
Software Verification with Satisfiability Modulo Theories
- Introduction -

Ming-Hsien Tsai

Institute of Information Science
Academia Sinica

FLOLAC 2017

Reference book: Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer 2007

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Software with Bugs

• Have you ever seen this?

• How to avoid it?

• Programmers usually write assertions for debugging and
testing.

2

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

C Assertions
• When an assertion is

violated, the program aborts
immediately (if the program
is compiled with NDEBUG
undefined).

3

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1

• Will the assertion be violated?

4

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1

• Will the assertion be violated?

4

No

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2

• Will the assertion be violated?

5

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2

• Will the assertion be violated?

5

No

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3

• Will the assertion be violated?

6

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3

• Will the assertion be violated?

6

Yes

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 4

7

• Will the assertion be violated?

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 4

7

• Will the assertion be violated?

No

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Software Verification
• Given a program with assertions, automatically verify if any

assertion could be violated.

• There are various techniques:

• Model checking

• Craig interpolation

• Satisfiability modulo theories (SMT)

• …

8

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Verification With SMT

• Convert a program with assertions into SMT formulas such
that an assertion is violated if an SMT formula is satisfiable.

• Solve satisfiability of the SMT formulas by SMT solvers.

9

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

A Simple Example

(x0 < 10 ∧ x1 = x0 - 1 ∧ x2 = x1 ∧ x2 = 9) ∨

(x0 ≥ 10 ∧ x2 = x0 ∧ x2 = 9)

10

Static Single Assignment (SSA)

Input Program

SMT Formula

Example taken from Yu-Fang’s slides

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Recall: First-Order Logic
• Terms

• Variables: x, y, …

• Function symbols: f, g, …

• Formulas

• Predicate symbols: p, q, …

• Logical operators: ¬, ∧, ∨, →, ↔

• Quantifications: ∀, ∃

11

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Recall: First-Order Logic
(cont’d)

• A FOL formula is interpreted under a model and an
environment.

• Model: gives the meanings of function symbols and
predicate symbols

• Environment: gives the values of variables

12

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Signature

• A collection of non-logical symbols excluding variables

• Examples:

• (0, S, +, =)

• (∅, ⊆)

13

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

First-Order Theories

• A first-order theory T is defined by the following two
components.

• Signature Σ

• Axioms A: set of closed Σ-formula

• Σ-formula: a FOL formula constructed from the signature Σ
plus variables, logical connectives, and quantifiers

14

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Validity and Satisfiability
• A T-model is a model that satisfies the axioms of a first-

order theory T.

• A Σ-formula 𝜑 is valid in the theory T, or T-valid, if every T-
model M satisfies 𝜑.

• We write T ⊨ 𝜑 if 𝜑 is T-valid.

• A Σ-formula 𝜑 is satisfiable in T, or T-satisfiable, if there is a
T-model M that satisfies 𝜑.

15

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Complete, Consistent, and
Equivalent

• A theory T is complete if for every closed Σ-formula 𝜑, T ⊨
𝜑 or T ⊨ ¬ 𝜑.

• A theory is consistent if there is at least one T-model.

• Two formulas 𝜑 and 𝜓 are equivalent in T, or T-equivalent, if
T ⊨ 𝜑 ↔ 𝜓.

16

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Fragment and Decidable

• A fragment of a theory is a syntactically-restricted subset of
formulae of the theory.

• Example:

• quantifier-free fragment

• A theory T is decidable if T ⊨ 𝜑 is decidable for every Σ-
formula 𝜑.

17

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Union of Theories
• The union T1 ∪ T2 of two theories T1 and T2 has signature
Σ1 ∪ Σ2 and axioms A1 ∪ A2.

• (T1 ∪ T2)-interpretation is both a T1-interpretation and a T2-
interpretation.

• A formula that is T1-valid or T2-valid is (T1 ∪ T2)-valid.

• A formula that is (T1 ∪ T2)-satisfiable is both T1-satisfiable
and T2-satisfiable.

18

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability
• FOL is undecidable in general.

• There are some important theories or fragment of theories that are decidable.

• Equality

• Peano arithmetic

• Presburger arithmetic

• Linear integers

• Recursive data structures

• Arrays

19

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Binary Relation

• Let’s talk about binary relations before introducing the
equality theory.

• Consider a set S and a binary relation R over S

• For two elements s1, s2 ∈ S, either s1Rs2 or ¬(s1Rs2)

20

S: Humans

R: IsChildOf

S: Integers

R: <

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Equivalence Relation

• The relation R is an equivalence relation if it is

• reflexive: ∀s ∈ S. sRs;

• symmetric: ∀s1,s2 ∈ S. s1Rs2 → s2Rs1;

• transitive: ∀s1,s2,s3 ∈ S. s1Rs2 ⋀ s2Rs3 → s1Rs3

21

=, ・≡・ (mod c)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Congruence Relation

• The relation R is a congruence relation if it additionally
obeys congruence: for every n-ary function f,

∀S,T. (⋀i=1 to n siRti) → f(S)Rf(T)

Capital S and T are vectors of variables
22

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Equality TE

• ΣE : {=, a, b, c, ..., f, g, h, ..., p, q, r, ...} contains

• =, a binary predicate; and

• all constants, function and predicate symbols.

• Also called equality with uninterpreted functions (EUF)

23

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of TE

1. Reflexivity: ∀x. x = x

2. Symmetry: ∀x,y. x = y → y = x

3. Transitivity: ∀x,y,z. x = y → y = z → x = z

4. Function congruence: for n-ary (n>0) function symbol f,

• ∀x,y. (∧i=1
n xi = yi) → f(x) = f(y)

5. Predicate congruence: for n-ary (n>0) predicate symbol f,

• ∀x,y. (∧i=1
n xi = yi) → (p(x) ↔ p(y))

24

x : list of variables x1, …, xn

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Properties of TE

• Axioms 1, 2, and 3 state that = is a equivalence relation.

• All the axioms assert that = is a congruence relation.

• TE is undecidable.

• Every FOL formula can be encoded as a ΣE formula by
replacing = with a fresh symbol.

• Quantifier-free fragment of TE is both efficiently decidable.

25

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

An Example of TE

• 𝜑 : a = b ∧ b = c → g(f(a), b) = g(f(c), a) is TE-valid

• Assume there is a TE-model M such that M ⊭ 𝜑

26

1. M ⊭ 𝜑

2. M ⊨ a = b ∧ b = c

3. M ⊭ g(f(a), b) = g(f(c), a)

4. M ⊨ a = b

5. M ⊨ b = c

6. M ⊨ a = c

7. M ⊨ f(a) = f(c)

8. M ⊨ b = a

9. M ⊨ g(f(a), b) = g(f(c), a)

10. M ⊨ ⊥

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Exercise

• Use the semantic method to prove the validity of the
following ΣE-formulae or find a counterexample.

• f(x, y) = f(y, x) → f(a, y) = f(y, a)

• f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x → g(f(x)) = x

27

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Peano Arithmetic TPA

• ΣPA : {0, 1, +, ·, =} where

• 0 and 1 are constants;

• + (addition) and · (multiplication) are binary functions (x
·y may be written as xy); and

• = (equality) is a binary predicate.

28

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of TPA

• Zero: ∀x. ¬(x+1 = 0)

• Successor: ∀x,y. x+1 = y+1 → x = y

• Induction: P[0] ∧ (∀x. P[x] → P[x + 1]) → ∀x. P[x] (an axiom schema)

• Plus Zero: ∀x. x+0 = x

• Plus Successor: ∀x,y. x+(y+1) = (x+y) + 1

• Times Zero: ∀x. x · 0 = 0

• Times Successor: ∀x,y. x·(y+1) = x·y+x

29

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Intended Models of TPA

• The intended models of TPA have domain ℕ and assignments αM defining
0, 1, +, ·, and = as we understand them in everyday arithmetic.

• αM[0] is 0ℕ: αM maps the symbols “0” to 0ℕ ∈ ℕ;

• αM[1] is 1ℕ: αM maps the symbols “1” to 1ℕ ∈ ℕ;

• αM[+] is +ℕ, addition over ℕ;

• αM[·] is ·ℕ , multiplication over ℕ;

• αM[=] is =ℕ, equality over ℕ.

30

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 1 of TPA

• 3x+5 = 2y can be written using the signature ΣPA as:

• x+x+x+1+1+1+1+1 = y+y, or as

• (1+1+1)·x+1+1+1+1+1 = (1+1)·y

• In practice, we write 3x+5 = 2y for short.

31

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 2 of TPA

• We can encode > and ≥ in TPA.

• 3x+5 > 2y is encoded as ∃z. z ≠ 0 ∧ 3x+5 = 2y+z

• 3x+5 ≥ 2y is encoded as ∃z. 3x+5 = 2y+z

32

x ≠ y abbreviates ¬ (x = y)

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example 3 of TPA

• 𝜑 : ∃x,y,z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xx+yy = zz is TPA-
valid.

• Every 𝜑 ∈ {∀x,y,z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xn+yn ≠ zn : n
> 2 ∧ n ∈ ℤ} is TPA-valid. (xn: n multiplications of x)

33

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of TPA

• Satisfiability and validity in TPA is undecidable (Gödel’s first
incompleteness theorem).

• Try a more restricted theory of arithmetic that does not allow
multiplication.

34

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Presburger Arithmetic Tℕ

• Σℕ: {0, 1, +, =}, where

• 0 and 1 are constants;

• + (addition) is a binary function; and

• = (equality) is a binary predicate.

35

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Tℕ

• Zero: ∀x. ¬(x+1 = 0)

• Successor: ∀x,y. x+1 = y+1 → x = y

• Induction: P[0] ∧ (∀x. P[x] → P[x+1]) → ∀x. P[x]

• Plus Zero: ∀x. x+0 = x

• Plus Successor: ∀x,y. x+(y+1)=(x+y)+1

36

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Intended Models of Tℕ
• The intended models of Tℕ have domain ℕ and are such

that:

• αM[0] is 0ℕ ∈ ℕ;

• αM[1] is 1ℕ ∈ ℕ;

• αM[+] is +ℕ, addition over ℕ;

• αM[=] is =ℕ, equality over ℕ.

37

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of Tℕ

• Presburger showed in 1929 that Tℕ is decidable.

• Validity of Σℕ formulas can be decided by procedures for the
validity of Σℤ formulas.

38

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Integer Theory Tℤ
• Σℤ : {...,−2,−1,0, 1, 2, ...,−3·,−2·, 2·, 3·, ..., +, −, =, >},

where

• ... , −2, −1, 0, 1, 2, ... are constants;

• ... , −3·, −2·, 2·, 3·, ... are unary functions (representing
constant coefficients);

• + and − are binary functions;

• = and > are binary predicates.

39

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

• 𝜑0 : ∀w,x.∃y,z. x+2y−z−13 > −3w+5

• 𝜑1 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. 
(xp−xn)+2(yp−yn)−(zp−zn)−13 > −3(wp−wn)+5

• 𝜑2 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. 
xp+2yp+zn+3wp > xn+2yn+zp+13+3wn+5

• 𝜑3 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. ∃u. ¬(u = 0) ∧ 
xp+yp+yp+zn+wp+wp+wp =
xn+yn+yn+zp+wn+wn+wn+u+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

• 𝜑0 is Tℤ-valid if 𝜑3 is Tℕ-valid

Encoding of Σℤ-Formulas

40

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Encoding of Σℕ-Formulas

• 𝜑1 : ∀x. ∃y. x = y+1

• 𝜑2 : ∀x. x ≥ 0 → ∃y. y ≥ 0 ∧ x = y+1

• 𝜑1 is Tℕ-valid if 𝜑2 is Tℤ-valid.

41

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of Tℤ
• 𝜑 : ∀x,y,z. x > z ∧ y ≥ 0 → x+y > z is Tℤ-valid.

• Assume there is a Tℤ-model M such that M ⊭ 𝜑

42

1. M ⊭ 𝜑

2. M1 : M[x→vx,y→vy,z→vz] ⊭
x > z ∧ y ≥ 0 → x+y > z

3. M1 ⊨ x > z ∧ y ≥ 0

4. M1 ⊭ x+y > z

5. M1 ⊨ ¬(x+y > z)

6. No vx, vy, and vz can
satisfy vx > vz ∧ vy ≥ 0
∧ ¬(vx+vy > vz) by
querying the theory Tℤ

7. M1 ⊨ ⊥

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

List Theory Tcons
• Σcons : {cons, car, cdr, atom, =}, where

• cons is a binary function (constructor): cons(a, b) represents the list
constructed by concatenating a to b;

• car is a unary function (left projector): car(cons(a, b)) = a;

• cdr is a unary function (right projector): cdr(cons(a, b)) = b;

• atom is a unary predicate: atom(x) is true iff x is a single-element
list; and

• = (equality) is a binary predicate.

43

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Tcons
• The axioms of reflexivity, symmetry, and transitivity of TE

• Instantiations of the function congruence axiom schema for cons, car, and  
cdr:

• ∀x1,x2,y1,y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)

• ∀x,y. x = y → car(x) = car(y)

• ∀x,y. x = y → cdr(x) = cdr(y)

• An instantiation of the predicate congruence axiom schema for atom:

• ∀x,y. x = y → (atom(x) ↔ atom(y))

44

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of Tcons (cont’d)

• ∀x,y. car(cons(x, y)) = x

• ∀x,y. cdr(cons(x, y)) = y

• ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x

• ∀x,y. ¬atom(cons(x, y))

45

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of Tcons

• Tcons is undecidable.

• The following fragment of Tcons is decidable.

• Quantifier-free fragment of Tcons.

• Tcons+: lists are acyclic

46

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Array Theory TA

• ΣA : {·[·], ·⟨·⊲·⟩, =}, where

• a[i] (read) is a binary function: a[i] represents the value of
array a at position i;

• a⟨i ⊲ v⟩ (write) is a ternary function: a⟨i ⊳ v⟩ represents
the modified array a in which position i has value v; and

• = (equality) is a binary predicate defined only for array
elements

47

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Axioms of TA

• The axioms of reflexivity, symmetry, and transitivity of TE;

• Array Congruence: ∀a,i,j. i = j → a[i] = a[j]

• Read-Over-Write 1: ∀a,v,i,j. i = j → a⟨i⊲v⟩[j]=v

• Read-Over-Write 2: ∀a,v,i,j. i ≠ j → a⟨i⊲v⟩[j] = a[j]

48

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Example of TA

• 𝜑 : a[i] = e → ∀j. a⟨i⊲e⟩[j] = a[j] is TA-valid. 

• Assume there is a TA-model M such that M ⊭ 𝜑.

49

1. M ⊭ 𝜑

2. M ⊨ a[i] = e

3. M ⊭ ∀j. a⟨i⊲e⟩[j] = a[j]

4. M1 : M[j→v] ⊭ a⟨i⊲e⟩[j] =
a[j]

5. M1 ⊨ a⟨i⊲e⟩[j] ≠ a[j]

6. M1 ⊨ i = j

7. M1 ⊨ a[i] = a[j]

8. M1 ⊨ a⟨i⊲e⟩[j] = e

9. M1 ⊨ a⟨i⊲e⟩[j] = a[j]

10. M1 ⊨ ⊥

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Equality in TA

• 𝜑 : a[i] = e → a⟨i⊲e⟩ = a is not TA-valid

• 𝜑′ : a[i] = e → ∀j. a⟨i⊲e⟩[j] = a[j] is TA-valid

50

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of TA

• TA-validity is undecidable.

• Decidable fragments of TA:

• Quantifier-free fragment of TA

• TA=: TA plus the extensionality axiom

• ∀a,b. (∀i. a[i] = b[i]) ↔ a = b

51

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Decidability of Theories

52

Theory Description Full QFF

TE equality no yes

TPA Peano arithmetic no no

Tℕ Presburger arithmetic yes yes

Tℤ linear integers yes yes

Tℝ reals (with ⋅) yes yes

Tℚ rationals (without ⋅) yes yes

TRDS recursive data structures no yes

TRDS+ acyclic recursive data structures yes yes

TA arrays no yes

TA= arrays with extensionality no yes

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these
theories still decidable?

53

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these
theories still decidable?

53

Yes under some constraints

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Combination Theories

• In practice, formulas may span multiple theories.

• ∀a,i,j,k,v. a[i] = v ∧ j = i+k → a[j] = v

• Given some decidable theories, is a formula spanning these
theories still decidable?

• Nelson-Oppen approach

53

Yes under some constraints

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

Nelson-Oppen Approach
• Given two theories T1 and T2 such that Σ1 ∩ Σ2 = {=}, the

combined theory T1 ∪ T2 has signature Σ1 ∪ Σ2 and axioms A1 ∪
A2.

• The quantifier-free fragment of T1 ∪ T2 is decidable if

• satisfiability in the quantifier-free fragment of T1 is decidable;

• satisfiability in the quantifier-free fragment of T2 is decidable;
and

• certain technical requirements are met.

54

FLOLAC 2017 Software Verification with Satisfiability Modulo Theories

SMT Solvers
• Solvers (partially listed)

• Z3 (https://github.com/Z3Prover/z3)

• CVC4 (http://cvc4.cs.stanford.edu/web/)

• Yices (http://yices.csl.sri.com)

• STP (http://stp.github.io)

• Most SMT solvers support SMT-LIB format (http://smtlib.cs.uiowa.edu).

• There are SMT competitions (www.smtcomp.org).

55

https://github.com/Z3Prover/z3
http://yices.csl.sri.com
http://stp.github.io
http://smtlib.cs.uiowa.edu

