Software Verification with Satisfiability Modulo Theories - Decision Procedures -

Ming-Hsien Tsai

Institute of Information Science Academia Sinica

FLOLAC 2017

Reference book: Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer 2007

Outline

2

- The theory T_E and its quantifier-free fragment
- Deciding T_E -satisfiability of quantifier-free Σ_E -formulae
 - Congruence closure algorithm
- Implementation of the decision procedure
- T_{RDS} recursive data structures
 - T_{cons} lists
- T_A arrays

FLOLAC 2017

Theory of Equality

Theory of Equality

- Denoted by T_E
- Referred to as the theory of EUF (Equality with Uninterpreted Functions)
- Play a central role in combining theories that share the equality predicate

Signature of T_E

$$\Sigma_E: \{=, a, b, c, ..., f, g, h, ..., p, q, r, ...\},$$
 consists of

- =, a binary predicate;
- and all constant, function and predicate symbols

Σ_E -formulae

- $x = g(y, x) \rightarrow f(x) = f(g(y, z))$
- $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$

$$f(a) \neq a$$
 abbreviates $\neg(f(a) = a)$

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Axioms of Equality

- Reflexivity: $\forall x. \ x = x$
- Symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- Transitivity: $\forall x, y, z$. $x = y \land y = z \rightarrow x = z$

Axioms of Equality

- Reflexivity: $\forall x. \ x = x$
- Symmetry: $\forall x, y. x = y \rightarrow y = x$
- Transitivity: $\forall x, y, z$. $x = y \land y = z \rightarrow x = z$

with the three axioms, = is defined to be an equivalence relation

Equality of Function Terms

• When two function terms are equal?

f(x) = f(g(y, z))

Function Congruence

• Function congruence (axiom schema)

•
$$\forall X, Y. (\wedge_{i=1 \text{ to } n} x_i = y_i) \rightarrow f(X) = f(Y)$$

• Instantiated axioms:

•
$$\forall x, y. \ x = y \rightarrow f(x) = f(y)$$

• $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow g(x_1, x_2) = g(y_1, y_2)$

Capital X and Y are vectors of variables

FLOLAC 2017

Function Congruence

• Function congruence (axiom schema)

•
$$\forall X, Y. (\wedge_{i=1 \text{ to } n} x_i = y_i) \rightarrow f(X) = f(Y)$$

• Instantiated axioms:

•
$$\forall x, y. \ x = y \rightarrow f(x) = f(y)$$

• $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow g(x_1, x_2) = g(y_1, y_2)$

makes = a congruence relation

Capital X and Y are vectors of variables

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Predicate Congruence

10

• Predicate congruence

•
$$\forall X, Y. (\wedge_{i=1 \text{ to } n} x_i = y_i) \rightarrow (p(X) \leftrightarrow p(Y))$$

• Is the following Σ_E -formula T_E -satisfiable?

•
$$f(x) = f(y) \land x \neq y$$

 $x \neq y$ abbreviates $\neg(x = y)$

11

FLOLAC 2017

12

Is the following Σ_E -formula T_E -satisfiable?

 $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$

12

Is the following Σ_E -formula T_E -satisfiable?

 $f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \wedge f(a) \neq a$

1. f(f(f(f(a)))) = f(a)

(function congruence)

12

Is the following Σ_E -formula T_E -satisfiable?

 $f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \wedge f(a) \neq a$

1. f(f(f(f(a)))) = f(a)

(function congruence)

2. f(f(f(f(f(a))))) = f(f(a))

(function congruence)

Is the following Σ_E -formula T_E -satisfiable?

 $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$

- **1.** f(f(f(f(a)))) = f(a)
- **2.** f(f(f(f(f(a))))) = f(f(a))

3. f(f(a)) = f(f(f(f(a))))

(function congruence)

(function congruence)

(symmetry)

Is the following Σ_E -formula T_E -satisfiable?

 $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$

- **1.** f(f(f(f(a)))) = f(a)
- **2.** f(f(f(f(f(a))))) = f(f(a))
- **3.** f(f(a)) = f(f(f(f(a))))

4. f(f(a)) = a

FLOLAC 2017

(function congruence)

(function congruence)

(symmetry)

(transitivity)

12

Software Verification with Satisfiability Modulo Theories

Get Rid of Predicate Congruence

- Transform a Σ_E -formula to a Σ_E -formula without predicates other than =
- Example p1
 - $x = y \rightarrow (p(x) \leftrightarrow p(y))$ is transformed to

•
$$x = y \rightarrow ((f_p(x) = \bullet) \leftrightarrow (f_p(y) = \bullet))$$

- Example p2
 - $p(x) \land q(x, y) \land q(y, z) \rightarrow \neg q(x, z)$ is transformed to

•
$$f_p(x) = \bullet \land f_q(x, y) = \bullet \land f_q(y, z) = \bullet \to f_q(x, z) \neq \bullet$$

13

FLOLAC 2017

In The Following

- Consider Σ_E -formulae without predicates other than =
- T_E -satisfiability of Σ_E -formulae is undecidable
 - Consider only the quantifier-free fragment
 - Consider formulae in disjunctive normal form (DNF)

$$(a_1 \wedge a_2 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge b_2 \wedge \ldots \wedge b_m)$$

14

FLOLAC 2017

Congruence Closure Algorithm

Observation

- Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive literals s = t of a Σ_E -formula F produces more equalities over terms occurring in formula F
- There are only a finite number of terms in F
- Only a finite number of equalities among these terms are possible
- Then, either
 - some equality is formed that directly contradicts a negative literal s' ≠ t' of F; or
 - the propagation of equalities ends without finding a contradiction

FLOLAC 2017

Observation

- Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive literals s = t of a Σ_E -formula F produces more equalities over terms occurring in formula F
- There are only a finite number of terms in F
- Only a finite number of equalities among these terms are possible
- Then, either
 - some equality is formed that directly contradicts a negative literal s' ≠ t' of F; or
 - the propagation of equalities ends without finding a contradiction form the congruence closure of =

FLOLAC 2017

Class

- Consider an equivalence relation ${\cal R}$ over a set ${\cal S}$
- The *equivalence class* of $s \in S$ under R is the set

 $[s]_R \stackrel{\text{\tiny def}}{=} \{s' \in S : sRs'\}$

• If R is a congruence relation over S, then $[s]_R$ is the congruence class of s

Example of Class

• Consider the set \mathbb{Z} of integers and the equivalence relation =₂ such that

•
$$m \equiv_2 n$$
 iff $(m \mod 2) = (n \mod 2)$

$$\begin{split} [3]_{\equiv 2} &= \{ n \in \mathbb{Z} : (n \ mod \ 2) = (3 \ mod \ 2) \} \\ &= \{ n \in \mathbb{Z} : (n \ mod \ 2) = 1 \} \\ &= \{ n \in \mathbb{Z} : n \ \text{is odd} \} \end{split}$$

Partition

19

A *partition* P of S is a set of subsets of S that is *total*,

$$(\cup_{S' \in P} S') = S,$$

and *disjoint*,

 $\forall S_1, S_2 \in P. \ S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$

Quotient

• The *quotient* S/R of S by the equivalence (congruence) relation R is a partition of S: it is a set of equivalence (congruence) classes

•
$$S/R = \{ [s]_R : s \in S \}$$

Example of Quotient

The quotient Z/≡₂ is a partition: it is the set of equivalence classes

21

• $\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$

Equivalence Relation, Partition, and Quotient

- An equivalence relation R induces a partition S/R of S
- A given partition P of S induces an equivalence relation over S

22

• s_1Rs_2 iff for some $S' \in P$, both $s_1, s_2 \in S'$

Relation Refinement

- Consider two binary relations R_1 and R_2 over the set S
- R_1 is a *refinement* of R_2 , or $R_1 < R_2$, if
 - $\forall s_1, s_2 \in S. \ s_1R_1s_2 \rightarrow s_1R_2s_2$
- We also say that R_1 refines R_2
- Viewing the relations as sets of pairs, $R_1 \subseteq R_2$

Example 1 of Relation Refinement

- $S = \{a, b\}$
- R_1 : { aR_1b }
- $R_2: \{aR_2b, bR_2b\}$
- $R_1 < R_2$

Example 2 of Relation Refinement

- \bullet Consider set S
- $R_1: \{sR_1s: s \in S\}$
- $R_2: \{sR_2t: s, t \in S\}$
- $R_1 < R_2$

Example 2 of Relation Refinement

- \bullet Consider set S
- $R_1 : \{sR_1s : s \in S\}$ $P_1 : \{\{s\} : s \in S\}$
- $R_2: \{sR_2t: s, t \in S\}$
- $R_1 < R_2$

Example 2 of Relation Refinement

- \bullet Consider set S
- $R_1 : \{sR_1s : s \in S\}$ $P_1 : \{\{s\} : s \in S\}$
- $R_2: \{sR_2t: s, t \in S\}$ $P_2: \{S\}$
- $R_1 \prec R_2$

Example 3 of Relation Refinement

26

- \bullet Consider the set $\mathbb Z$
- $R_1: \{xR_1y: x \ mod \ 2 = y \ mod \ 2\}$
- $R_2: \{xR_1y: x \mod 4 = y \mod 4\}$

• $R_2 < R_1$

Closure

- The equivalence closure R^E of the binary relation R over S is the equivalence relation such that
 - R refines R^E : $R < R^E$;
 - for all other equivalence relations R' such that R < R', either

- $R' = R^E$, or
- $R^E < R'$
- R^E is the smallest equivalence relation that covers R
Example of Equivalence Closure

• Then,

•
$$aRb, bRc, dRd \in R^{E}$$
 (since $R \subseteq R^{E}$);

•
$$aRa, bRb, cRc \in R^{E}$$
 (by reflexivity);

•
$$bRa, cRb \in R^{E}$$
 (by symmetry);

- $aRc \in R^{E}$ (by transitivity);
- $cRa \in R^{E}$ (by symmetry);
- Hence

•
$$R^{E} = \{aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd\}$$

28

FLOLAC 2017

 $S = \{a, b, c, d\}$

 $R = \{aRb, bRc, dRd\}$

Congruence Closure

• The congruence closure R^C of R is the smallest congruence relation that covers R

Congruence Closure

• The congruence closure R^C of R is the smallest congruence relation that covers R

Compute the congruence closure of a term set

Subterm Set

• Subterm set S_F of Σ_E -formula F is the set that contains precisely the subterms of F

- Example:
 - $F: f(a, b) = a \land f(f(a, b), b) \neq a$

•
$$S_F = \{a, b, f(a, b), f(f(a, b), b)\}$$

Congruence Relation over Subterm Set

 $F: s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$

• *F* is *T_E*-satisfiable iff there exists a congruence relation ~ over *S_F* such that

- for each $i \in \{1, ..., m\}, s_i \sim t_i;$
- for each $i \in \{m + 1, ..., n\}, s_i \neq t_i$

T_E -interpretation

- The congruence relation ~ defines a T_E -interpretation $I : (D_I, a_I)$ of F
 - D_I consists of $|S_F / \sim|$ elements
 - a_I assigns elements of D_I to the terms of S_F in a way that respects ~
 - a_I assigns to = a binary relation over D_I that behaves like ~
- We abbreviate $(D_I, a_I) \vDash F$ with $\sim \vDash F$

Congruence Closure Algorithm

 $F: s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$

1. Construct the congruence closure ~ of

$$\{s_1 = t_1, \, ..., \, s_m = t_m\}$$

over the subterm set S_F

- 2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable
- 3. Otherwise, $\sim \models F$, so return satisfiable

Step 1

- Begin with \sim_0 given by the partition $\{\{s\} : s \in S_F\}$
- Import $s_i = t_i$ by merging the congruence classes $[s_i]_{-i-1}$ and $[t_i]_{-i-1}$
 - Form the union of $[s_i]_{\sim i-1}$ and $[t_i]_{\sim i-1}$
 - Propagate new congruences that arise within the union

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

35

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

35

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}

(f(a, b) = a)

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

- {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$ (f(a, b) = a)

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

35

- {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$ (f(a, b) = a)

(function congruence)

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

- {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$ (f(a, b) = a)
- $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$ (function congruence)

 $F: f(a, b) = a \land f(f(a, b), b) \neq a$

- {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$ (f(a, b) = a)
- $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$ (function congruence)

35

• T_E -unsatisfiable

 $F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$

36

• {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$

36

• {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}

 $(f^3(a) = a)$

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ $(f^3(a) = a)$

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ $(f^3(a) = a)$

36

(function congruence)

 $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ $(f^3(a) = a)$
- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$ (function congruence)

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$

36

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ $(f^3(a) = a)$
- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$ (function

(function congruence)

 $(f^5(a) = a)$

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- {{ $a, f^3(a)$ }, {f(a)}, {f(a)}, { $f^2(a)$ }, { $f^4(a)$ }, { $f^5(a)$ }} ($f^3(a) = a$)
- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$ (function congruence)
- {{ $a, f^2(a), f^3(a), f^5(a)$ }, { $f(a), f^4(a)$ }} (f(a) = a)

 $F: f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$

- { { a }, { f(a) }, { $f^2(a)$ }, { $f^3(a)$ }, { $f^4(a)$ }, { $f^5(a)$ }
- { { $a, f^3(a)$ }, { f(a) }, { $f^2(a)$ }, { $f^4(a)$ }, { $f^5(a)$ } $(f^{3}(a) = a)$
- { { $a, f^3(a)$ }, { $f(a), f^4(a)$ }, { $f^2(a), f^5(a)$ } (function congruence)

36

- { { $a, f^2(a), f^3(a), f^5(a)$ }, { $f(a), f^4(a)$ } $(f^{5}(a) = a)$

(function congruence)

 $F: f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$

- { { a }, { f(a) }, { $f^2(a)$ }, { $f^3(a)$ }, { $f^4(a)$ }, { $f^5(a)$ }
- { { $a, f^3(a)$ }, { f(a) }, { $f^2(a)$ }, { $f^4(a)$ }, { $f^5(a)$ } $(f^{3}(a) = a)$
- { { $a, f^3(a)$ }, { $f(a), f^4(a)$ }, { $f^2(a), f^5(a)$ }

36

- { { $a, f^2(a), f^3(a), f^5(a)$ }, { $f(a), f^4(a)$ }
- { { $a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)$ }

(function congruence)

 $(f^{5}(a) = a)$

(function congruence)

 $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

- {{*a*}, {*f*(*a*)}, {*f*²(*a*)}, {*f*³(*a*)}, {*f*⁴(*a*)}, {*f*⁵(*a*)}}
- {{ $a, f^3(a)$ }, {f(a)}, {f(a)}, { $f^2(a)$ }, { $f^4(a)$ }, { $f^5(a)$ }} ($f^3(a) = a$)
- { { $a, f^3(a)$ }, { $f(a), f^4(a)$ }, { $f^2(a), f^5(a)$ } (function

36

(function congruence)

- {{ $a, f^2(a), f^3(a), f^5(a)$ }, { $f(a), f^4(a)$ }
- { { $a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)$ }

 $(f^5(a) = a)$

(function congruence)

 T_E -unsatisfiable

 $F: f(x) = f(y) \land x \neq y$

37

• $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$

 $F: f(x) = f(y) \land x \neq y$

37

• $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$

(f(x) = f(y))

 $F: f(x) = f(y) \land x \neq y$

- $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- {{x}, {y}, {f(x), f(y)}} (f(x) = f(y))

 $F: f(x) = f(y) \land x \neq y$

- $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- {{x}, {y}, {f(x), f(y)}} (f(x) = f(y))
- T_E -satisfiable

Exercise

• Apply the decision procedure for T_E to the following Σ_E -formulas. Provide a level of details as in the slides.

1.
$$f(x,y) = f(y,x) \wedge f(a,y) \neq f(y,a)$$

2.
$$f(g(x)) = g(f(x)) \land f(g(f(y))) = x \land f(y) = x \land g(f(x)) \neq x$$

38

3. $f(f(f(a))) = f(f(a)) \land f(f(f(f(a)))) = a \land f(a) \neq a$

4.
$$p(x) \wedge f(f(x)) = x \wedge f(f(f(x))) = x \wedge \neg p(f(x))$$

Implementation

DAG

• A directed graph $G:\langle N, E \rangle$

• nodes
$$N = \{n_1, n_2, ..., n_k\}$$

• edges
$$E = \{..., \langle n_i, n_j \rangle, ...\}$$

• A *directed acyclic graph* (*DAG*) is a directed graph containing no loop (or cycle)

Subterm Set as DAG

 $\{a, b, f(a, b), f(f(a, b), b)\}$

Node

type r	node =	{
--------	--------	---

id : id

}

(unique identification number)

fn : string (constant or function symbol)

args: id list (identification numbers of the function arguments)

mutable find : id(another node in its congruence class)
(following a chain of find references leads to the representative)mutable ccpar : id set(congruence closure parents,Ø for non-representative nodes)

DAG as Partition

node $2 = \{$	node $3 = \{$
$\mathrm{id}=2;$	$\mathrm{id}=3;$
$\mathrm{fn}=\mathit{f};$	$\mathrm{fn}=a;$
args = [3; 4];	m args = [];
find = 3;	$\mathrm{find}=3;$
$\operatorname{ccpar} = \emptyset;$	$ccpar = \{1, 2\};$
}	}

Partition: {{f(f(a, b), b), f(a, b), a}, {b}}

Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm - NODE

NODE i returns the node n with id i

 $({
m NODE}\,\,i).{
m id}=i$ $({
m NODE}\,\,2).{
m find}=3$

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -FIND

let rec FIND i =

let n = NODE i in

if n.find = i then i else FIND n.find

 $\begin{array}{l} {\rm FIND} \ 2=3\\ {\rm FIND} \ 1=3 \end{array}$

Software Verification with Satisfiability Modulo Theories
46

let UNION $i_1 i_2 =$

let $n_1 = \text{NODE} (\text{FIND } i_1)$ in

let $n_2 = \text{NODE} (\text{FIND } i_2)$ in

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$

 $n_1.ccpar \leftarrow \emptyset$

46

let UNION $i_1 i_2 =$

UNION 1 2

let $n_1 = \text{NODE} (\text{FIND } i_1)$ in

let $n_2 = \text{NODE} (\text{FIND } i_2)$ in

 n_1 .find $\leftarrow n_2$.find;

 $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$

 $n_1.ccpar \leftarrow \emptyset$

46

let UNION $i_1 i_2 =$

UNION 1 2

let $n_1 = \text{NODE} (\text{FIND } i_1)$ in

let $n_2 = \text{NODE} (\text{FIND } i_2)$ in

 n_1 .find $\leftarrow n_2$.find;

 $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$

 $n_1.ccpar \leftarrow \emptyset$

46

let UNION $i_1 i_2 =$

UNION 1 2

let $n_1 = \text{NODE} (\text{FIND } i_1)$ in

let $n_2 = \text{NODE} (\text{FIND } i_2)$ in

 n_1 .find $\leftarrow n_2$.find;

 $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$

 $n_1.ccpar \leftarrow \emptyset$

46

let UNION $i_1 i_2 =$

let $n_1 = \text{NODE} (\text{FIND } i_1)$ in

let $n_2 = \text{NODE} (\text{FIND } i_2)$ in

 n_1 .find $\leftarrow n_2$.find;

 $n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;$

UNION 1 2

$n_1.ccpar \leftarrow \emptyset$

Union-Find Algorithm - CCPAR

47

let CCPAR i =

(NODE (FIND *i*)).ccpar

Congruence Closure Algorithm - CONGRUENT

let CONGRUENT $i_1 i_2 =$

let $n_1 =$ NODE i_1 in

let $n_2 =$ NODE i_2 in

 $n_1.\mathrm{fn} = n_2.\mathrm{fn}$

 $\wedge |n_1.\mathrm{args}| = |n_2.\mathrm{args}|$

 $\land \forall i \in \{1, ..., |n_1.args|\}$. FIND $n_1.args[i] = FIND n_2.args[i]$

Congruence Closure Algorithm - MERGE

49

let rec MERGE i_1 $i_2 =$

if FIND $i_1 \neq$ FIND i_2 then begin

let $P_1 = \text{CCPAR } i_1$ in

let $P_2 = \text{CCPAR } i_2$ in

UNION i_1 i_2 ;

foreach $t_1, t_2 \in P_1 \times P_2$ do

if FIND $t_1 \neq$ FIND $t_2 \land$ CONGRUENT $t_1 t_2$

```
then MERGE t_1 t_2
```

done

end FLOLAC 2017

Decision Procedure for T_{E} -**Satisfiability**

 $F: s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$

- 1. Construct the initial DAG for the subterm set S_F
- 2. For $i \in \{1, ..., m\}$, MERGE $s_i t_i$
- 3. If FIND $s_i = \text{FIND } t_i$ for some $i \in \{m + 1, ..., n\}$, return unsatisfiable

50

4. Otherwise, return satisfiable

 $F : f(a, b) = a \land f(f(a, b), b) \neq a$ $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

 $F : f(a, b) = a \land f(f(a, b), b) \neq a$ $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1. MERGE 2 3

 $F : f(a, b) = a \land f(f(a, b), b) \neq a$ $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

2:

1:f

4:b

1. MERGE 2 3
(1)
$$P_2 = \text{CCPAR } 2 = \{1\}$$

(2) $P_3 = \text{CCPAR } 3 = \{2\}$
(3) UNION 2 3

1. MERGE 2 3
(1)
$$P_2 = \text{CCPAR } 2 = \{1\}$$

(2) $P_3 = \text{CCPAR } 3 = \{2\}$
(3) UNION 2 3

 $F : f(a, b) = a \land f(f(a, b), b) \neq a$ $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

 T_E -unsatisfiable

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$ $S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

1. MERGE 3 0

$$(5:f) \rightarrow (4:f) \rightarrow (3:f) \rightarrow (2:f) \rightarrow (1:f) \rightarrow (0:a)$$

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

1. MERGE 3 0

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

1. MERGE 3 0

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

1. MERGE 3 0

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

- 1. MERGE 3 0
- 2. MERGE 5 0

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

- 1. MERGE 3 0
- 2. MERGE 5 0

$$F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$
$$S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$$

- 1. MERGE 3 0
- 2. MERGE 5 0

 $F: f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$ $S_{F} = \{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a))\}$

- 1. MERGE 3 0
- 2. MERGE 5 0

Soundness and Completeness

Theorem (Sound & Complete). Quantifier-free conjunctive Σ_{E} -formula F is T_{E} -satisfiable iff the congruence closure algorithm returns satisfiable

Complexity

Let e be the number of edges and n be the number of nodes in the initial DAG.

Theorem (Complexity). The congruence closure algorithm run in time $O(e^2)$ for O(n) MERGEs.

Recursive Data Structures

T_{RDS}

56

- Can model
 - records
 - lists
 - trees
 - stacks
- Cannot model
 - queues

Theory of Lists - T_{cons}

 $\Sigma_{cons}: \{cons, car, cdr, atom, =\}$

- *cons*: a binary function, called the constructor;
- *car*: a unary function, called the left projector;
- *cdr*: a unary function, called the right projector;
- *atom*: a unary predicate;
- =: a binary predicate

 $car(cons(a, b)) = a \ cdr(cons(a, b)) = b$

Axioms of T_{cons}

- Axioms of (reflexivity), (symmetry), and (transitivity) of T_E
- Instantiations of the (function congruence) axiom schema for *cons*, *car*, and *cdr*:
 - $\forall x_1, x_2, y_1, y_2$. $x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$

•
$$\forall x, y. \ x = y \rightarrow car(x) = car(y)$$

•
$$\forall x, y. \ x = y \rightarrow cdr(x) = cdr(y)$$

• An instantiation of the (predicate congruence) axiom schema for atom:

58

•
$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

Axioms of T_{cons}

•
$$\forall x, y. \ car(cons(x, y)) = x$$

(left projection)

- $\forall x, y. \ cdr(cons(x, y)) = y$ (right projection)
- $\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x$ (construction)

59

• $\forall x, y. \neg atom(cons(x, y))$ (atom)

Decidability

- *T_{cons}*: undecidable
- quantifier-free T_{cons} : decidable

Preprocess

By the (construction) axiom, replace

 $\neg atom(u_i)$

with

$$u_i = \mathit{cons}(u_i^1, u_i^2)$$

 $\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x \qquad (construction)$

61
Decision Procedure

 $F: s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$ $\land atom(u_1) \land \ldots \land atom(u_l)$

- Construct the initial DAG for the subterm set ${\cal S}_{{\cal F}}$
- By the (left projection) and (right projection) axioms, for each node n such that n.fn = cons,
 - add car(n) to the DAG and MERGE car(n) n.args[1];
 - add cdr(n) to the DAG and MERGE cdr(n) n.args[2];
- For $i \in \{1, ..., m\}$, MERGE $s_i t_i$
- For $i \in \{m + 1, ..., n\}$, if FIND $s_i = \text{FIND } t_i$, return unsatisfiable
- By the (atom axiom), for i ∈ {1, ..., l}, if ∃v. FIND v = FIND u_i ∧ v.fn = cons, return unsatisfiability

62

• Otherwise, return satisfiable

FLOLAC 2017

 $F: car(x) = car(y) \land cdr(x) = cdr(y) \land f(x) \neq f(y) \land \neg atom(x) \land \neg atom(y)$

 $F': car(x) = car(y) \land cdr(x) = cdr(y) \land f(x) \neq f(y) \land$ $x = cons(u_1, v_1) \land y = cons(u_2, v_2)$

Step 1: initial DAG

FLOLAC 2017

Step 2: add car(n) and cdr(n)

FLOLAC 2017

Step 3: MERGE $s_i t_i$ 1. car(x) = car(y)

Step 3: MERGE $s_i t_i$ 1. car(x) = car(y)

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- 3. $x = cons(u_1, v_1)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- 3. $x = cons(u_1, v_1)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- 3. $x = cons(u_1, v_1)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- 3. $x = cons(u_1, v_1)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

- car(x) = car(y)1.
- 2. cdr(x) = cdr(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

Step 3: MERGE $s_i t_i$

- 1. car(x) = car(y)
- $2. \quad cdr(x) = cdr(y)$
- $3. \quad x=\mathit{cons}(u_1,\ v_1)$
- 4. $y = cons(u_2, v_2)$

 $(T_{cons} \cup T_E)$ -unsatisfiable

Exercise

• Apply the decision procedure for *Tcons* to the following *Tcons*-formulas. Please write down the call sequence to the MERGE procedure, draw the final DAG, and draw the final DAG.

•
$$car(x) = y \land cdr(x) = z \land x \neq cons(y,z)$$

•
$$\neg atom(x) \land car(x) = y \land cdr(x) = z \land x \neq cons(y,z)$$

Hint: Apply preprocessing to the formulae if it is necessary.

FLOLAC 2017

Arrays

Theory of Arrays - T_A

 $\Sigma_{A}: \{\bullet[\bullet], \bullet \langle \bullet \triangleleft \bullet \rangle, = \}$

- a[i]: a binary function; a[i] represents the value of array a at position i;
- $a\langle i \triangleleft v \rangle$: a ternary function; $a\langle i \triangleleft v \rangle$ represents the modified array a in which position i has value v;

68

• =: a binary predicate

Axioms of T_A

• Axioms of (reflexivity), (symmetry), and (transitivity) of T_E

•
$$\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$$
 (array congruence)

- $\forall a, v, i, j. i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$ (read-over-write 1)
- $\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

Decision Procedure

- Based on a reduction to T_E -satisfiability via applications of the (read-over-write) axioms
- If the formula does not contain any write terms, then the read terms can be viewed as uninterpreted function terms
- Otherwise, any write term must occur in the context of a read

Decision Procedure - Step 1

If F does not contain any write terms $a\langle i \triangleleft v \rangle$, perform the following steps.

- 1. Associate each array variable a with a fresh function symbol f_a , and replace each read term a[i] with $f_a(i)$
- 2. Decide and return the T_E -satisfiability of the resulting formula

Decision Procedure - Step 2

Select some read-over-write term $a\langle i \triangleleft v \rangle [j]$, and split on two cases:

1. According to (read-over-write 1), replace

 $F[a \langle i \triangleleft v \rangle[j]]$ with $F_1: F[v] \land i = j$

and recurse on F_1 . If F_1 is found to be T_A -satisfiable, return satisfiable

2. According to (read-over-write 2), replace

 $F[a\langle i \triangleleft v \rangle[j]]$ with $F_2: F[a[j]] \land i \neq j$

and recurse on F_2 . If F_2 is found to be T_A -satisfiable, return satisfiable

If both F_1 and F_2 are found to be T_A -unsatisfiable, return unsatisfiable

FLOLAC 2017

Example of T_A

 $F: i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a \langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$

• First case:

•
$$F_1: i_2 = j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_2 \neq a[j]$$

• F_1 ': $i_2 = j \land i_1 = j \land i_1 \neq i_2 \land f_a(j) = v_1 \land v_2 \neq f_a(j)$

73

• F_1 is T_A -unsatisfiable

Example of T_A

 $F: i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a \langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$

- Second case:
 - $F_2: i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle [j] \neq a[j]$
 - $F_3: i_1 = j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_1 \neq a[j]$
 - $F_4: i_1 \neq j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a[j] \neq a[j]$

74

• F_2 is T_A -unsatisfiable

Soundness and Completeness

Theorem (Sound & Complete). Given quantifier-free conjunctive Σ_A -formula F, the decision procedure returns satisfiable iff F is T_A -satisfiable; otherwise, it returns unsatisfiable

Complexity

Theorem (Complexity). T_A -satisfiability of quantifier-free conjunctive Σ_A -formula is NP-complete

Exercise

• Apply the decision procedure for quantifier-free T_A to the following Σ_A -formulas.

•
$$a\langle i \triangleleft e \rangle [j] = e \land i \neq j$$

• $a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [k] = g \land j \neq k \land i = j \land a[k] \neq g$

Summary

- Congruence closure algorithm
 - relations, equivalence relations, congruence relations, partitions, quotients, classes, closures

- DAG-based implementation
 - union-find, merge
- Recursive data structures
 - T_{cons}
- Arrays