
FLOLAC
 ’16

Martin-Löf type theory

Propositions as types, proofs as programs

11 July 2016

柯向上
(日本)国立情報学研究所
hsiang-shang@nii.ac.jp

III-0

Annotated derivation

(assum)
A, A → B ⊢ A → B

(assum)
A, A → B ⊢ A (→E)

A, A → B ⊢ B (→I)
A ⊢ (A → B) → B

(→I)
⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.
Represent (→I) by prefixing λ v. to the representation of its
sub-derivation, where v is the name of the new assumption.

III-1

Annotated derivation

(var)
x : A, y : A → B ⊢ y : A → B

(var)
x : A, y : A → B ⊢ x : A

(app)
x : A, y : A → B ⊢ y x : B

(abs)
x : A ⊢ λ y. y x : (A → B) → B

(abs)
⊢ λ x. λ y. y x : A → (A → B) → B

This is a typing derivation for the λ-term λ x. λ y. y x!

III-2

Simply typed λ-calculus (à la Curry)

Let the set of types be the implicational fragment of Prop, i.e.,
the subset of the propositional language generated by variables and
implication only.

A λ-term t is said to have type τ under context Γ exactly when,
using the following rules, there is a typing derivation of Γ ⊢ t : τ .

(var)
Γ ⊢ v : τ if (v : τ) ∈ Γ

Γ, v : σ ⊢ t : τ (abs)
Γ ⊢ λ v. t : σ → τ

Γ ⊢ t : σ → τ Γ ⊢ s : σ (app)
Γ ⊢ t s : τ

III-3

Curry–Howard correspondence

Deduction systems and programming calculi can be put in
correspondence — a corresponding pair of a deduction system and
a programming calculus can be regarded as logical and
computational interpretations of essentially the same set of
syntactic objects.

Slogan: Propositions are types. Proofs are programs.

Natural deduction for full propositional logic corresponds to simply
typed λ-calculus with constants: Defining the set of types to be
Prop, the derivations in natural deduction (the proofs) correspond
exactly to the well-typed λ-terms (the programs).

III-4

Unifying logic and computation

Martin-Löf’s intuitionistic type theory was designed in the ’70s to
serve as a foundation for intuitionistic mathematics. It is
simultaneously

a computationally meaningful higher-order logic system and
a very expressively typed functional programming language.

The dependently typed programming language Agda is
theoretically based on MLTT.

III-5

Sets
Activities within type theory consist of construction of elements of
various sets (which we regard as synonymous with “types”).

Note that element construction includes proving logical
propositions (when we use sets as propositions) and carrying
out general mathematical constructions (e.g., constructing
functions of type N → N).

Specification of sets is thus the central part of type theory.

III-6

Set of sets
We assume that there is a set of sets named U (for “universe”), so
when we write down Γ ⊢ A : U, this states that A is a set under
the assumptions in Γ.

Rules of type theory are formulated such that whenever Γ ⊢ t : A
it is also the case that Γ ⊢ A : U.

Remark. Can we postulate U : U ? The answer was shown by
Girard to be no, because U : U leads to inconsistency.

We thus need to introduce a predicative hierarchy of universes
U0, U1, …, up to infinity, and postulate U i : U i+1.

In practice, however, we can forget about indexing and just assume
U : U, because there is an algorithm for inferring the indices.

III-7

Set specification
To specify each set, we first give three kinds of rules:

Formation rule — what constitute the name of the set.
Introduction rule(s) — how to construct (canonical) elements
of the set.
Elimination rule(s) — how to deconstruct elements of the set
and transform them to elements of some other sets.

The fourth kind of rules will be introduced later today.

III-8

Cartesian product types (conjunction)

Formation:
Γ ⊢ A : U Γ ⊢ B : U (×F)

Γ ⊢ A ×B : U
Introduction:

Γ ⊢ a : A Γ ⊢ b : B (×I)
Γ ⊢ (a , b) : A ×B

Elimination:
Γ ⊢ p : A ×B (×EL)
Γ ⊢ fst p : A

Γ ⊢ p : A ×B (×ER)
Γ ⊢ snd p : B

III-9

Function types (implication)

Formation:
Γ ⊢ A : U Γ ⊢ B : U (→F)

Γ ⊢ A → B : U
Introduction:

Γ , x : A ⊢ t : B (→I)
Γ ⊢ λx . t : A → B

Elimination:
Γ ⊢ f : A → B Γ ⊢ a : A (→E)

Γ ⊢ f a : B

III-10

Coproduct types (disjunction)

Formation:
Γ ⊢ A : U Γ ⊢ B : U (+F)

Γ ⊢ A +B : U
Introduction:

Γ ⊢ a : A (+IL)
Γ ⊢ left a : A +B

Γ ⊢ b : B (+IR)
Γ ⊢ right b : A +B

Elimination:
Γ ⊢ s : A + B Γ , x : A ⊢ l : C Γ , y : B ⊢ r : C

(+E)
Γ ⊢ case s of {left x . l ; right y . r} : C

III-11

Empty type (falsity)

Formation:
(⊥F)

Γ ⊢ ⊥ : U
Introduction: none
Elimination:

Γ ⊢ b : ⊥ (⊥E)
Γ ⊢ absurd b : A

Exercise. Which programs correspond to the proofs you
constructed last Thursday?

III-12

Indexed families of sets as predicates
Mathematical statements usually involve predicates and
universal/existential quantification.

For example: “For every x : N, if x is not zero, then there exists
y : N such that x is equal to 1 + y.”

In type theory, a predicate on A can be thought of as having type
A → U — a family of sets indexed by the domain A. For example:

⊢ λx . “if x is zero then ⊥ else ⊤” : N → U

III-13

Dependent product types (universal quantification)

Formation:
Γ ⊢ A : U Γ , x : A ⊢ B : U (ΠF)

Γ ⊢ Π(x : A) B : U
Introduction:

Γ , x : A ⊢ t : B (ΠI)
Γ ⊢ λx . t : Π(x : A) B

Elimination:
Γ ⊢ f : Π(x : A) B Γ ⊢ a : A

(ΠE)
Γ ⊢ f a : B [a/x]

Exercise. Let Γ := A : U , B : U , C : A → B → U. Derive
Γ ⊢ : (Π(x : A) Π(y : B) C x y) → Π(y : B) Π(x : A) C x y

III-14

Dependent sum types (existential quantification)

Formation:
Γ ⊢ A : U Γ , x : A ⊢ B : U (ΣF)

Γ ⊢ Σ(x : A) B : U
Introduction:

Γ ⊢ a : A Γ ⊢ b : B [a/x]
(ΣI)

Γ ⊢ (a , b) : Σ(x : A) B
Elimination:
Γ ⊢ p : Σ(x : A) B

(ΣEL)
Γ ⊢ fst p : A

Γ ⊢ p : Σ(x : A) B
(ΣER)

Γ ⊢ snd p : B [fst p/x]

Exercise. Let Γ := A : U , B : U , C : A → B → U. Derive
Γ ⊢ : (Σ(p : A ×B) C (fst p) (snd p)) →

Σ(x : A) Σ(y : B) C x y

III-15

Exercises
Let Γ := A : U , B : A → U , C : A → U. Find proof terms such
that the following are derivable:
Γ ⊢ : (Π(x : A) B x ×C x) ↔ (Π(y : A) B y) × (Π(z : A) C z)
Γ ⊢ : (Σ(x : A) B x +C x) ↔ (Σ(y : A) B y) + (Σ(z : A) C z)
What about
Γ ⊢ : (Π(x : A) B x +C x) ↔ (Π(y : A) B y) + (Π(z : A) C z)
Γ ⊢ : (Σ(x : A) B x ×C x) ↔ (Σ(y : A) B y) × (Σ(z : A) C z)
?

Now let Γ := A : U , B : U , R : A → B → U. Prove the axiom
of choice, i.e., find a proof term for

Γ ⊢ : (Π(x : A) Σ(y : B) R x y) →
Σ(f : A → B) Π(z : A) R z (f z)

III-16

Computation
Let Γ := A : U , B : A → U , C : A → U. Try to derive
Γ ⊢ : (Π(p : Σ(x : A) B x) C (fst p)) → Π(y : A) (B y → C y)
… and you should notice a problem:

Intuitively, λf .λy .λb . f (y , b) does the job.
However, f (y , b) has type C (fst (y , b)) rather than C y.

We need to incorporate computation into typing.

III-17

Equality judgements

We introduce a new kind of judgement for stating that two terms
should be regarded as the same during type-checking:

Γ ⊢ t = u ∈ A

Rules will be formulated such that whenever Γ ⊢ t = u ∈ A is
derivable, so are Γ ⊢ t : A and Γ ⊢ u : A.

III-18

Computation rules
For each set, (when applicable) we specify additional computation
rules stating how to eliminate an introductory term.

For example, for product types we have two computation rules:

Γ ⊢ a : A Γ ⊢ b : B (×CL)
Γ ⊢ fst (a , b) = a ∈ A

Γ ⊢ a : A Γ ⊢ b : B (×CR)
Γ ⊢ snd (a , b) = b ∈ B

This is the type-theoretic manifestation of Gentzen’s inversion
principle saying that elimination rules should be justified in terms
of introduction rules.

III-19

More computation rules

Γ , x : A ⊢ t : B Γ ⊢ a : A (→C)
Γ ⊢ (λx . t) a = t [a/x] ∈ B

Γ ⊢ a : A Γ ⊢ f : A → C Γ ⊢ g : B → C
(+CL)

Γ ⊢ case (left a) f g = f a ∈ C

Γ ⊢ b : B Γ ⊢ f : A → C Γ ⊢ g : B → C
(+CR)

Γ ⊢ case (right b) f g = g b ∈ C

III-20

More computation rules

Γ , x : A ⊢ t : B Γ ⊢ a : A (ΠC)
Γ ⊢ (λx . t) a = t [a/x] ∈ B [a/x]

Γ ⊢ a : A Γ ⊢ b : B [a/x]
(ΣCL)

Γ ⊢ fst (a , b) = a ∈ A

Γ ⊢ a : A Γ ⊢ b : B [a/x]
(ΣCR)

Γ ⊢ snd (a , b) = b ∈ B [a/x]

III-21

Congruence rules

We need a congruence rule for each constant we introduce:

Γ ⊢ a = a′ ∈ A Γ ⊢ b = b′ ∈ B
Γ ⊢ (a , b) = (a′ , b′) ∈ A ×B

Γ ⊢ p = p′ ∈ A ×B
Γ ⊢ fst p = fst p′ ∈ A

Γ ⊢ p = p′ ∈ A ×B
Γ ⊢ snd p = snd p′ ∈ B

Γ , x : A ⊢ t = t′ ∈ B
Γ ⊢ λx . t = λx . t′ ∈ A → B

Γ ⊢ f = f ′ ∈ A → B Γ ⊢ a = a′ ∈ A
Γ ⊢ f a = f ′ a′ ∈ B

… and similar rules for left, right, case, and absurd.
III-22

Equivalence rules
Judgemental equality is an equivalence relation.

Γ ⊢ t : A
Γ ⊢ t = t ∈ A

Γ ⊢ t = u ∈ A
Γ ⊢ u = t ∈ A

Γ ⊢ t = u ∈ A Γ ⊢ u = v ∈ A
Γ ⊢ t = v ∈ A

III-23

Conversion rule
Once we establish that two sets are judgementally equal, we can
transfer terms between the two sets.

Γ ⊢ t : A Γ ⊢ A = B ∈ U (conv)
Γ ⊢ t : B

Exercise. Finish deriving
Γ ⊢ : (Π(p : Σ A B) C (fst p)) → Π(x : A) (B x → C x)

(where Γ := A : U , B : A → U , C : A → U).

III-24

More congruence rules

(We can state congruence rules for dependent products and sums
only after we have the conversion rule. Why?)

Γ ⊢ a = a′ ∈ A Γ ⊢ b = b′ ∈ B [a/x]
Γ ⊢ (a , b) = (a′ , b′) ∈ Σ(x : A) B

Γ ⊢ p = p′ ∈ Σ(x : A) B
Γ ⊢ fst p = fst p′ ∈ A

Γ ⊢ p = p′ ∈ Σ(x : A) B
Γ ⊢ snd p = snd p′ ∈ B [fst p/x]

Γ , x : A ⊢ t = t′ ∈ B
Γ ⊢ λx . t = λx . t′ ∈ Π(x : A) B

Γ ⊢ f = f ′ ∈ Π(x : A) B Γ ⊢ a = a′ ∈ A
Γ ⊢ f a = f ′ a′ ∈ B [a/x]

III-25

Decidability of judgemental equality

Our judgemental equality is decidable: for any equality judgement
we can decide whether it has a derivation or not.

(As a consequence, typechecking is also decidable.)

Decidability is achieved by reducing terms to their normal forms
and see if the normal forms match.

There are various reduction strategies, and judgemental equality is
formulated without reference to any particular reduction strategy
— it captures the notion of computation only abstractly.

III-26

Canonical vs non-canonical elements
Introduction rules specify canonical — or immediately recognisable
— elements of a set.

A complex construction may not be immediately recognisable as
belonging to a set, but as long as we can see that it computes to a
canonical element, we accept it as a non-canonical element of the
set.

Remark. It follows that all computations in type theory must
terminate, because from a non-canonical proof we should be able
to get a canonical one in finite time.

Property (canonicity). If ⊢ t : A, then ⊢ t = c ∈ A for some
canonical element c.

III-27

Classical axioms from a type-theoretic perspective

We obtained a classical system NK by adding an inference rule to
NJ. The same could also be done for MLTT by introducing a new
constant:

Γ ⊢ X : U (LEM)
Γ ⊢ LEM X : X + ¬X

Exercise. Find a proof term such that
A : U , B : A → U ⊢ : (¬Π(x : A) ¬B x) → Σ(y : A) B y

is derivable.

We do not know how to formulate computation rules for LEM,
however. This breaks canonicity, and the type theory ceases to be
computationally meaningful.

III-28

