
& =\left(a a^{*} b+b\right) Q_{2}+a a^{*} b
\end{aligned}
$$

By Ardens Lemma,

$$
\begin{equation*}
Q_{2}=\left(a a^{*} b+b\right)^{*}\left(a a^{*} b\right) \tag{5}
\end{equation*}
$$

Finally by equations 1 and 5 , we have

$$
\begin{aligned}
Q_{0} & =a Q_{2}+\epsilon \\
& =a\left(a a^{*} b+b\right)^{*}\left(a a^{*} b\right)+\epsilon
\end{aligned}
$$

Thus, the language of the automaton can be expressed in the regular expression $a\left(a a^{*} b+\right.$ $b)^{*}\left(a a^{*} b\right)+\epsilon$.
6. Write WS1S formulas to describe the following words.
(a) Only a 's can occur between any two occurrences of b 's
(b) Has an odd length (please start with \exists)

Solution.
(a) $\forall x \cdot \forall y \cdot\left(\left(P_{b}(x) \wedge P_{b}(y) \wedge x<y\right) \rightarrow\left(\forall z \cdot(x<z \wedge z<y) \rightarrow P_{a}(z)\right)\right)$
(b) $\exists f . \exists l . \exists X .(\operatorname{first}(f) \wedge l a s t(l) \wedge X(f) \wedge X(l) \wedge \forall y . \forall z .(S(y, z) \rightarrow(X(y) \leftrightarrow \neg X(z))))$
7. Draw a Büchi automaton that accepts infinite words where p holds infinitely many times. $(\Sigma=\{p, \neg p\})$

Solution.

8. Express the following sentences in LTL formulas.
(a) " p occurs infinitely often"
(b) "whenever a message is sent, eventually an acknowledgement will be received"

Solution.

(a) G F p
(b) G(sent $\rightarrow \mathbf{F}$ ack $)$

