Software Verification with Satisfiability Modulo Theories - Introduction -

Ming-Hsien Tsai

Institute of Information Science Academia Sinica

FLOLAC 2017

Reference book: Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer 2007

Software with Bugs

• Have you ever seen this?

MacBook-Pro ~ \$./a.out Segmentation fault: 11 MacBook-Pro ~ \$

- How to avoid it?
- Programmers usually write assertions for debugging and testing.

C Assertions

 When an assertion is violated, the program aborts immediately (if the program is compiled with NDEBUG undefined).

#include<assert.h>

```
int div(int x, int y) {
   assert(y != 0);
   return x / y;
}
int main(void) {
```

```
int x = 10;
int y = 0;
int z = div(x, y);
return 0;
}
```

```
MacBook-Pro ~  ./a.out
Assertion failed: (y != 0), function div, file a.c, line 4.
Abort trap: 6
```

• Will the assertion be violated?

#include <assert.h>
#include <stdio.h>

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 10) {
        x++;
    }
    assert(x > 0);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

No

#include <assert.h>
#include <stdio.h>

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 10) {
        x++;
    }
    assert(x > 0);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

#include <assert.h>
#include <stdio.h>

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 10) {
        x--;
    }
    assert(x > 0);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

No

#include <assert.h>
#include <stdio.h>

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 10) {
        x--;
    }
    assert(x > 0);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

```
#include <assert.h>
#include <stdio.h>
```

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 4324358) {
        x--;
    }
    assert(x > 4324358);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

Yes

#include <assert.h>
#include <stdio.h>

```
int main(void) {
    int x;
    scanf("%d", &x);
    while (x < 4324358) {
        x--;
    }
    assert(x > 4324358);
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

```
void A(bool h, bool g) {
  h = !g;
  g = B(g, h);
  g = B(g, h);
  assert(g);
}
bool B(bool a1, bool a2) {
  if (a1)
    return B(a2,a1);
  else
    return a2;
}
```

Example taken from Yu-Fang's slides

• Will the assertion be violated?

No

```
void A(bool h, bool g) {
  h = !g;
  g = B(g, h);
  g = B(g, h);
  assert(g);
}
bool B(bool a1, bool a2) {
  if (a1)
    return B(a2,a1);
  else
    return a2;
}
```

Example taken from Yu-Fang's slides

Software Verification

- Given a program with assertions, automatically verify if any assertion could be violated.
- There are various techniques:
 - Model checking
 - Craig interpolation
 - Satisfiability modulo theories (SMT)

Verification With SMT

• Convert a program with assertions into SMT formulas such that an assertion is violated if an SMT formula is satisfiable.

9

• Solve satisfiability of the SMT formulas by SMT solvers.

A Simple Example

Input Program

```
int main(void) {
  int x;
                         Static Single Assignment (SSA)
  if (x < 10)
                             int main(void) {
    x = x - 1;
                               int x0;
  assert(x != 9);
                               if (x0 < 10)
  return 0;
                                  x1 = x0 - 1;
}
                               x^{2} = \Phi(x^{0}, x^{1});
                               assert(x2 != 9);
                               return 0;
                                                              SMT Formula
                             }
                                                (x0 < 10 \land x1 = x0 - 1 \land x2 = x1 \land x2 = 9) \lor
                                                (x0 \ge 10 \land x2 = x0 \land x2 = 9)
```

Example taken from Yu-Fang's slides

Recall: First-Order Logic

- Terms
 - Variables: *x*, *y*, ...
 - Function symbols: *f*, *g*, ...
- Formulas
 - Predicate symbols: p, q, ...
 - Logical operators: \neg , \land , \lor , \rightarrow , \leftrightarrow
 - Quantifications: \forall , \exists

FLOLAC 2017

Recall: First-Order Logic (cont'd)

- A FOL formula is interpreted under a model and an environment.
 - Model: gives the meanings of function symbols and predicate symbols

12

• Environment: gives the values of variables

Signature

- A collection of non-logical symbols excluding variables
- Examples:
 - (0, S, +, =)
 - (\emptyset, \subseteq)

First-Order Theories

- A *first-order theory* T is defined by the following two components.
 - Signature Σ
 - Axioms A: set of closed Σ -formula
- Σ -formula: a FOL formula constructed from the signature Σ plus variables, logical connectives, and quantifiers

Validity and Satisfiability

- A T-model is a model that satisfies the axioms of a first-order theory T.
- A Σ -formula φ is valid in the theory T, or T-valid, if every T-model M satisfies φ .
- We write $T \vDash \varphi$ if φ is *T*-valid.
- A Σ -formula φ is satisfiable in T, or T-satisfiable, if there is a T-model M that satisfies φ .

FLOLAC 2017

Complete, Consistent, and Equivalent

- A theory T is *complete* if for every closed Σ -formula φ , $T \vDash \varphi$ or $T \vDash \neg \varphi$.
- A theory is *consistent* if there is at least one *T*-model.
- Two formulas φ and ψ are equivalent in T, or T-equivalent, if $T \vDash \varphi \leftrightarrow \psi$.

Fragment and Decidable

- A *fragment* of a theory is a syntactically-restricted subset of formulae of the theory.
- Example:
 - quantifier-free fragment
- A theory T is *decidable* if $T \vDash \varphi$ is decidable for every Σ -formula φ .

Union of Theories

- The union T₁ ∪ T₂ of two theories T₁ and T₂ has signature
 Σ₁ ∪ Σ₂ and axioms A₁ ∪ A₂.
- $(T_1 \cup T_2)$ -interpretation is both a T_1 -interpretation and a T_2 -interpretation.
- A formula that is T_1 -valid or T_2 -valid is $(T_1 \cup T_2)$ -valid.
- A formula that is $(T_1 \cup T_2)$ -satisfiable is both T_1 -satisfiable and T_2 -satisfiable.

Decidability

- FOL is undecidable in general.
- There are some important theories or fragment of theories that are decidable.

19

- Equality
- Peano arithmetic
- Presburger arithmetic
- Linear integers
- Recursive data structures
- Arrays

FLOLAC 2017

Binary Relation

- Let's talk about binary relations before introducing the equality theory.
- Consider a set S and a binary relation R over S
- For two elements $s_1, s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$

20

S: Integers S: Humans R: < R: IsChildOf

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Equivalence Relation

- The relation R is an *equivalence relation* if it is
 - reflexive: $\forall s \in S. \ sRs;$
 - symmetric: $\forall s_1, s_2 \in S. \ s_1Rs_2 \rightarrow s_2Rs_1$;
 - transitive: $\forall s_1, s_2, s_3 \in S$. $s_1Rs_2 \land s_2Rs_3 \rightarrow s_1Rs_3$

$$=, \cdot \equiv \cdot \pmod{c}$$

FLOLAC 2017

Congruence Relation

• The relation *R* is a *congruence relation* if it additionally obeys congruence: for every *n*-ary function *f*,

$$\forall S, T. (\wedge_{i=1 \text{ to } n} s_i Rt_i) \rightarrow f(S) Rf(T)$$

Capital S and T are vectors of variables

22

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Equality T_E

- $\Sigma_E: \{=, a, b, c, ..., f, g, h, ..., p, q, r, ...\}$ contains
 - =, a binary predicate; and
 - all constants, function and predicate symbols.
- Also called equality with uninterpreted functions (EUF)

Axioms of T_E

- 1. Reflexivity: $\forall x. \ x = x$
- 2. Symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- 3. Transitivity: $\forall x, y, z$. $x = y \rightarrow y = z \rightarrow x = z$
- 4. Function congruence: for *n*-ary (n>0) function symbol *f*,
 - $\forall \underline{x}, \underline{y}. (\wedge_{i=1}^{n} x_{i} = y_{i}) \rightarrow f(\underline{x}) = f(\underline{y})$
- 5. Predicate congruence: for *n*-ary (n>0) predicate symbol *f*,

•
$$\forall \underline{x}, \underline{y}$$
. $(\wedge_{i=1}^{n} x_i = y_i) \rightarrow (p(\underline{x}) \nleftrightarrow p(\underline{y}))$
 \underline{x} : list of variables $x_1, ..., x_n$

24

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Properties of T_E

- Axioms 1, 2, and 3 state that = is a equivalence relation.
- All the axioms assert that = is a congruence relation.
- T_E is undecidable.
 - Every FOL formula can be encoded as a Σ_E formula by replacing = with a fresh symbol.
- Quantifier-free fragment of T_E is both efficiently decidable.

An Example of T_E

- $\varphi : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$ is T_E -valid
- Assume there is a T_E -model M such that $M \nvDash \varphi$
- 1. $M \nvDash \varphi$ 6. $M \vDash a = c$
- 2. $M \vDash a = b \land b = c$ 7. $M \vDash f(a) = f(c)$
- 3. $M \nvDash g(f(a), b) = g(f(c), a)$
- 4. $M \vDash a = b$
- 5. $M \vDash b = c$

FLOLAC 2017

- 8. $M \vDash b = a$
- 9. $M \vDash g(f(a), b) = g(f(c), a)$

10. $M \vDash \bot$

Software Verification with Satisfiability Modulo Theories

Exercise

• Use the semantic method to prove the validity of the following Σ_E -formulae or find a counterexample.

•
$$f(x, y) = f(y, x) \to f(a, y) = f(y, a)$$

• $f(g(x)) = g(f(x)) \land f(g(f(y))) = x \land f(y) = x \to g(f(x)) = x$

Peano Arithmetic T_{PA}

- $\Sigma_{PA}: \{0, 1, +, \cdot, =\}$ where
 - 0 and 1 are constants;
 - + (addition) and \cdot (multiplication) are binary functions ($x \cdot y$ may be written as xy); and

28

• = (equality) is a binary predicate.

Axioms of T_{PA}

- Zero: $\forall x. \neg (x+1=0)$
- Successor: $\forall x, y$. $x+1 = y+1 \rightarrow x = y$
- Induction: $P[0] \land (\forall x. P[x] \rightarrow P[x+1]) \rightarrow \forall x. P[x]$ (an axiom schema)

29

- Plus Zero: $\forall x. x+0 = x$
- Plus Successor: $\forall x, y. x+(y+1) = (x+y) + 1$
- Times Zero: $\forall x. \ x \cdot 0 = 0$
- Times Successor: $\forall x, y. x \cdot (y+1) = x \cdot y + x$

FLOLAC 2017

Intended Models of T_{PA}

• The intended models of T_{PA} have domain \mathbb{N} and assignments α_M defining 0, 1, +, ·, and = as we understand them in everyday arithmetic.

- $\alpha_M[0]$ is $0_{\mathbb{N}}$: α_M maps the symbols "0" to $0_{\mathbb{N}} \in \mathbb{N}$;
- $\alpha_M[1]$ is $1_{\mathbb{N}}$: α_M maps the symbols "1" to $1_{\mathbb{N}} \in \mathbb{N}$;
- $\alpha_M[+]$ is $+_{\mathbb{N}}$, addition over \mathbb{N} ;
- $\alpha_M[\cdot]$ is $\cdot_{\mathbb{N}}$, multiplication over \mathbb{N} ;
- $\alpha_M[=]$ is $=_{\mathbb{N}}$, equality over \mathbb{N} .

Example 1 of T_{PA}

31

• 3x+5 = 2y can be written using the signature Σ_{PA} as:

- x + x + x + 1 + 1 + 1 + 1 + 1 = y + y, or as
- $(1+1+1)\cdot x+1+1+1+1+1 = (1+1)\cdot y$
- In practice, we write 3x+5 = 2y for short.

Example 2 of T_{PA}

- We can encode > and \geq in T_{PA} .
 - 3x+5 > 2y is encoded as $\exists z. z \neq 0 \land 3x+5 = 2y+z$
 - $3x+5 \ge 2y$ is encoded as $\exists z. \ 3x+5 = 2y+z$

$$x \neq y \text{ abbreviates } \neg (x = y)$$

32

FLOLAC 2017

Software Verification with Satisfiability Modulo Theories

Example 3 of T_{PA}

- φ : $\exists x, y, z$. $x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$ is T_{PA} -valid.
- Every $\varphi \in \{\forall x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x^n + y^n \neq z^n : n$ > $2 \land n \in \mathbb{Z}\}$ is T_{PA} -valid. $(x^n: n \text{ multiplications of } x)$

Decidability of T_{PA}

- Satisfiability and validity in T_{PA} is undecidable (Gödel's first incompleteness theorem).
- Try a more restricted theory of arithmetic that does not allow multiplication.

Presburger Arithmetic $T_{\mathbb{N}}$

- $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$, where
 - 0 and 1 are constants;
 - + (addition) is a binary function; and
 - = (equality) is a binary predicate.

Axioms of $T_{\mathbb{N}}$

- Zero: $\forall x. \neg(x+1=0)$
- Successor: $\forall x, y$. $x+1 = y+1 \rightarrow x = y$
- Induction: $P[0] \land (\forall x. P[x] \rightarrow P[x+1]) \rightarrow \forall x. P[x]$
- Plus Zero: $\forall x. x+0 = x$
- Plus Successor: $\forall x, y. x+(y+1)=(x+y)+1$

Intended Models of $T_{\mathbb{N}}$

• The intended models of $T_{\mathbb{N}}$ have domain \mathbb{N} and are such that:

- $\alpha_M[0]$ is $0_{\mathbb{N}} \in \mathbb{N}$;
- $\alpha_M[1]$ is $1_{\mathbb{N}} \in \mathbb{N}$;
- $\alpha_M[+]$ is $+_{\mathbb{N}}$, addition over \mathbb{N} ;
- $\alpha_M[=]$ is $=_{\mathbb{N}}$, equality over \mathbb{N} .

Decidability of $T_{\mathbb{N}}$

- Presburger showed in 1929 that $T_{\mathbb{N}}$ is decidable.
- Validity of $\Sigma_{\mathbb{N}}$ formulas can be decided by procedures for the validity of $\Sigma_{\mathbb{Z}}$ formulas.

Integer Theory $T_{\mathbb{Z}}$

- $\Sigma_{\mathbb{Z}}: \{..., -2, -1, 0, 1, 2, ..., -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, ..., +, -, =, >\}$, where
 - ..., -2, -1, 0, 1, 2, ... are constants;
 - …, −3·, −2·, 2·, 3·, … are unary functions (representing constant coefficients);

39

- + and are binary functions;
- \bullet = and > are binary predicates.

FLOLAC 2017

Encoding of $\Sigma_{\mathbb{Z}}\text{-}Formulas$

- $\varphi_0: \forall w, x. \exists y, z. \ x + 2y z 13 > -3w + 5$
- $ullet egin{aligned} & oldsymbol{arphi}_1: orall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \ & (x_p x_n) + 2(y_p y_n) (z_p z_n) 13 > -3(w_p w_n) + 5 \end{aligned}$
- $ullet egin{aligned} & oldsymbol{arphi}_2: oldsymbol{arphi} w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \ & x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 13 + 3w_n + 5 \end{aligned}$

40

• φ_0 is $T_{\mathbb{Z}}$ -valid if φ_3 is $T_{\mathbb{N}}$ -valid

FLOLAC 2017

Encoding of $\Sigma_{\mathbb{N}}\text{-}\mathsf{Formulas}$

•
$$\varphi_1: \forall x. \exists y. x = y+1$$

- $\varphi_2: \forall x. \ x \geq 0 \rightarrow \exists y. \ y \geq 0 \land x = y+1$
- φ_1 is $T_{\mathbb{N}}$ -valid if φ_2 is $T_{\mathbb{Z}}$ -valid.

Example of $T_{\mathbb{Z}}$

42

- $\varphi: \forall x, y, z. \ x > z \land y \ge 0 \rightarrow x + y > z \text{ is } T_{\mathbb{Z}}\text{-valid.}$
- Assume there is a $T_{\mathbb{Z}}$ -model M such that $M \nvDash \varphi$

1. $M \nvDash \varphi$

- $\begin{array}{lll} 2. & M_1: M[x \! \rightarrow \! v_x, y \! \rightarrow \! v_y, z \! \rightarrow \! v_z] \nvDash \\ & x > z \land y \geqq 0 \rightarrow x \! + \! y > z \end{array}$
- 3. $M_1 \models x > z \land y \ge 0$
- $4. \quad M_1 \not\vDash x + y > z$
- 5. $M_1 \vDash \neg(x + y > z)$

6. No v_x , v_y , and v_z can satisfy $v_x > v_z \land v_y \ge 0$ $\land \neg(v_x+v_y > v_z)$ by querying the theory $T_{\mathbb{Z}}$

7. $M_1 \vDash \bot$

FLOLAC 2017

List Theory Tcons

- $\Sigma cons : \{ cons, car, cdr, atom, = \}$, where
 - cons is a binary function (constructor): cons(a, b) represents the list constructed by concatenating a to b;
 - car is a unary function (left projector): car(cons(a, b)) = a;
 - cdr is a unary function (right projector): cdr(cons(a, b)) = b;
 - *atom* is a unary predicate: *atom(x)* is true iff x is a single-element list; and
 - = (equality) is a binary predicate.

Axioms of Tcons

- The axioms of reflexivity, symmetry, and transitivity of T_E
- Instantiations of the function congruence axiom schema for *cons*, *car*, and *cdr*:
 - $\forall x_1, x_2, y_1, y_2$. $x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$

•
$$\forall x, y. \ x = y \rightarrow car(x) = car(y)$$

•
$$\forall x, y. \ x = y \rightarrow cdr(x) = cdr(y)$$

• An instantiation of the predicate congruence axiom schema for *atom*:

44

•
$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

FLOLAC 2017

Axioms of Tcons (cont'd)

- $\forall x, y. \ car(cons(x, y)) = x$
- $\forall x, y. \ cdr(cons(x, y)) = y$
- $\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x$
- $\forall x, y. \neg atom(cons(x, y))$

Decidability of *Tcons*

- *Tcons* is undecidable.
- The following fragment of *Tcons* is decidable.
 - Quantifier-free fragment of *Tcons*.
 - *Tcons*⁺: lists are acyclic

Array Theory T_A

- $\Sigma_A : \{\cdot [\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle, =\}$, where
 - a[i] (read) is a binary function: a[i] represents the value of array a at position i;
 - $a \langle i \triangleleft v \rangle$ (write) is a ternary function: $a \langle i \triangleright v \rangle$ represents the modified array a in which position i has value v; and
 - = (equality) is a binary predicate defined only for array elements

Axioms of T_A

- The axioms of reflexivity, symmetry, and transitivity of T_E ;
- Array Congruence: $\forall a, i, j$. $i = j \rightarrow a[i] = a[j]$
- Read-Over-Write 1: $\forall a, v, i, j$. $i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$
- Read-Over-Write 2: $\forall a, v, i, j$. $i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$

Example of T_A

- $\varphi: a[i] = e \to \forall j. a \langle i \triangleleft e \rangle [j] = a[j]$ is T_A -valid.
- Assume there is a T_A -model M such that $M \not\models \varphi$.
- 1. $M \not\models \varphi$ 6. $M_1 \vDash i = j$
- 2. $M \vDash a[i] = e$
- 3. $M \not\models \forall j. a \langle i \triangleleft e \rangle [j] = a |j|$
- 4. $M_1: M[j \rightarrow v] \not\models a \langle i \triangleleft e \rangle [j] =$ a|j|
- 5. $M_1 \models a \langle i \triangleleft e \rangle [j] \neq a[j]$

FLOLAC 2017

- 7. $M_1 \models a[i] = a[j]$
- 8. $M_1 \models a \langle i \triangleleft e \rangle |j| = e$
- 9. $M_1 \models a \langle i \triangleleft e \rangle [j] = a[j]$

10. $M_1 \vDash \bot$

Equality in T_A

•
$$\varphi : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$
 is not T_A -valid

•
$$\varphi'$$
 : $a[i] = e \rightarrow \forall j$. $a \langle i \triangleleft e \rangle [j] = a[j]$ is T_A -valid

Decidability of T_A

- T_A-validity is undecidable.
- Decidable fragments of T_A :
 - Quantifier-free fragment of T_A
 - $T_A^{=}$: T_A plus the extensionality axiom
 - $\forall a, b. \ (\forall i. \ a[i] = b[i]) \leftrightarrow a = b$

Decidability of Theories

Theory	Description	Full	QFF
T_E	equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	linear integers	yes	yes
$T_{\mathbb{R}}$	reals (with \cdot)	yes	yes
$T_{\mathbf{Q}}$	rationals (without \cdot)	yes	yes
T_{RDS}	recursive data structures	no	yes
T_{RDS}^+	acyclic recursive data structures	yes	yes
T_A	arrays	no	yes
$T_A^=$	arrays with extensionality	no	yes

52

Software Verification with Satisfiability Modulo Theories

Combination Theories

• In practice, formulas may span multiple theories.

•
$$\forall a, i, j, k, v. \ a[i] = v \land j = i + k \rightarrow a[j] = v$$

• Given some decidable theories, is a formula spanning these theories still decidable?

Combination Theories

• In practice, formulas may span multiple theories.

•
$$\forall a, i, j, k, v. \ a[i] = v \land j = i + k \rightarrow a[j] = v$$

• Given some decidable theories, is a formula spanning these theories still decidable? Yes under some constraints

Combination Theories

• In practice, formulas may span multiple theories.

•
$$\forall a, i, j, k, v. \ a[i] = v \land j = i + k \rightarrow a[j] = v$$

• Given some decidable theories, is a formula spanning these theories still decidable? Yes under some constraints

53

• Nelson-Oppen approach

Nelson-Oppen Approach

- Given two theories T₁ and T₂ such that Σ₁ ∩ Σ₂ = {=}, the combined theory T₁ ∪ T₂ has signature Σ₁ ∪ Σ₂ and axioms A₁ ∪ A₂.
- The quantifier-free fragment of $T_1 \cup T_2$ is decidable if
 - satisfiability in the quantifier-free fragment of T_1 is decidable;
 - satisfiability in the quantifier-free fragment of T₂ is decidable;
 and
 - certain technical requirements are met.

SMT Solvers

- Solvers (partially listed)
 - Z3 (<u>https://github.com/Z3Prover/z3</u>)
 - CVC4 (http://cvc4.cs.stanford.edu/web/)
 - Yices (<u>http://yices.csl.sri.com</u>)
 - STP (<u>http://stp.github.io</u>)
- Most SMT solvers support SMT-LIB format (<u>http://smtlib.cs.uiowa.edu</u>).

55

• There are SMT competitions (www.smtcomp.org).

FLOLAC 2017