Elementary Computation Theory

Ming-Hsien Tsai
Institute of Information Science
Academia Sinica

FLOLAC 2017

Outline

- Finite state automata
- Regular Expressions
- WS1S
- ω-Automata
- Linear temporal logic

Computation

- What is the model of a computation machine?
- What is the result of a computation?

Computation

- What is the model of a computation machine?
- What is the result of a computation?
- The simplest model of computation machinery
- Finite state automata (FSA), or equivalently nondeterministic finite automata (NFA), nondeterministic finite word automata (NFW)

Automaton M_{1}

- This automaton recognizes words (strings) end with an " a ".
- Alphabet: $\{a, b\}$
- States: $\left\{s_{0}, s_{1}\right\}$
- Accepting states: $\left\{s_{1}\right\}$
- Initial states: $\left\{s_{0}\right\}$
- Transitions: $\left\{\left(s_{0}, a, s_{0}\right),\left(s_{0}, a, s_{1}\right),\left(s_{0}, b, s_{0}\right)\right\}$

Alphabet

- An alphabet is a set of symbols.
- Types of alphabet: classical and propositional
- Examples:
- $\{a, b\}$
- $\{$ send, receive, ack $\}$
- $\{(p q),(\neg p q),(p \neg q),(\neg p \neg q)\}$

Words

- Let Σ be a finite alphabet.
- A word w over $\Sigma\left(w \in \Sigma^{*}\right)$ is a sequence of symbols $a_{0} a_{1} a_{2} \ldots a_{n-1}$ with $a_{i} \in \Sigma$.
- Length of w is n.
- The empty word is denoted by ϵ.
- Examples $(\Sigma=\{a, b\})$:
- $a b b a$
- $a b a b a b$
w^{*} : repeat w finitely many times

Finite State Automata

Syntax

- A finite state automaton is a 5-tuple $(Q, \Sigma, \delta, I, F)$ where
- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function (sometimes written as a relation $\delta: Q \times \Sigma \times Q$),
- $I \subseteq Q$ is the set of initial states, and
- $F \subseteq Q$ is the set of accepting (final) states

Automaton M_{2}

$$
\begin{array}{ll}
& \\
& \\
& \Sigma=\{a, b\} \\
Q=? & \\
\delta=? & \\
\delta=? \\
& \\
& \\
& F=?
\end{array}
$$

Finite State Automata

Semantics

- Let $M=(Q, \Sigma, \delta, I, F)$ be a finite state automaton.
- Let $w=a_{0} a_{1} a_{2} \ldots a_{n-1}$ be a word over Σ.
- A run of w on M is a sequence of states $s_{0} s_{1} s_{2} \ldots s_{n}$ where
- $s_{0} \in I$
- $\left(s_{i}, a_{i}, s_{i+1}\right) \in \delta$

Runs

- What are the runs of the following words?
- $a b a b$
- $a b b a$

Runs

- What are the runs of the following words?
- $a b a b$
$S_{0} \quad S_{0} \quad S_{0} \quad S_{0} \quad S_{0}$
- $a b b a$

Runs

- What are the runs of the following words?
- $a b a b$
- $a b b a$

Run Tree

Finite State Automata Semantics (cont'd)

- $M=(Q, \Sigma, \delta, I, F)$
- A run $s_{0} s_{1} s_{2} \ldots s_{n}$ is accepting if $s_{n} \in F$.
- A word w is accepted by M if there is an accepting run of w on M.
- The language of M is the set of strings accepted by M, denoted by $L(M)$.

Accepting Runs

- Which run is accepting?
- $s_{0} \quad s_{0} \quad s_{0} \quad s_{0} \quad s_{0}$
- $s_{0} \quad s_{0} \quad s_{0} \quad s_{0} \quad s_{1}$

Languages

- What is the language of M_{1} ?

- The language recognized by a finite state automaton is a regular language.

Languages

- What is the language of M_{1} ?

- The language recognized by a finite state automaton is a regular language.

Exercise

- Given an alphabet $\{1,2,+\}$, draw a finite state automaton such that the automaton accepts words evaluated to 3 .

Emptiness and Universality

- $M=(Q, \Sigma, \delta, I, F)$
- An automaton M is empty if $L(M)=\varnothing$.
- An automaton M is universal if $L(M)=\Sigma^{*}$.

Emptiness and Universality

- $M=(Q, \Sigma, \delta, I, F)$
is this automaton empty?
- An automaton M is empty if $L(M)=\varnothing$.
- An automaton M is universal if $L(M)=\Sigma^{*}$.

Equivalence

- Two automata are equivalent if they recognize the same language.

$$
L\left(M_{1}\right)=L\left(M_{2}\right) ?
$$

Deterministic Finite Automata (DFA)

- An automaton $M=(Q, \Sigma, \delta, I, F)$ is deterministic if
- $|I|=1$, and

$$
\text { (is complete if }|\delta(s, a)| \geq 1 \text {) }
$$

- $|\delta(s, a)|=1$ for all $s \in Q$ and $a \in \Sigma$.
- Which one is deterministic?

Elementary Computation Theory

Determinism VS Nondeterminism

- Let D be a DFA. The language $L(D)$ is accepted by the NFA D. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that $L(D)=L(N) ?$

Determinism VS Nondeterminism

- Let D be a DFA. The language $L(D)$ is accepted by the NFA D. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that $L(D)=L(N) ?$

Determinism VS Nondeterminism

- Let D be a DFA. The language $L(D)$ is accepted by the NFA D. (A DFA is also an NFA.)
- Let N be an NFA. Can we construct a DFA D such that $L(D)=L(N)$?
- DFA and NFA have the same expressive power.

Determinization

- Let $N=(Q, \Sigma, \delta, I, F)$.
- By subset construction, define $D=\left(2^{Q}, \Sigma, \Delta,\{I\}, G\right)$ where
- $\Delta(S, a)=\cup_{s \in S} \delta(s, a)$, and
- $G=\left\{S \in 2^{Q} \mid S \cap F \neq \varnothing\right\}$.

- We can show that $L(N)=L(D)$ by induction on the length of input words.

Subset Construction

- What is the determinization of M_{1} ?

Exercise

- Apply subset construction to determinize the following automaton

ϵ-Transitions

- Assume ϵ does not belong to the alphabet.
- An ϵ-transition is a transition that does not need to consume any symbol.
- ϵ-transitions are only allowed in NFA.
- DFA and NFA with ϵ-transitions have the same expressive power.

Elimination of ϵ-Transitions

- $M=(Q, \Sigma \cup\{\epsilon\}, \delta, I, F)$ is an NFA with ϵ-transitions.
- Let $E(X)$ denote the ϵ-closure of $X \subseteq Q$.
- $E(X)=\{s \mid s \in X$ or s is reachable from a state in X through ϵ transitions \}
- Construct an NFA $N=(Q, \Sigma, \Delta, J, F)$ where
- $\Delta(s, a)=E(\delta(s, a))$, and
- $J=E(I)$

Elimination of ϵ-Transitions

Example

Single Initial State

- NFA may be defined as automata with single initial state.
- NFA with multiple initial states does not have more expressive power.

Closure Properties

- Regular languages are closed under the following operations.
- union,
- intersection,
- concatenation,
- Kleene closure, and
- complementation.

Union

- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$
- Assume $Q_{1} \cap Q_{2}=\varnothing$.
- $M_{3}=\left(Q_{1} \cup Q_{2}, \Sigma, \delta_{3}, I_{1} \cup I_{2}, F_{1} \cup F_{2}\right)$ where $(s, a, t) \in \delta_{3}$ if
- $(s, a, t) \in \delta_{1}$, or
- $(s, a, t) \in \delta_{2}$
- $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$

Union

Example

Intersection

- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$
- $M_{3}=\left(Q_{1 \times} Q_{2}, \Sigma, \delta_{3}, I_{1} \times I_{2}, F_{1 \times} F_{2}\right)$ where $\left(\left(s_{1}, s_{2}\right), a,\left(t_{1}\right.\right.$, $\left.\left.t_{2}\right)\right) \in \delta_{3}$ if
- $\left(s_{1}, a, t_{1}\right) \in \delta_{1}$, and
- $\left(s_{2}, a, t_{2}\right) \in \delta_{2}$
- $L\left(M_{3}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Intersection

Example

Concatenation

- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$
- Assume $Q_{1} \cap Q_{2}=\varnothing$ and $\epsilon \notin \Sigma$.
- $M_{3}=\left(Q_{1} \cup Q_{2}, \Sigma \cup\{\epsilon\}, \delta_{3}, I_{1}, F_{2}\right)$ where $(s, a, t) \in \delta_{3}$ if
- $(s, a, t) \in \delta_{1}$,
- $(s, a, t) \in \delta_{2}$, or
- $a=\epsilon, s \in F_{1}$, and $t \in I_{2}$.
- $L\left(M_{3}\right)=L\left(M_{1}\right) L\left(M_{2}\right)=\left\{u v \mid u \in L\left(M_{1}\right)\right.$ and $\left.v \in L\left(M_{2}\right)\right\}$

Concatenation

Example

Kleene Closure

- An operation that repeat a string arbitrary number of times (including zero time).

Kleene Closure

- An operation that repeat a string arbitrary number of times (including zero time).

Kleene Closure

- An operation that repeat a string arbitrary number of times (including zero time).

Kleene Closure (cont’d)

- $M=(Q, \Sigma, \delta, I, F)$
- Assume $\epsilon \notin \Sigma$ and $s_{s} \notin Q$.
- $M=\left(Q \cup\left\{s_{s}\right\}, \Sigma \cup\{\epsilon\}, \Delta,\left\{s_{s}\right\}, F \cup\left\{s_{s}\right\}\right)$ where $(s, a, t) \in \Delta$ if
- $s=s_{s,} t \in I$, and $a=\epsilon$,
- $(s, a, t) \in \delta$, or
- $s \in F, t \in I$, and $a=\epsilon$.
- $L(M)=L(M)^{*}$

Kleene Closure

Example

Complementation

DFA

- $M=(Q, \Sigma, \delta, I, F)$ is a DFA.

- $M^{\prime}=(Q, \Sigma, \delta, I, Q \backslash F)$

- $L(M)=\Sigma^{*} \backslash L(M)$

Complementation

DFA

- $M=(Q, \Sigma, \delta, I, F)$ is a DFA.

- $L(M)=\Sigma^{*} \backslash L(M)$

Complementation

NFA

- $M=(Q, \Sigma, \delta, I, F)$ is an NFA.

- $M=(Q, \Sigma, \delta, I, Q \backslash F)$

- $L(M)=\Sigma^{*} \backslash L(M) ?$

Complementation

NFA

- $M=(Q, \Sigma, \delta, I, F)$ is an NFA.

- $M=(Q, \Sigma, \delta, I, Q \backslash F)$
- $L(M)=\Sigma^{*} \backslash L(M)$?

Complementation

NFA

- $M=(Q, \Sigma, \delta, I, F)$ is an NFA.

- $M^{\prime}=(Q, \Sigma, \delta, I, Q \backslash F)$

- $L\left(M^{*}\right)=\Sigma^{*} \backslash L(M) \mathbb{X}$

Complementation

NFA

- $M=(Q, \Sigma, \delta, I, F)$ is an NFA.
- $M^{\prime}=(Q, \Sigma, \delta, I, Q \backslash F)$

- $L\left(M^{*}\right)=\Sigma^{*} \backslash L(M) X$

Exercise

- Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$ be two NFAs. Construct an NFA M_{3} such that $L\left(M_{3}\right)=L\left(M_{1}\right)$ $\backslash L\left(M_{2}\right)$. Please describe the components of M_{3} in detail.

Minimization

- Given a DFA M_{1}, can we construct a minimal DFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$?
- Given an NFA M_{1}, can we construct a minimal NFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Minimization

- Given a DFA M_{1}, can we construct a minimal DFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$?

- Given an NFA M_{1}, can we construct a minimal NFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Minimization

- Given a DFA M_{1}, can we construct a minimal DFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$?

- Given an NFA M_{1}, can we construct a minimal NFA M_{2} such that $L\left(M_{1}\right)=L\left(M_{2}\right)$? \bigcirc but harder

Myhill-Nerode Theorem

- Given a language $L \subseteq \Sigma^{*}$, define a binary relation R_{L} over Σ^{*} as follows.
- $x R_{L} y$ iff $\forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$
- R_{L} can be shown to be an equivalence relation.
- R_{L} divide the set of string into equivalence classes.
- L is regular iff R_{L} has a finite number of equivalence classes.
- The number of states in the minimal DFA recognizing L is equal to the number of equivalence classes in R_{L}.

Minimization

Idea

- For a language $L \subseteq \Sigma^{*}$, compute the equivalence classes of L.
- Construct a state for each equivalence class.
- A equivalence class C_{1} can take an a-transition to another equivalence class C_{2} if there is a string $x \in C_{1}$ such that $x a \in$ C_{2}.
- How to find the equivalence classes?

Minimization

Hopcroft's Algorithm

```
P}:={\mathbf{F},\mathbf{Q}\\mathbf{F}}
W := {F};
while (W is not empty) do
    choose and remove a set A from W
    for each c in }\Sigma\mathrm{ do
        let X be the set of states for which a transition on c leads to a state in A
        for each set Y in P}\mathrm{ for which X }\cap\mathbf{Y}\mathrm{ is nonempty and Y \ X is nonempty do
                    replace Y in P by the two sets X \cap Y and Y \ X
                if Y is in W
                            replace Y in W by the same two sets
                else
                            if |\mathbf{X \cap Y | <= | Y \ X }
                        add X \cap Y to W
                        else
                        add Y \ X to W
        end;
    end;
end;
```


Language Expressions

- So far we know that a regular language can be accepted by a finite state automaton.
- Can we represent a regular language in other forms?

Language Expressions

- So far we know that a regular language can be accepted by a finite state automaton.
- Can we represent a regular language in other forms?

regular expressions

Regular Expressions (RE)

- Let Σ be an alphabet.
- The regular expressions over Σ are defined as follows.
- \varnothing is a regular expression denoting the empty set;
- ϵ is a regular expression denoting the set $\{\epsilon\}$;
- for each $a \in \Sigma, a$ is a regular expression denoting the set $\{a\}$;
- if r and s are regular expressions denoting the sets R and S respectively, then $r+s, r s$, and r^{*} are regular expressions denoting $R \cup S, R S$, and R^{*} respectively.
- The language of a regular expression e is denoted by $L(e)$.

Regular Expressions

Examples

- Let $\Sigma=\{a, b\}$.
- $a^{*} b a^{*}=\{w \mid w$ has exactly a single $b\}$
- $\Sigma^{*} b \Sigma^{*}=\{w \mid w$ has at least one $b\}$
- $\Sigma^{*} a b a \Sigma^{*}=\{w \mid w$ has a substring $a b a\}$
- $a+b+a \Sigma^{*} a+b \Sigma^{*} b=\{w \mid w$ starts and ends with the same symbol\}

Regular Expressions

 Examples (cont'd)

 Examples (cont'd)}

- $r+\varnothing=$?
- $r+\epsilon=$?
- $r \varnothing=$?
- $r \epsilon=$?

Regular Expressions

 Examples (cont'd)

 Examples (cont'd)}

- $r+\varnothing=? \quad r$
- $r+\epsilon=$?
- $r \varnothing=$?
- $r \epsilon=$?

Regular Expressions

 Examples (cont'd)

 Examples (cont'd)}

- $r+\varnothing=? \quad r$
- $r+\epsilon=? \quad r+\epsilon$
- $r \varnothing=$?
- $r \epsilon=$?

Regular Expressions

 Examples (cont'd)

 Examples (cont'd)}

- $r+\varnothing=? \quad r$
- $r+\epsilon=? \quad r+\epsilon$
- $r \varnothing=$?
\varnothing
- $r \epsilon=$?

Regular Expressions

 Examples (cont'd)

 Examples (cont'd)}

- $r+\varnothing=? \quad r$
- $r+\epsilon=? \quad r+\epsilon$
- $r \varnothing=$?
\varnothing
- $r \epsilon=$?
r

Exercise

- Write regular expressions to describe the following languages.
($\Sigma=\{a, b\}$)
- $\{w \mid$ the length of w is even $\}$
- $\{w \mid w$ has at most two b 's $\}$
- $\{w \mid$ every a in w is followed by $b\}$

Regular Expressions VS

Finite State Automata

- A language is recognized by an NFA if and only if some regular expression describes it.
- A language is regular if and only if some regular expression describes it.

From RE to NFA

\varnothing

ϵ

a

Let A_{r} be an NFA recognizing the language of a regular expression r.
$r+s$: union of A_{r} and A_{s}
$r s$: concatenation of A_{r} and A_{s}
r^{*} : the Kleene closure of A_{r}

From NFA to RE

- Transitive Closure Method
- State Removal Method
- Brzozowski Algebraic Method

Transitive Closure Method

- Let $D=\left(\left\{s_{1}, \ldots, s_{n}\right\}, \Sigma, \delta,\left\{s_{1}\right\}, F\right)$ be a DFA.
- Define
- $R_{i j}{ }^{0}=\left\{a \mid\left(s_{i}, a, s_{j}\right) \in \delta\right\}$ if $i \neq j$
- $R_{i j}{ }^{0}=\left\{a \mid\left(s_{i}, a, s_{j}\right) \in \delta\right\} \cup\{\epsilon\}$ if $i=j$
- $R_{i j}^{k}=R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1} \cup R_{i j}^{k-1}$
- $R_{i j}{ }^{k}$ represents the inputs that cause D to go from s_{i} to s_{j} without passing through a state higher than s_{k}.
- $R_{i j}{ }^{k}$ can be denoted by regular expressions.
- $L(D)=U_{S j \in F} R_{1 j}{ }^{n}$.

Transitive Closure Method

Example

	$k=0$	$k=1$	$k=2$
$R_{11}{ }^{k}$	$b+\epsilon$	$\begin{gathered} (b+\epsilon)(b+\epsilon)^{*}(b+\epsilon)+(b+\epsilon) \\ =b^{*} \end{gathered}$	
$R_{12}{ }^{k}$	a	$\begin{gathered} (b+\epsilon)(b+\epsilon)^{*} a+a \\ =b^{*} a \end{gathered}$	$\begin{gathered} b^{*} a\left(b^{*} a+\boldsymbol{\epsilon}\right)^{*}\left(b^{*} a+\boldsymbol{\epsilon}\right)+b^{*} a \\ =(a+b)^{*} a \end{gathered}$
$R_{21}{ }^{\text {k }}$	b	$\begin{gathered} b(b+\epsilon)^{*}(b+\epsilon)+b \\ =b^{+} \end{gathered}$	
$R_{22}{ }^{k}$	$a+\epsilon$	$\begin{gathered} b(b+\boldsymbol{\epsilon})^{*} a+(a+\boldsymbol{\epsilon}) \\ =b^{*} a+\boldsymbol{\epsilon} \end{gathered}$	

State Removal Method

- Make the NFA has a single accepting state.
- Make the NFA has a single initial state.
- Remove states and change transition labels (may be regular expressions) until there is only the initial state and the accepting state.
- Compute the regular expression.

State Removal Method

Example

$$
a b+(b+a a)(b a)^{*}(a+b b)
$$

State Removal Method

Example

$$
a b+(b+a a)(b a)^{*}(a+b b)
$$

$$
\left(a b+(b+a a)(b a)^{*}(a+b b)\right)^{*}
$$

Brzozowski Algebraic Method

- $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ is an NFA containing no ϵ transitions.
- For every q_{i}, create the equation

$$
Q_{i}=+_{q_{i} \xrightarrow{a} q_{j}} a Q_{j}+\left\{\begin{array}{l}
\{\epsilon\}, \text { if } q_{i} \in F \\
\varnothing, \text { else }
\end{array}\right.
$$

- Solve the equation system and find Q_{0}.

Brzozowski Algebraic Method

Example

$$
\begin{aligned}
Q_{0} & =b Q_{1}+a Q_{2}+\epsilon \\
Q_{1} & =a Q_{0}+b Q_{2} \\
Q_{2} & =b Q_{0}+a Q_{1} \\
Q_{2} & =b Q_{0}+a Q_{1} \\
& =b Q_{0}+a\left(a Q_{0}+b Q_{2}\right) \\
& =a b Q_{2}+(b+a a) Q_{0}
\end{aligned}
$$

by Arden's Lemma:
$L=U L+V$ iff $L=U^{*} V$ where $L, U, V \subseteq \Sigma^{*}$ with $\epsilon \notin U$

$$
Q_{2}=(a b)^{*}(b+a a) Q_{0}
$$

Brzozowski Algebraic Method

Example (cont'd)

$$
\begin{aligned}
Q_{0} & =b Q_{1}+a Q_{2}+\epsilon \\
Q_{1} & =a Q_{0}+b Q_{2} \\
Q_{2} & =b Q_{0}+a Q_{1}
\end{aligned}
$$

$$
Q_{2}=(a b)^{*}(b+a a) Q_{0}
$$

$$
\begin{aligned}
Q_{0} & =b Q_{1}+a Q_{2}+\epsilon \\
& =b\left(a Q_{0}+b Q_{2}\right)+a Q_{2}+\epsilon \\
& =b a Q_{0}+(b b+a) Q_{2}+\epsilon \\
& =\left(b a+(b b+a)(a b)^{*}(b+a a)\right) Q_{0}+\epsilon
\end{aligned}
$$

by Arden's Lemma:
$L=U L+V$ iff $L=U^{*} V$ where $L, U, V \subseteq \Sigma^{*}$ with $\epsilon \notin U$
$Q_{0}=\left(b a+(b b+a)(a b)^{*}(b+a a)\right)^{*}$

Exercise

- Express the language of the following automaton by a regular expression.

WS1S

- Syntax of S1S (monadic second-order logic of one successor)
- First-order variable set: $V=\left\{x_{1}, x_{2}, \ldots\right\}$
- Second-order variable set: $X=\left\{X_{1}, X_{2}, \ldots\right\}$
- Terms: $t::=0 \mid x_{i}$
- Formulas: $\varphi::=S(t, t)\left|X_{i}(t)\right| \neg \varphi|\varphi \wedge \varphi| \exists x_{i} \cdot \varphi \mid \exists X_{i \cdot} \cdot \varphi$
- S is the successor predicate.
- WS1S: fragment of S1S which allows only quantification over finite sets

Semantics of S1S

- Signature
- Interpretation
- Satisfiability

$$
\begin{array}{lll}
\sigma \models X(t) & \text { iff } & \sigma(t) \in \sigma(X) \\
\sigma \models S\left(t, t^{\prime}\right) & \text { iff } & \sigma(t)+1=\sigma\left(t^{\prime}\right) \\
\sigma \models \neg \varphi & \text { iff } & \sigma \not \models \varphi \\
\sigma \models \varphi_{1} \wedge \varphi_{2} & \text { iff } & \sigma \models \varphi_{1} \text { and } \sigma \models \varphi_{2} \\
\sigma \models \exists x . \varphi & \text { iff } & \sigma[n / x] \models \varphi \text { for some } n \in \mathbb{N} \\
\sigma \models \exists X . \varphi & \text { iff } & \sigma[N / X] \models \varphi \text { for some } N \in 2^{\mathbb{N}}
\end{array}
$$

- Validity $\quad \models \varphi$ iff $\sigma \models \varphi$ for all interpretations σ

Abbreviations

```
\(\varphi_{1} \vee \varphi_{2} \quad:=\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\)
\(\varphi_{1} \rightarrow \varphi_{2}:=\quad \neg \varphi_{1} \vee \varphi_{2}\)
\(\forall x . \varphi \quad:=\neg \exists x . \neg \varphi\)
\(\forall X . \varphi \quad:=\neg \exists X . \neg \varphi\)
\(x \leq y \quad:=\quad \forall X .\left(y \in X \wedge \forall z . \forall z^{\prime} .\left(z \in X \wedge S\left(z^{\prime}, z\right) \rightarrow z^{\prime} \in X\right) \rightarrow X(x)\right)\)
\(x<y \quad:=x \leq y \wedge \neg(y \leq x)\)
\(\operatorname{first}(x) \quad:=\neg \exists y \cdot S(y, x)\)
\(\operatorname{last}(x) \quad:=\neg \exists y \cdot S(x, y)\)
\(X \subseteq Y \quad:=\quad \forall x .(x \in X \rightarrow x \in Y)\)
\(X=Y \quad:=\quad X \subseteq Y \wedge Y \subseteq X\)
\(X=\varnothing \quad:=\quad \forall Z, X \subseteq Z\)
\(\operatorname{sing}(X) \quad:=\quad X \neq \varnothing \wedge \forall Y .(Y \subseteq X \rightarrow(X \subseteq Y \vee Y=\varnothing))\)
```


wsis on Words

- Let Σ be a finite set of alphabet.
- A word is defined as $w=a_{0} a_{1} \ldots a_{n-1}$.
- A unary predicate P_{a} is defined for every $a \in \Sigma$ such that $P_{a}(i)$ if and only if $a_{i}=a$.
- Domain of $w: \operatorname{dom}(w)=\{0, \ldots,|w|-1\}$
- Word model of $w:\left\langle\operatorname{dom}(w), S^{w},\left(P_{a}\right)_{a \in \Sigma}\right\rangle$
- Büchi Theorem: a language $L \subseteq \Sigma^{*}$ is regular if and only if L is expressible in WS1S.

WS1S Examples

- the last symbol is a
- $\exists x .\left(P_{a}(x) \wedge \neg \exists y .(x<y)\right)$
- contains substring $a b$
- $\exists x \cdot \exists y \cdot\left(P_{a}(x) \wedge P_{b}(y) \wedge S(x, y)\right)$
- has substring $b a^{*} b$
- $\exists x . \exists y \cdot\left(x<y \wedge P_{b}(x) \wedge P_{b}(y) \wedge \forall z\left((x<z \wedge z<y) \rightarrow P_{a}(z)\right)\right)$
- non-empty word with a even length
- $\exists f . \exists l . \exists X .(f i r s t(f) \wedge l a s t(l) \wedge X(f) \wedge \neg X(l) \wedge \forall y . \forall z .(S(y, z) \rightarrow(X(y) \leftrightarrow \neg X(z))))$

Exercises

- Write WS1S formulas to describe the following words.
- Only a 's can occur between any two occurrences of b 's
- Has an odd length (please start with \exists)

From NFA to WS1S

- Let $M=\left(Q, \Sigma, \delta,\left\{s_{0}\right\}, F\right)$ be an NFA.
- Assume $Q=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$.
- Non-empty accepting words will satisfy the following formula.

$$
\begin{aligned}
\exists X_{0} \ldots X_{n} . \quad(\quad & \wedge_{i \neq j} \forall . x \neg\left(x \in X_{i} \wedge x \in X_{j}\right) \\
& \wedge \\
& \wedge x \cdot\left(\text { first }(x) \rightarrow x \in X_{0}\right) \\
& \wedge \forall x \cdot \forall y .\left(S(x, y) \rightarrow \vee_{\left(s_{i}, a, s_{j}\right) \in \delta}\left(x \in X_{i} \wedge x \in P_{a} \wedge y \in X_{j}\right)\right) \\
& \left.\forall x .\left(\operatorname{last}(x) \rightarrow \vee_{\left(s_{i}, a, s_{f}\right) \in \delta ; s_{f} \in F}\left(x \in X_{i} \wedge x \in P_{a}\right)\right)\right)
\end{aligned}
$$

A Better Encoding

- Assume $|\Sigma|=2^{m}$.
- A symbol is binary encoded as $\left(t_{0}, t_{1}, \ldots, t_{m-1}\right)$.
- A word is defined as $w=a_{0} a_{1} \ldots a_{n-1}$.
- A unary predicate P_{i} is defined for every $i \in\{0, \ldots, m-1\}$ such that $P_{i}(j)$ if and only if the i-th track of a_{j} is 1 .
- Example:
- $m=2, \Sigma=\{a, b, c, d\}, a=(00), b=(01), c=(10), d=(11)$
- $P_{0}=\{0,3,4\}, P_{1}=\{1,4\}$
- $w=(10)(01)(00)(10)(11)=c b a c d$

Non-regular Languages

- Examples of non-regular languages:
- $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
- $\left\{w \# w \mid w \in\{a, b\}^{*}\right\}$
- How to prove that a language is non-regular?

Pumping Lemma

- If L is a regular language, then there is a number $p \geq 1$ (the pumping length) such that, if s is any string in L and $|s| \geq p$, then s may be divided as $s=x y z$ satisfying
- for each $i \geq 0, x y^{i} z \in L$,
- $|y|>0$, and
- $|x y| \leq p$.

Pumping Lemma
 Example

- Let's show that $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is non-regular.
- Assume L is regular and let $w=a^{p} b^{p}$.
- By pumping lemma, there are x, y, and z such that $w=x y z$,
- $x y^{i} z \in L$ for each $i \geq 0$,
- $|y| \geq 0$, and
- $|x y| \leq p$.
- With $|x y| \leq p$, we know that y contains only a.
- But $x y^{2} z \notin L$.

Formal Languages

Chomsky Herarchy	Grammar	Language	Computation Model
Type－0	Unrestricted	Recursively enumerable	Turing machine
Type－1	Context－sensitive	Context－sensitive	Linear－bounded
Type－2	Context－free	Context－free	Pushdown
Type－3	Regular	Regular	Finite
$⿴ 囗 ⿰ 丿 ㇄$			

the list of formal languages in this table is not complete

Tools

- MONA (http://www.brics.dk/mona/)
- JFLAP (http://www.jflap.org)

Infinite Computations

- A reactive system is a system that continuously interacts with its environment.
- Computations of a reactive system are infinite.
- How to model such infinite computations?
- Automata on infinite words

Infinite Words

- Let Σ be a finite alphabet.
- An infinite word w over $\Sigma\left(w \in \Sigma^{\omega}\right)$ is a sequence of symbols $a_{0} a_{1} a_{2} \ldots$ with $a_{i} \in \Sigma$.
- Length of w is ω.
- Examples $(\Sigma=\{a, b\})$:
- $a b(b a)^{\omega}$
- $a b a(b a b)^{\omega}$

ω-Automata

Syntax

- An ω-automaton is a tuple $\left(Q, \Sigma, \delta, q_{0}, A c c\right)$ where
- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function,
- q_{0} is the initial state, and
- Acc is the acceptance condition.
- Different ω-automata can be defined by different acceptance conditions.

ω-Automata

Semantics

- Let $M=\left(Q, \Sigma, \delta, q_{0}, A c c\right)$ be an ω-automaton.
- Let $w=a_{0} a_{1} a_{2} \ldots$ be an infinite word over Σ.
- A run of w on M is a sequence of states $q_{0} q_{1} q_{2} \ldots$ where $\left(q_{i}\right.$, $\left.a_{i}, q_{i+1}\right) \in \delta$.

ω-Automata

Semantics (cont'd)

- A run is accepting if the run satisfies the acceptance condition Acc.
- A word is accepted if there is a run of M on the word.
- The language of M, denoted by $L(M)$, is the set of words accepted by M.
- Define $\operatorname{Inf}(\rho)=\{s \mid s$ occurs in ρ infinitely many times $\}$.

Acceptance Conditions

Acceptance Condition

Parity

Acc

$$
A c c=F \subseteq Q \quad \operatorname{Inf}(\rho) \cap F \neq \varnothing
$$

$$
A c c=F \subseteq Q \quad \operatorname{Inf}(\rho) \cap F=\varnothing
$$

Satisfaction

$$
A c c=\left\{F_{1}, \ldots, F_{\mathrm{n}}\right\}, \quad \operatorname{Inf}(\rho) \cap F_{i} \neq \underset{F}{\varnothing} \text { for all } F_{i} \in
$$

$$
F_{i} \subseteq Q
$$

$$
F
$$

$$
\begin{array}{ccc}
\operatorname{Acc}=\left\{\left(E_{1}, F_{1}\right), \ldots,\left(E_{n}, F_{n}\right)\right\}, & \operatorname{Inf}(\rho) \cap E_{i}=\varnothing \text { and } & \text { NRW } \\
F_{i} \subseteq Q, E_{i} \subseteq Q & \operatorname{Inf}(\rho) \cap F_{i} \neq \varnothing \text { for some } i & \\
A c c=\left\{\left(E_{1}, F_{1}\right), \ldots,\left(E_{n}, F_{n}\right)\right\}, & \operatorname{Inf}(\rho) \cap F_{i} \neq \varnothing \text { implies } & \\
F_{i} \subseteq Q, E_{i} \subseteq Q & \operatorname{Inf}(\rho) \cap E_{i} \neq \varnothing \text { for all } i & \\
A c c=\left\{F_{1}, \ldots, F_{\mathrm{n}}\right\}, & \operatorname{Inf}(\rho)=F_{i} \text { for some } i & \text { NMW } \\
F_{i} \subseteq Q & &
\end{array}
$$

Acc: $Q \rightarrow \mathbb{N}$

$$
\min \text { parity in } \rho \text { is even }
$$

min parity in ρ is even NPW

Abbrev.
Note

NBW

NCW

NGW
$\operatorname{Acc}(q)$ is the parity of q

Büchi Automata

Example 1

accepts infinite words where p holds eventually

Büchi Automata

Example 2

accepts infinite words where eventually p will always hold

Büchi Automata

Example 3

accepts infinite words where p holds until q holds

Exercise

- Draw a Büchi automaton that accepts infinite words where p holds infinitely many times. $(\Sigma=\{p, \neg p\})$

Deterministic VS Nondeterministic

- Can you find a deterministic Büchi automaton (DBW) that accepts the same language?

Deterministic VS Nondeterministic

- Can you find a deterministic Büchi automaton (DBW) that accepts the same language?

Deterministic VS Nondeterministic

- Can you find a deterministic Büchi automaton (DBW) that accepts the same language?

NBW is more expressive than DBW

Model VS Specification

- So far we already learnt some abstract machines as models of computations.
- We may require that the computations must satisfy some properties.
- How do we check?

Model Checking

- Model the computations of a system as an automaton M.
- Model the computations allowed by the specification as an automaton S.
- Check if the system satisfies the specification by checking if $L(M) \subseteq$ $L(S)$.
- Or equivalently checking if P is empty where P is the intersection of
- M and
- the complement of S.

Emptiness Test

- Use double depth-first search to find an accepting lasso.

Büchi Automata

Intersection

- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$
- Construct $M=\left(Q_{1} \times Q_{2} \times\{0,1,2\}, \Sigma, \delta,\left(q_{01}, q_{02}, 0\right), Q_{1} \times Q_{2} \times\{0\}\right)$ where $\left(\left(q_{1}, q_{2}\right.\right.$, i), $\left.a,\left(q_{1}{ }^{\prime}, q_{2}{ }^{\prime}, j\right)\right) \in \delta$ if
- $\left(q_{1}, a, q_{1}{ }^{\prime}\right) \in \delta_{1}$ and $\left(q_{2}, a, q_{2}{ }^{\prime}\right) \in \delta_{2}$,
- $j=1$ if $i=0$,
- $j=i$ if $i \neq 0$ and $q_{i} \notin F_{i}$, and
- $j=(i+1) \bmod 2$ if $i \neq 0$ and $q_{i} \in F_{i}$.
- $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Büchi Automata

Complementation

Does the right one exactly accept the complement of the left one?

Büchi Automata

Complementation

Does the right one exactly accept the complement of the left one \mathcal{X}

Büchi Automata

Complementation

Does the right one exactly accept the complement of the left one \mathbb{X}
Complementation of NBW is much harder than that of NFA.

Büchi Automata

Complementation

Does the right one exactly accept the complement of the left one \mathbb{X}
Complementation of NBW is much harder than that of NFA.
We may express specifications using logic formulas.

LTL Model Checking

- Express the behavior of a system as a Büchi automaton M (usually converted from a Kripke structure).
- Express the specification as a formula f in linear temporal logic (LTL).
- Translation $\neg f$ to a Büchi automaton $A_{\neg f}$ with labels on states.
- Check if $L(M) \cap L\left(A_{\neg f)}\right.$ is empty.

Linear Temporal Logic
 Syntax

- $A P$ is a finite set of atomic propositions.
- The alphabet Σ is defined as $2^{A P}$.
- A linear temporal logic (LTL) formula is defined as follows.
- For every $p \in A P, p$ is an LTL formula.
- If f and g are LTL formulas, then so are $\neg f, f \wedge g, \boldsymbol{X} f$, and f $U g$.
- \boldsymbol{X} and \boldsymbol{U} are (future) temporal operators.

Linear Temporal Logic

Semantics

- A state is a subset of $A P$, containing exactly those propositions that evaluate to true in that state.
- An LTL formula is interpreted over an infinite sequence of states $\rho=s_{0} s_{1} \ldots$.

$$
\begin{aligned}
(\rho, i) \vDash p & \text { iff } \quad p \in s_{i} \\
(\rho, i) \vDash \neg f & \text { iff } \quad(\rho, i) \nLeftarrow f \\
(\rho, i) \vDash f \wedge g & \text { iff } \quad(\rho, i) \vDash f \text { and }(\rho, i) \vDash g \\
(\rho, i) \vDash \boldsymbol{\vDash} f & \text { iff } \quad(\rho, i+1) \vDash f \\
(\rho, i) \vDash f \boldsymbol{U} g & \text { iff } \quad \text { exists } j \geq i \text { such that }(\rho, j) \vDash g \text { and } \\
& \\
& \text { for all } i \leq k<j,(\rho, k) \vDash f
\end{aligned}
$$

Next and Until

- $(\rho, i) \vDash \boldsymbol{X} f$ iff $(\rho, i+1) \vDash f$

- $\quad(\rho, i) \vDash f \boldsymbol{U} g$ iff exists $j \geq i$ such that $(\rho, j) \vDash g$ and for all $i \leq k<j,(\rho, k) \vDash f$

Future and Global

- $(\rho, i) \vDash \boldsymbol{F} f$ iff $(\rho, j) \vDash f$ for some $j \geq i$

- $(\rho, i) \vDash G f$ iff $(\boldsymbol{\rho}, j) \vDash f$ for all $j \geq i$

Release

- $(\rho, i) \vDash f \boldsymbol{R} g$ iff exists $j \geq i$ such that $(\rho, j) \vDash f$ and for all $i \leq k \leq j,(\rho, k) \vDash$ g; or for all $j \geq i,(\rho, j) \vDash g$

Abbreviations

- true $:=p \vee \neg p$
- false $:=\neg$ true
- $f \boldsymbol{R} g:=\neg(\neg f \boldsymbol{U} \neg g)$
- $\boldsymbol{F} g:=$ true $\boldsymbol{U} g$
- $f \vee g:=\neg(\neg f \wedge \neg g)$
- $\boldsymbol{G} f:=$ false $\boldsymbol{R} f$
- $f \rightarrow g:=\neg f \vee g$
- $f \leftrightarrow g:=(f \rightarrow g) \wedge(g \rightarrow f)$

$$
\bigcirc=X, \diamond=\boldsymbol{F}, \square=G
$$

Exercise

- Express the following sentences in LTL formulas.
- "p occurs infinitely often"
- "whenever a message is sent, eventually an acknowledgement will be received"

Satisfaction, Validity, and Congruence

- $\quad \rho \vDash f$: a state sequence ρ satisfies an LTL formula f
- $\rho \vDash f$ iff $(\rho, 0) \vDash f$
- $\vDash f$: an LTL formula f is valid
- $\vDash f$ iff $\rho \vDash f$ for all ρ
- $f \cong g$: two formulas f and g are congruent
- $f \cong g$ iff $\vDash \boldsymbol{G}(f \leftrightarrow g)$

Congruent Formulas

- $\neg \boldsymbol{X} f \cong \boldsymbol{X} \neg f$
- $\neg \boldsymbol{F} g \cong \boldsymbol{G} \neg g$
- $\neg \boldsymbol{G} f \cong \boldsymbol{F} \neg f$
- $\boldsymbol{G} \boldsymbol{G} f \cong \boldsymbol{G} f$
- $\boldsymbol{F} \boldsymbol{F} g \cong \boldsymbol{F} g$
- $\neg \neg f \cong f$

Basic Formulas

- A literal is either a proposition or its negation.
- A basic formula is either a literal or an \boldsymbol{X}-formula.

Expansion Formulas

- $\boldsymbol{F} g \cong g \vee \boldsymbol{X} \boldsymbol{F} g$
- $\boldsymbol{G} f \cong f \wedge \boldsymbol{X} \boldsymbol{G} f$
- $f \boldsymbol{U} g \cong g \vee(f \wedge \boldsymbol{X}(f \boldsymbol{U} g))$
- $f \boldsymbol{R} g \cong g \wedge(f \vee \boldsymbol{X}(f \boldsymbol{R} g))$

Expressive Power of LTL

- LTL is strictly less expressive than NBW.
- "even p " can be expressed in NBW but not LTL.

- NBW is as expressive as QPTL (Quantified Propositional Temporal Logic).
- "even $p^{\prime \prime}$ in QPTL: $\exists t . t \wedge \boldsymbol{G}(t \leftrightarrow \boldsymbol{X} \neg t) \wedge \boldsymbol{G}(t \rightarrow p)$

From LTL to Labeled NGW

- Translate an LTL formula f to a labeled NGW (with labels on states).
- Take the negation normal form (NNF) of f.
- Expand $f_{N N F}$ into basic formulas as the initial states.
- Construct successors of states based on \boldsymbol{X}-formulas.
- For each subformula $g \boldsymbol{U} h$, create an acceptance set such that h will become true eventually.

NNF: negation only occurs right before propositions

From LTL to Labeled NGW
 Example

- $f:=\boldsymbol{G} \boldsymbol{F} p$
- $\boldsymbol{G} \boldsymbol{F} p \cong(p \vee \boldsymbol{X} \boldsymbol{F} p) \wedge \boldsymbol{X} \boldsymbol{G} \boldsymbol{F} p \cong(p \wedge \boldsymbol{X} \boldsymbol{G} \boldsymbol{F} p) \vee(\boldsymbol{X} \boldsymbol{F} p \wedge \boldsymbol{X} \boldsymbol{G} \boldsymbol{F} p)$
- $\boldsymbol{F} p \cong p \vee \boldsymbol{X} \boldsymbol{F} p$

From Labeled NGW to NGW

From NGW to NBW

- Apply the same technique in the intersection of NBW.
- Use an index i to remember the next acceptance set in $\left\{F_{1}, F_{2}\right.$, ..., $\left.F_{n}\right\}$ to be passed.
- Once a state in F_{i} is passed, increase the index i by 1 .
- If every $F_{i} \in\left\{F_{1}, F_{2}, \ldots, F_{\mathrm{n}}\right\}$ has been passed at least once, change the index to 0 and set the index to 1 in the successors.
- A run is accepting if the index 0 is passed infinitely many times.

Tools

- LTL2BA (http://www.Isv.fr/~gastin/lt|2ba/index.php)
- LTL3BA (https://sourceforge.net/projects/lt|3ba/)
- SPIN (http://spinroot.com/spin/whatispin.html)
- NuSMV (http://nusmv.fbk.eu)
- GOAL (http://goal.im.ntu.edu.tw/wiki/doku.php)

