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Software with Bugs

• Have you ever seen this? 

• How to avoid it? 

• Programmers usually write assertions for debugging and 
testing.
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C Assertions
• When an assertion is 

violated, the program aborts 
immediately (if the program 
is compiled with NDEBUG 
undefined).
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Example 1

• Will the assertion be violated?

4

Example taken from Yu-Fang’s slides
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Example 1

• Will the assertion be violated?
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No

Example taken from Yu-Fang’s slides
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Example 2

• Will the assertion be violated?
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Example taken from Yu-Fang’s slides
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Example 2

• Will the assertion be violated?
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Example 3

• Will the assertion be violated?
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Example taken from Yu-Fang’s slides
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Example 3

• Will the assertion be violated?

6

Yes

Example taken from Yu-Fang’s slides
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Example 4
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• Will the assertion be violated?

Example taken from Yu-Fang’s slides
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Example 4

7

• Will the assertion be violated?

No

Example taken from Yu-Fang’s slides
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Software Verification
• Given a program with assertions, automatically verify if any 

assertion could be violated. 

• There are various techniques: 

• Model checking 

• Craig interpolation 

• Satisfiability modulo theories (SMT) 

• …

8
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Verification With SMT

• Convert a program with assertions into SMT formulas such 
that an assertion is violated if an SMT formula is satisfiable. 

• Solve satisfiability of the SMT formulas by SMT solvers.

9
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A Simple Example

(x0 < 10 ∧ x1 = x0 - 1 ∧ x2 = x1 ∧ x2 = 9) ∨ 

(x0 ≥ 10 ∧ x2 = x0 ∧ x2 = 9)

10

Static Single Assignment (SSA)

Input Program

SMT Formula

Example taken from Yu-Fang’s slides
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Recall: First-Order Logic
• Terms 

• Variables: x, y, … 

• Function symbols: f, g, … 

• Formulas 

• Predicate symbols: p, q, … 

• Logical operators: ¬, ∧, ∨, →, ↔

• Quantifications: ∀, ∃

11
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Recall: First-Order Logic 
(cont’d)

• A FOL formula is interpreted under a model and an 
environment. 

• Model: gives the meanings of function symbols and 
predicate symbols 

• Environment: gives the values of variables

12
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Signature

• A collection of non-logical symbols excluding variables 

• Examples: 

• (0, S, +, =) 

• (∅, ⊆)

13
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First-Order Theories

• A first-order theory T is defined by the following two 
components. 

• Signature Σ 

• Axioms A: set of closed Σ-formula 

• Σ-formula: a FOL formula constructed from the signature Σ 
plus variables, logical connectives, and quantifiers

14
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Validity and Satisfiability
• A T-model is a model that satisfies the axioms of a first-

order theory T. 

• A Σ-formula 𝜑 is valid in the theory T, or T-valid, if every T-
model M satisfies 𝜑. 

• We write T ⊨ 𝜑 if 𝜑 is T-valid. 

• A Σ-formula 𝜑 is satisfiable in T, or T-satisfiable, if there is a 
T-model M that satisfies 𝜑.

15
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Complete, Consistent, and 
Equivalent

• A theory T is complete if for every closed Σ-formula 𝜑, T ⊨ 
𝜑 or T ⊨ ¬ 𝜑. 

• A theory is consistent if there is at least one T-model. 

• Two formulas 𝜑 and 𝜓 are equivalent in T, or T-equivalent, if 
T ⊨ 𝜑 ↔ 𝜓.

16
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Fragment and Decidable

• A fragment of a theory is a syntactically-restricted subset of 
formulae of the theory. 

• Example: 

• quantifier-free fragment 

• A theory T is decidable if T ⊨ 𝜑 is decidable for every Σ-
formula 𝜑. 

17
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Union of Theories
• The union T1 ∪ T2 of two theories T1 and T2 has signature 
Σ1 ∪ Σ2 and axioms A1 ∪ A2. 

• (T1 ∪ T2)-interpretation is both a T1-interpretation and a T2-
interpretation. 

• A formula that is T1-valid or T2-valid is (T1 ∪ T2)-valid. 

• A formula that is (T1 ∪ T2)-satisfiable is both T1-satisfiable 
and T2-satisfiable.

18
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Decidability
• FOL is undecidable in general. 

• There are some important theories or fragment of theories that are decidable. 

• Equality 

• Peano arithmetic 

• Presburger arithmetic 

• Linear integers 

• Recursive data structures 

• Arrays

19
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Binary Relation

• Let’s talk about binary relations before introducing the 
equality theory. 

• Consider a set S and a binary relation R over S 

• For two elements s1, s2 ∈ S, either s1Rs2 or ¬(s1Rs2)

20

S: Humans

R: IsChildOf

S: Integers

R: <
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Equivalence Relation

• The relation R is an equivalence relation if it is 

• reflexive: ∀s ∈ S. sRs; 

• symmetric: ∀s1,s2 ∈ S. s1Rs2 → s2Rs1; 

• transitive: ∀s1,s2,s3 ∈ S. s1Rs2 ⋀ s2Rs3 → s1Rs3

21

=, ・≡・ (mod c)
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Congruence Relation

• The relation R is a congruence relation if it additionally 
obeys congruence: for every n-ary function f, 

∀S,T. (⋀i=1 to n siRti) → f(S)Rf(T)

Capital S and T are vectors of variables
22
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Equality TE

• ΣE : {=, a, b, c, ..., f, g, h, ..., p, q, r, ...} contains 

• =, a binary predicate; and 

• all constants, function and predicate symbols. 

• Also called equality with uninterpreted functions (EUF)

23



FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of TE

1. Reflexivity: ∀x. x = x 

2. Symmetry: ∀x,y. x = y → y = x 

3. Transitivity: ∀x,y,z. x = y → y = z → x = z 

4. Function congruence: for n-ary (n>0) function symbol f, 

• ∀x,y. (∧i=1
n xi = yi) → f(x) = f(y) 

5. Predicate congruence: for n-ary (n>0) predicate symbol f, 

• ∀x,y. (∧i=1
n xi = yi) → (p(x) ↔ p(y))

24

x : list of variables x1, …, xn
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Properties of TE

• Axioms 1, 2, and 3 state that = is a equivalence relation. 

• All the axioms assert that = is a congruence relation. 

• TE  is undecidable. 

• Every FOL formula can be encoded as a ΣE formula by 
replacing = with a fresh symbol. 

• Quantifier-free fragment of TE is both efficiently decidable.

25
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An Example of TE

• 𝜑 : a = b ∧ b = c → g(f(a), b) = g(f(c), a) is TE-valid 

• Assume there is a TE-model M such that M ⊭ 𝜑

26

1. M ⊭ 𝜑 

2. M ⊨ a = b ∧ b = c 

3. M ⊭ g(f(a), b) = g(f(c), a) 

4. M ⊨ a = b 

5. M ⊨ b = c

6. M ⊨ a = c 

7. M ⊨ f(a) = f(c) 

8. M ⊨ b = a 

9. M ⊨ g(f(a), b) = g(f(c), a) 

10. M ⊨ ⊥
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Exercise

• Use the semantic method to prove the validity of the 
following ΣE-formulae or find a counterexample. 

• f(x, y) = f(y, x) → f(a, y) = f(y, a) 

• f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x → g(f(x)) = x

27
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Peano Arithmetic TPA

• ΣPA : {0, 1, +, ·, =} where 

• 0 and 1 are constants; 

• + (addition) and · (multiplication) are binary functions (x 
·y may be written as xy); and 

• = (equality) is a binary predicate.

28
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Axioms of TPA

• Zero: ∀x. ¬(x+1 = 0)  

• Successor: ∀x,y. x+1 = y+1 → x = y 

• Induction: P[0] ∧ (∀x. P[x] → P[x + 1]) → ∀x. P[x] (an axiom schema) 

• Plus Zero: ∀x. x+0 = x 

• Plus Successor: ∀x,y. x+(y+1) = (x+y) + 1 

• Times Zero: ∀x. x · 0 = 0 

• Times Successor: ∀x,y. x·(y+1) = x·y+x 

29
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Intended Models of TPA

• The intended models of TPA have domain ℕ and assignments αM defining 
0, 1, +, ·, and = as we understand them in everyday arithmetic. 

• αM[0] is 0ℕ: αM maps the symbols “0” to 0ℕ ∈ ℕ;  

• αM[1] is 1ℕ: αM maps the symbols “1” to 1ℕ ∈ ℕ; 

• αM[+] is +ℕ, addition over ℕ; 

• αM[·] is ·ℕ , multiplication over ℕ; 

• αM[=] is =ℕ, equality over ℕ.

30
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Example 1 of TPA

• 3x+5 = 2y can be written using the signature ΣPA as: 

• x+x+x+1+1+1+1+1 = y+y, or as  

• (1+1+1)·x+1+1+1+1+1 = (1+1)·y 

• In practice, we write 3x+5 = 2y for short.

31
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Example 2 of TPA

• We can encode > and ≥ in TPA. 

• 3x+5 > 2y is encoded as ∃z. z ≠ 0 ∧ 3x+5 = 2y+z 

• 3x+5 ≥ 2y is encoded as ∃z. 3x+5 = 2y+z

32

x ≠ y abbreviates ¬ (x = y)
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Example 3 of TPA

• 𝜑 : ∃x,y,z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xx+yy = zz is TPA-
valid. 

• Every 𝜑 ∈ {∀x,y,z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xn+yn ≠ zn : n 
> 2 ∧ n ∈ ℤ} is TPA-valid. (xn: n multiplications of x)

33
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Decidability of TPA

• Satisfiability and validity in TPA is undecidable (Gödel’s first 
incompleteness theorem). 

• Try a more restricted theory of arithmetic that does not allow 
multiplication.

34
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Presburger Arithmetic Tℕ

• Σℕ: {0, 1, +, =}, where  

• 0 and 1 are constants; 

• + (addition) is a binary function; and 

• = (equality) is a binary predicate.

35
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Axioms of Tℕ

• Zero: ∀x. ¬(x+1 = 0)  

• Successor: ∀x,y. x+1 = y+1 → x = y 

• Induction: P[0] ∧ (∀x. P[x] → P[x+1]) → ∀x. P[x] 

• Plus Zero: ∀x. x+0 = x 

• Plus Successor: ∀x,y. x+(y+1)=(x+y)+1

36
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Intended Models of Tℕ
• The intended models of Tℕ have domain ℕ and are such 

that: 

• αM[0] is 0ℕ ∈ ℕ; 

• αM[1] is 1ℕ ∈ ℕ;  

• αM[+] is +ℕ, addition over ℕ;  

• αM[=] is =ℕ, equality over ℕ. 

37
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Decidability of Tℕ

• Presburger showed in 1929 that Tℕ is decidable. 

• Validity of Σℕ formulas can be decided by procedures for the 
validity of Σℤ formulas.

38
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Integer Theory Tℤ
• Σℤ : {...,−2,−1,0, 1, 2, ...,−3·,−2·, 2·, 3·, ..., +, −, =, >}, 

where  

• ... , −2, −1, 0, 1, 2, ... are constants; 

• ... , −3·, −2·, 2·, 3·, ... are unary functions (representing 
constant coefficients); 

• + and − are binary functions; 

• = and > are binary predicates.

39
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• 𝜑0 : ∀w,x.∃y,z. x+2y−z−13 > −3w+5  

• 𝜑1 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. 
(xp−xn)+2(yp−yn)−(zp−zn)−13 > −3(wp−wn)+5  

• 𝜑2 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. 
xp+2yp+zn+3wp > xn+2yn+zp+13+3wn+5  

• 𝜑3 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. ∃u. ¬(u = 0) ∧ 
xp+yp+yp+zn+wp+wp+wp = 
xn+yn+yn+zp+wn+wn+wn+u+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 

•  𝜑0 is Tℤ-valid if 𝜑3 is Tℕ-valid

Encoding of Σℤ-Formulas

40
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Encoding of Σℕ-Formulas

• 𝜑1 : ∀x. ∃y. x = y+1  

• 𝜑2 : ∀x. x ≥ 0 → ∃y. y ≥ 0 ∧ x = y+1 

• 𝜑1 is Tℕ-valid if 𝜑2 is Tℤ-valid.

41
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Example of Tℤ
• 𝜑 : ∀x,y,z. x > z ∧ y ≥ 0 → x+y > z is Tℤ-valid. 

• Assume there is a Tℤ-model M such that M ⊭ 𝜑

42

1. M ⊭ 𝜑 

2. M1 : M[x→vx,y→vy,z→vz] ⊭ 
x > z ∧ y ≥ 0 → x+y > z 

3. M1 ⊨ x > z ∧ y ≥ 0 

4. M1 ⊭ x+y > z 

5. M1 ⊨ ¬(x+y > z)

6. No vx, vy, and vz can 
satisfy vx > vz ∧ vy ≥ 0 
∧ ¬(vx+vy > vz) by 
querying the theory Tℤ 

7. M1 ⊨ ⊥
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List Theory Tcons
• Σcons : {cons, car, cdr, atom, =}, where  

• cons is a binary function (constructor): cons(a, b) represents the list 
constructed by concatenating a to b;  

• car is a unary function (left projector): car(cons(a, b)) = a; 

• cdr is a unary function (right projector): cdr(cons(a, b)) = b; 

• atom is a unary predicate: atom(x) is true iff x is a single-element 
list; and 

• = (equality) is a binary predicate. 

43
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Axioms of Tcons
• The axioms of reflexivity, symmetry, and transitivity of TE  

• Instantiations of the function congruence axiom schema for cons, car, and  
cdr: 

• ∀x1,x2,y1,y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)  

• ∀x,y. x = y → car(x) = car(y)  

• ∀x,y. x = y → cdr(x) = cdr(y)  

• An instantiation of the predicate congruence axiom schema for atom: 

• ∀x,y. x = y → (atom(x) ↔ atom(y)) 

44
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Axioms of Tcons (cont’d)

• ∀x,y. car(cons(x, y)) = x  

• ∀x,y. cdr(cons(x, y)) = y  

• ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x  

• ∀x,y. ¬atom(cons(x, y)) 

45
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Decidability of Tcons

• Tcons is undecidable. 

• The following fragment of Tcons is decidable. 

• Quantifier-free fragment of Tcons. 

• Tcons+: lists are acyclic

46
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Array Theory TA

• ΣA : {·[·], ·⟨·⊲·⟩, =}, where  

• a[i] (read) is a binary function: a[i] represents the value of 
array a at position i; 

• a⟨i ⊲ v⟩ (write) is a ternary function: a⟨i ⊳ v⟩ represents 
the modified array a in which position i has value v; and 

• = (equality) is a binary predicate defined only for array 
elements

47
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Axioms of TA

• The axioms of reflexivity, symmetry, and transitivity of TE; 

• Array Congruence: ∀a,i,j. i = j → a[i] = a[j] 

• Read-Over-Write 1: ∀a,v,i,j. i = j → a⟨i⊲v⟩[j]=v 

• Read-Over-Write 2: ∀a,v,i,j. i ≠ j → a⟨i⊲v⟩[j] = a[j] 

48
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Example of TA

• 𝜑 : a[i] = e → ∀j. a⟨i⊲e⟩[j] = a[j] is TA-valid. 

• Assume there is a TA-model M such that M ⊭ 𝜑.

49

1. M ⊭ 𝜑 

2. M ⊨ a[i] = e 

3. M ⊭ ∀j. a⟨i⊲e⟩[j] = a[j] 

4. M1 : M[j→v] ⊭ a⟨i⊲e⟩[j] = 
a[j] 

5. M1 ⊨ a⟨i⊲e⟩[j] ≠ a[j]

6. M1 ⊨ i = j 

7. M1 ⊨ a[i] = a[j] 

8. M1 ⊨ a⟨i⊲e⟩[j] = e 

9. M1 ⊨ a⟨i⊲e⟩[j] = a[j] 

10. M1 ⊨ ⊥
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Equality in TA

• 𝜑 : a[i] = e → a⟨i⊲e⟩ = a is not TA-valid 

• 𝜑′ : a[i] = e → ∀j. a⟨i⊲e⟩[j] = a[j] is TA-valid

50



FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of TA

• TA-validity is undecidable.  

• Decidable fragments of TA: 

• Quantifier-free fragment of TA 

• TA=: TA plus the extensionality axiom 

• ∀a,b. (∀i. a[i] = b[i]) ↔ a = b

51
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Decidability of Theories 

52

Theory Description Full QFF

TE equality no yes

TPA Peano arithmetic no no

Tℕ Presburger arithmetic yes yes

Tℤ linear integers yes yes

Tℝ reals (with ⋅) yes yes

Tℚ rationals (without ⋅) yes yes

TRDS recursive data structures no yes

TRDS+ acyclic recursive data structures yes yes

TA arrays no yes

TA= arrays with extensionality no yes
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Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these 
theories still decidable?

53
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Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these 
theories still decidable?

53

Yes under some constraints
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Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these 
theories still decidable?

• Nelson-Oppen approach

53

Yes under some constraints
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Nelson-Oppen Approach
• Given two theories T1 and T2 such that Σ1 ∩ Σ2 = {=}, the 

combined theory T1 ∪ T2 has signature Σ1 ∪ Σ2 and axioms A1 ∪ 
A2.  

• The quantifier-free fragment of T1 ∪ T2 is decidable if 

• satisfiability in the quantifier-free fragment of T1 is decidable;  

• satisfiability in the quantifier-free fragment of T2 is decidable;  
and 

• certain technical requirements are met.

54
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SMT Solvers
• Solvers (partially listed) 

• Z3 (https://github.com/Z3Prover/z3) 

• CVC4 (http://cvc4.cs.stanford.edu/web/)  

• Yices (http://yices.csl.sri.com) 

• STP (http://stp.github.io) 

• Most SMT solvers support SMT-LIB format (http://smtlib.cs.uiowa.edu). 

• There are SMT competitions (www.smtcomp.org).
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