
Software Verification with Satisfiability Modulo Theories
- Decision Procedures -

Ming-Hsien Tsai

Institute of Information Science
Academia Sinica

FLOLAC 2017

Reference book: Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer 2007

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Outline
• The theory TE and its quantifier-free fragment

• Deciding TE-satisfiability of quantifier-free ΣE-formulae

• Congruence closure algorithm

• Implementation of the decision procedure

• TRDS - recursive data structures

• Tcons - lists

• TA - arrays

2

Theory of Equality

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Theory of Equality

• Denoted by TE

• Referred to as the theory of EUF (Equality with
Uninterpreted Functions)

• Play a central role in combining theories that share the
equality predicate

4

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Signature of TE

consists of

• =, a binary predicate;

• and all constant, function and predicate symbols

ΣE : {=, a, b, c, …, f, g, h, …, p, q, r, …},

5

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

ΣE-formulae

• x = g(y, x) → f(x) = f(g(y, z))

• f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

6

f(a) ≠ a abbreviates ¬(f(a) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Equality

• Reflexivity: ∀x. x = x

• Symmetry: ∀x,y. x = y → y = x

• Transitivity: ∀x,y,z. x = y ∧ y = z → x = z

7

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Equality

• Reflexivity: ∀x. x = x

• Symmetry: ∀x,y. x = y → y = x

• Transitivity: ∀x,y,z. x = y ∧ y = z → x = z

with the three axioms, = is defined
to be an equivalence relation

7

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Equality of Function Terms

• When two function terms are equal?

f(x) = f(g(y, z))

8

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Function Congruence

• Function congruence (axiom schema)

• ∀X,Y. (⋀i=1 to n xi = yi) → f(X) = f(Y)

• Instantiated axioms:

• ∀x,y. x = y → f(x) = f(y)

• ∀x1,x2,y1,y2. x1 = y1 ∧ x2 = y2 → g(x1, x2) = g(y1, y2)

Capital X and Y are vectors of variables
9

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Function Congruence

• Function congruence (axiom schema)

• ∀X,Y. (⋀i=1 to n xi = yi) → f(X) = f(Y)

• Instantiated axioms:

• ∀x,y. x = y → f(x) = f(y)

• ∀x1,x2,y1,y2. x1 = y1 ∧ x2 = y2 → g(x1, x2) = g(y1, y2)

Capital X and Y are vectors of variables
makes = a congruence relation

9

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Predicate Congruence

• Predicate congruence

• ∀X,Y. (⋀i=1 to n xi = yi) → (p(X) ↔ p(Y))

10

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 1

• Is the following ΣE-formula TE-satisfiable?

• f(x) = f(y) ⋀ x ≠ y

x ≠ y abbreviates ¬(x = y)

11

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 2

Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

12

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 2

Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

12

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 2

Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

12

(function congruence)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 2

Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

3. f(f(a)) = f(f(f(f(f(a)))))

12

(function congruence)

(function congruence)

(symmetry)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-Satisfiablility - Example 2

Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

3. f(f(a)) = f(f(f(f(f(a)))))

4. f(f(a)) = a
12

(function congruence)

(function congruence)

(symmetry)

(transitivity)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Get Rid of Predicate
Congruence

• Transform a ΣE-formula to a ΣE-formula without predicates other than =

• Example p1

• x = y → (p(x) ↔ p(y)) is transformed to

• x = y → ((fp(x) = •) ↔ (fp(y) = •))

• Example p2

• p(x) ⋀ q(x, y) ⋀ q(y, z) → ¬q(x, z) is transformed to

• fp(x) = • ⋀ fq(x, y) = • ⋀ fq(y, z) = • → fq(x, z) ≠ •

13

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

In The Following

• Consider ΣE-formulae without predicates other than =

• TE-satisfiability of ΣE-formulae is undecidable

• Consider only the quantifier-free fragment

• Consider formulae in disjunctive normal form (DNF)

14

(a1⋀a2⋀…⋀an) ∨ … ∨ (b1⋀b2⋀…⋀bm)

Congruence Closure Algorithm

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Observation
• Applying (symmetry), (reflexivity), (transitivity), and (congruence) to

positive literals s = t of a ΣE-formula F produces more equalities over terms
occurring in formula F

• There are only a finite number of terms in F

• Only a finite number of equalities among these terms are possible

• Then, either

• some equality is formed that directly contradicts a negative literal s’ ≠ t’
of F; or

• the propagation of equalities ends without finding a contradiction

16

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Observation
• Applying (symmetry), (reflexivity), (transitivity), and (congruence) to

positive literals s = t of a ΣE-formula F produces more equalities over terms
occurring in formula F

• There are only a finite number of terms in F

• Only a finite number of equalities among these terms are possible

• Then, either

• some equality is formed that directly contradicts a negative literal s’ ≠ t’
of F; or

• the propagation of equalities ends without finding a contradiction
form the congruence closure of =

16

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Class

• Consider an equivalence relation R over a set S

• The equivalence class of s ∈ S under R is the set

[s]R ≝ {s’ ∈ S : sRs’}

• If R is a congruence relation over S, then [s]R is the
congruence class of s

17

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of Class

• Consider the set ℤ of integers and the equivalence relation ≡2
such that

• m ≡2 n iff (m mod 2) = (n mod 2)

18

[3]≡2 = {n ∈ ℤ : (n mod 2) = (3 mod 2)}
= {n ∈ ℤ : (n mod 2) = 1}
= {n ∈ ℤ : n is odd}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Partition

A partition P of S is a set of subsets of S that is total,

(⋃S’ ∈ P S’) = S,

and disjoint,

∀S1,S2 ∈ P. S1 ≠ S2 → S1 ∩ S2 = ∅

19

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Quotient

• The quotient S/R of S by the equivalence (congruence)
relation R is a partition of S: it is a set of equivalence
(congruence) classes

• S/R = {[s]R : s ∈ S}

20

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of Quotient

• The quotient ℤ/≡2 is a partition: it is the set of equivalence
classes

• {{n ∈ ℤ : n is odd}, {n ∈ ℤ : n is even}}

21

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Equivalence Relation, Partition,
and Quotient

• An equivalence relation R induces a partition S/R of S

• A given partition P of S induces an equivalence relation over
S

• s1Rs2 iff for some S’ ∈ P, both s1,s2 ∈ S’

22

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Relation Refinement

• Consider two binary relations R1 and R2 over the set S

• R1 is a refinement of R2, or R1 ≺ R2, if

• ∀s1,s2 ∈ S. s1R1s2 → s1R2s2

• We also say that R1 refines R2

• Viewing the relations as sets of pairs, R1 ⊆ R2

23

R2 R1

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Relation
Refinement

• S = {a, b}

• R1 : {aR1b}

• R2 : {aR2b, bR2b}

• R1 ≺ R2

24

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

25

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

25

P1 : {{s} : s ∈ S}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

25

P1 : {{s} : s ∈ S}

P2 : {S}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of Relation
Refinement

• Consider the set ℤ

• R1 : {xR1y : x mod 2 = y mod 2}

• R2 : {xR1y : x mod 4 = y mod 4}

• R2 ≺ R1

26

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Closure
• The equivalence closure RE of the binary relation R over S is the

equivalence relation such that

• R refines RE: R ≺ RE;

• for all other equivalence relations R’ such that R ≺ R’, either

• R’ = RE, or

• RE ≺ R’

• RE is the smallest equivalence relation that covers R

27

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of Equivalence Closure

• Then,

• aRb, bRc, dRd ∈ RE (since R ⊆ RE);

• aRa, bRb, cRc ∈ RE (by reflexivity);

• bRa, cRb ∈ RE (by symmetry);

• aRc ∈ RE (by transitivity);

• cRa ∈ RE (by symmetry);

• Hence

• RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}

28

S = {a, b, c, d}

R = {aRb, bRc, dRd}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Closure

• The congruence closure RC of R is the smallest congruence
relation that covers R

29

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Closure

• The congruence closure RC of R is the smallest congruence
relation that covers R

29

Compute the congruence closure of a term set

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Subterm Set

• Subterm set SF of ΣE-formula F is the set that contains
precisely the subterms of F

• Example:

• F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

• SF = {a, b, f(a, b), f(f(a, b), b)}

30

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Relation over
Subterm Set

• F is TE-satisfiable iff there exists a congruence relation ∼ over
SF such that

• for each i ∈ {1, …, m}, si ∼ ti;

• for each i ∈ {m + 1, …, n}, si ≁ ti

31

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TE-interpretation
• The congruence relation ∼ defines a TE-interpretation I : (DI,
αI) of F

• DI consists of |SF / ∼| elements

• αI assigns elements of DI to the terms of SF in a way that
respects ∼

• αI assigns to = a binary relation over DI that behaves like ∼

• We abbreviate (DI, αI) ⊨ F with ∼ ⊨ F

32

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Closure Algorithm

1. Construct the congruence closure ∼ of

{s1 = t1, …, sm = tm}

over the subterm set SF

2. If si ∼ ti for any i ∈ {m + 1, …, n}, return unsatisfiable

3. Otherwise, ∼ ⊨ F, so return satisfiable

33

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Step 1

• Begin with ∼0 given by the partition {{s} : s ∈ SF}

• Import si = ti by merging the congruence classes [si]∼i-1 and
[ti]∼i-1

• Form the union of [si]∼i-1 and [ti]∼i-1

• Propagate new congruences that arise within the union

34

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

• {{a, f(a, b), f(f(a, b), b)}, {b}}

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

• {{a, f(a, b), f(f(a, b), b)}, {b}}

• TE-unsatisfiable

35

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

• {{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

• {{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

36

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

TE-unsatisfiable

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

37

F : f(x) = f(y) ∧ x ≠ y

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

37

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

• {{x}, {y}, {f(x), f(y)}}

37

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

• {{x}, {y}, {f(x), f(y)}}

• TE-satisfiable

37

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Exercise

• Apply the decision procedure for TE to the following ΣE-formulas.
Provide a level of details as in the slides.

1. f(x,y) = f(y,x) ∧ f(a,y) ≠ f(y,a)

2. f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x ∧ g(f(x)) ≠ x

3. f(f(f(a))) = f(f(a)) ∧ f(f(f(f(a)))) = a ∧ f(a) ≠ a

4. p(x) ∧ f(f(x)) = x ∧ f(f(f(x))) = x ∧ ¬p(f(x))

38

Implementation

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

DAG

• A directed graph G : ⟨N, E⟩

• nodes N = {n1, n2, …, nk}

• edges E = {…, ⟨ni, nj⟩, …}

• A directed acyclic graph (DAG) is a directed graph containing
no loop (or cycle)

40

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Subterm Set as DAG

41

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

{a, b, f(a, b), f(f(a, b), b)}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Node
type node = {

id : id

fn : string

args : id list

mutable find : id

mutable ccpar : id set

}

42

(unique identification number)

(constant or function symbol)

(identification numbers of the function arguments)

(another node in its congruence class)

(congruence closure parents,∅ for non-representative nodes)

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

(following a chain of find references leads to the representative)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

DAG as Partition

43

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

node 2 = {
id = 2;
fn = f;
args = [3; 4];
find = 3;
ccpar = ∅;

}

node 3 = {
id = 3;
fn = a;
args = [];
find = 3;
ccpar = {1, 2};

}

Partition: {{f(f(a, b), b), f(a, b), a}, {b}}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
NODE

NODE i returns the node n with id i

44

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

(NODE i).id = i
(NODE 2).find = 3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
FIND

let rec FIND i =

let n = NODE i in

if n.find = i then i else FIND n.find

45

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

FIND 2 = 3
FIND 1 = 3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

n2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

n2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union-Find Algorithm -
CCPAR

47

let CCPAR i =

(NODE (FIND i)).ccpar

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Closure Algorithm -
CONGRUENT

48

let CONGRUENT i1 i2 =

let n1 = NODE i1 in

let n2 = NODE i2 in

n1.fn = n2.fn

⋀ |n1.args| = |n2.args|

⋀ ∀i ∈ {1, …, |n1.args|}. FIND n1.args[i] = FIND n2.args[i]

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

n1

n2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Closure Algorithm -
MERGE

49

let rec MERGE i1 i2 =

if FIND i1 ≠ FIND i2 then begin

let P1 = CCPAR i1 in

let P2 = CCPAR i2 in

UNION i1 i2;

foreach t1, t2 ∈ P1 ✕ P2 do

if FIND t1 ≠ FIND t2 ⋀ CONGRUENT t1 t2

then MERGE t1 t2

done

end

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

t1

t2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decision Procedure for TE-
Satisfiability

1. Construct the initial DAG for the subterm set SF

2. For i ∈ {1, …, m}, MERGE si ti

3. If FIND si = FIND ti for some i ∈ {m + 1, …, n}, return
unsatisfiable

4. Otherwise, return satisfiable

50

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}
(3) UNION 2 3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}
(3) UNION 2 3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}
(3) UNION 2 3
(4) MERGE 1 2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}
(3) UNION 2 3
(4) MERGE 1 2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 1

51

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1. MERGE 2 3
(1) P2 = CCPAR 2 = {1}
(2) P3 = CCPAR 3 = {2}
(3) UNION 2 3
(4) MERGE 1 2

TE-unsatisfiable

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Deciding TE-Satisfiability
Example 2

52

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

TE-unsatisfiable

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Soundness and Completeness

Theorem (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm
returns satisfiable

53

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Complexity

Let e be the number of edges and n be the number of nodes in
the initial DAG.

Theorem (Complexity). The congruence closure algorithm run in
time O(e2) for O(n) MERGEs.

54

Recursive Data
Structures

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

TRDS

• Can model

• records

• lists

• trees

• stacks

• Cannot model

• queues

56

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Theory of Lists - Tcons

• cons: a binary function, called the constructor;

• car: a unary function, called the left projector;

• cdr: a unary function, called the right projector;

• atom: a unary predicate;

• =: a binary predicate

57

Σcons : {cons, car, cdr, atom, =}

car(cons(a, b)) = a
cdr(cons(a, b)) = b

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Tcons

• Axioms of (reflexivity), (symmetry), and (transitivity) of TE

• Instantiations of the (function congruence) axiom schema for cons, car, and
cdr:

• ∀x1,x2,y1,y2. x1 = x2 ⋀ y1 = y2 → cons(x1, y1) = cons(x2, y2)

• ∀x,y. x = y → car(x) = car(y)

• ∀x,y. x = y → cdr(x) = cdr(y)

• An instantiation of the (predicate congruence) axiom schema for atom:

• ∀x,y. x = y → (atom(x) ↔ atom(y))

58

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Tcons

• ∀x,y. car(cons(x, y)) = x

• ∀x,y. cdr(cons(x, y)) = y

• ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x

• ∀x,y. ¬atom(cons(x, y))

59

(left projection)

(right projection)

(construction)

(atom)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability

• Tcons: undecidable

• quantifier-free Tcons: decidable

60

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Preprocess

By the (construction) axiom, replace

¬atom(ui)

with

ui = cons(ui1, ui2)

61

∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decision Procedure

• Construct the initial DAG for the subterm set SF

• By the (left projection) and (right projection) axioms, for each node n such that n.fn = cons,

• add car(n) to the DAG and MERGE car(n) n.args[1];

• add cdr(n) to the DAG and MERGE cdr(n) n.args[2];

• For i ∈ {1, …, m}, MERGE si ti

• For i ∈ {m + 1, …, n}, if FIND si = FIND ti, return unsatisfiable

• By the (atom axiom), for i ∈ {1, …, l}, if ∃v. FIND v = FIND ui ⋀ v.fn = cons, return
unsatisfiability

• Otherwise, return satisfiable

62

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

∧ atom(u1) ∧ … ∧ atom(ul)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

63

F : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ≠ f(y) ∧
¬atom(x) ∧ ¬atom(y)

F’ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ≠ f(y) ∧
x = cons(u1, v1) ∧ y = cons(u2, v2)9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Step 1: initial DAG

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

64

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Step 2: add car(n) and cdr(n)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combining TE and Tcons -
Example

65

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

(Tcons∪TE)-unsatisfiable

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Exercise

• Apply the decision procedure for Tcons to the following
Tcons-formulas. Please write down the call sequence to the
MERGE procedure, draw the final DAG, and draw the final
DAG.

• car(x) = y ∧ cdr(x) = z ∧ x ≠ cons(y,z)

• ¬atom(x) ∧ car(x) = y ∧ cdr(x) = z ∧ x ≠ cons(y,z)

66

Hint: Apply preprocessing to the formulae if it is necessary.

Arrays

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Theory of Arrays - TA

68

• a[i]: a binary function; a[i] represents the value of array a at
position i;

• a⟨i⊲v⟩: a ternary function; a⟨i⊲v⟩ represents the modified
array a in which position i has value v;

• =: a binary predicate

ΣA : {·[·], ·⟨·⊲·⟩, =}

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of TA

• Axioms of (reflexivity), (symmetry), and (transitivity) of TE

• ∀a,i,j. i = j → a[i] = a[j]

• ∀a,v,i,j. i = j → a⟨i⊲v⟩[j] = v

• ∀a,v,i,j. i ≠ j → a⟨i⊲v⟩[j] = a[j]

69

(array congruence)

(read-over-write 1)

(read-over-write 2)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decision Procedure

• Based on a reduction to TE-satisfiability via applications of
the (read-over-write) axioms

• If the formula does not contain any write terms, then the
read terms can be viewed as uninterpreted function terms

• Otherwise, any write term must occur in the context of a
read

70

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decision Procedure - Step 1

If F does not contain any write terms a⟨i⊲v⟩, perform the
following steps.

1. Associate each array variable a with a fresh function symbol
fa, and replace each read term a[i] with fa(i)

2. Decide and return the TE-satisfiability of the resulting
formula

71

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decision Procedure - Step 2
Select some read-over-write term a⟨i⊲v⟩[j], and split on two cases:

1. According to (read-over-write 1), replace

F[a⟨i⊲v⟩[j]] with F1: F[v] ⋀ i = j

and recurse on F1. If F1 is found to be TA-satisfiable, return satisfiable

2. According to (read-over-write 2), replace

F[a⟨i⊲v⟩[j]] with F2: F[a[j]] ⋀ i ≠ j

and recurse on F2. If F2 is found to be TA-satisfiable, return satisfiable

If both F1 and F2 are found to be TA-unsatisfiable, return unsatisfiable

72

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of TA

• First case:

• F1: i2 = j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ v2 ≠ a[j]

• F1’: i2 = j ∧ i1 = j ∧ i1 ≠ i2 ∧ fa(j) = v1 ∧ v2 ≠ fa(j)

• F1 is TA-unsatisfiable

73

F : i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩⟨i2⊲v2⟩[j] ≠ a[j]

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of TA

• Second case:

• F2: i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩[j] ≠ a[j]

• F3: i1 = j ∧ i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ v1 ≠ a[j]

• F4: i1 ≠ j ∧ i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a[j] ≠
a[j]

• F2 is TA-unsatisfiable

74

F : i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩⟨i2⊲v2⟩[j] ≠ a[j]

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Soundness and Completeness

Theorem (Sound & Complete). Given quantifier-free conjunctive
ΣA-formula F, the decision procedure returns satisfiable iff F is
TA-satisfiable; otherwise, it returns unsatisfiable

75

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Complexity

Theorem (Complexity). TA-satisfiability of quantifier-free
conjunctive ΣA-formula is NP-complete

76

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Exercise

• Apply the decision procedure for quantifier-free TA to the
following ΣA-formulas.

• a⟨i⊲e⟩[j] = e ∧ i ≠ j

• a⟨i⊲e⟩⟨j⊲f⟩[k] = g ∧ j ≠ k ∧ i = j ∧ a[k] ≠ g

77

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Summary
• Congruence closure algorithm

• relations, equivalence relations, congruence relations, partitions,
quotients, classes, closures

• DAG-based implementation

• union-find, merge

• Recursive data structures

• Tcons

• Arrays

78

