
Functional Programming

Kung Chen and Shin-Cheng Mu

FLOLAC, 2016

A Quick Introduction to Haskell

• We will mostly learn some syntactical issues, but
there are some important messages too.

• Most of the materials today are adapted from
the book Introduction to Functional Program-
ming using Haskell by Richard Bird. Prentice
Hall 1998.

• References to more Haskell materials are on the
course homepage.

Course Materials and Tools

• Course homepage: http://flolac.iis.

sinica.edu.tw/pl2015

– Announcements, slides, assignments, addi-
tional materials, etc.

• We will be using the Glasgow Haskell Compiler
(GHC).

– A Haskell compiler written in Haskell, with
an interpreter that both interprets and runs
compiled code.

– Installation: the Haskell Platform: http:

//hackage.haskell.org/platform/

Function Definition

• A function definition consists of a type declara-
tion, and the definition of its body:

square ∶∶ Int → Int
square x = x × x

smaller ∶∶ Int → Int → Int
smaller x y = if x ≤ y then x else y

• The GHCi interpreter evaluates expressions in
the loaded context:

? square 3768
14197824
? square (smaller 5 (3 + 4))
25

1 Values and Evaluation

Evaluation
One possible sequence of evaluating (simplifying,

or reducing) square (3 + 4):

square (3 + 4)
= { definition of + }

square 7
= { definition of square }

7 × 7
= { definition of × }

49

Another Evaluation Sequence

• Another possible reduction sequence:

square (3 + 4)
= { definition of square }

(3 + 4) × (3 + 4)
= { definition of + }

7 × (3 + 4)
= { definition of + }

7 × 7
= { definition of × }

49

• In this sequence the rule for square is applied
first. The final result stays the same.

• Do different evaluations orders always yield the
same thing?

1



A Non-terminating Reduction

• Consider the following program:

three ∶∶ Int → Int
three x = 3

infinity ∶∶ Int
infinity = infinity + 1

• Try evaluating three infinity . If we simplify
infinity first:

three infinity
= { definition of infinity }

three (infinity + 1)
= three ((infinity + 1) + 1) . . .

• If we start with simplifying three:

three infinity
= { definition of three }

3

Evaluation Order

• There can be many other evaluation orders. As
we have seen, some terminates while some do
not.

• normal form: an expression that cannot be re-
duced anymore.

– 49 is in normal form, while 7 × 7 is not.

– Some expressions do not have a normal
form. E.g. infinity .

• A corollary of the Church–Rosser theorem: an
expression has at most one normal form.

– If two evaluation sequences both terminate,
they reach the same normal form.

Evaluation Order

• Applicative order evaluation: starting with the
innermost reducible expression (a redex).

• Normal order evaluation: starting with the out-
ermost redex.

• If an expression has a normal form, normal order
evaluation delivers it. Hence the name.

• For now you can imagine that Haskell uses nor-
mal order evaluation. A way to implement nor-
mal order evaluation is called lazy evaluation.

2 Functions

Mathematical Functions

• Mathematically, a function is a mapping between
arguments and results.

– A function f ∶∶ A → B maps each element
in A to a unique element in B.

• In contrast, C “functions” are not mathematical
functions:

– int y = 1; int f (x:int) { return

((y++) * x); }

• Functions in Haskell have no such side-effects:
(unconstrained) assignments, IO, etc.

• Why removing these useful features? We will
talk about that later in this course.

2.1 Using Functions

Curried Functions

• Consider again the function smaller :

smaller ∶∶ Int → Int → Int
smaller x y = if x ≤ y then x else y

• We sometimes informally call it a function “tak-
ing two arguments”.

• Usage: smaller 3 4.

• Strictly speaking, however, smaller is a function
returning a function. The type should be brack-
eted as Int → (Int → Int).

Precedence and Association

• In a sense, all Haskell functions takes exactly one
argument.

– Such functions are often called curried.

• Type: a→ b→ c = a→ (b→ c), not (a→ b)→ c.

• Application: f x y = (f x) y, not f (x y).
– smaller 3 4 means (smaller 3) 4.

– square square 3 means (square square) 3,
which results in a type error.

• Function application binds tighter than infix op-
erators. E.g. square 3+ 4 means (square 3)+ 4.

2



Why Currying?

• It exposes more chances to reuse a function, since
it can be partially applied.

twice ∶∶ (a→ a)→ (a→ a)
twice f x = f (f x)
quad ∶∶ Int → Int
quad = twice square

• Try evaluating quad 3:

quad 3

= twice square 3

= square (square 3)
= . . .

• Had we defined:

twice ∶∶ (a→ a, a)→ a
twice (f, x) = f (f x)

we would have to write

quad ∶∶ Int → Int
quad x = twice (square, x)

• There are situations where you’d prefer not to
have curried functions. We will talk about cov-
ersion between curried and uncurried functions
later.

2.2 Sectioning

Sectioning

• Infix operators are curried too. The operator (+)
may have type Int → Int → Int .

• Infix operator can be partially applied too.

(x ⊕) y = x⊕ y
(⊕ y) x = x⊕ y

– (1 +) ∶∶ Int → Int increments its argument
by one.

– (1.0 /) ∶∶ Float → Float is the “reciprocal”
function.

– (/ 2.0) ∶∶ Float → Float is the “halving”
function.

Infix and Prefix

• To use an infix operator in prefix position, sur-
rounded it in parentheses. For example, (+) 3 4
is equivalent to 3 + 4.

• Surround an ordinary function by back-quotes
(not quotes!) to put it in infix position. E.g.
3 ‘mod‘ 4 is the same as mod 3 4.

Function Composition

• Functions composition:

(⋅) ∶∶ (b→ c)→ (a→ b)→ (a→ c)
(f ⋅ g) x = f (g x)

• E.g. another way to write quad :

quad ∶∶ Int → Int
quad = square ⋅ square

• Some important properties:

– id ⋅ f = f = f ⋅ id , where id x = x.

– (f ⋅ g) ⋅ h = f ⋅ (g ⋅ h).

2.3 Definitions

Guarded Equations

• Recall the definition:

smaller ∶∶ Int → Int → Int
smaller x y = if x ≤ y then x else y

• We can also write:

smaller ∶∶ Int → Int → Int
smaller x y ∣ x ≤ y = x

∣ x > y = y
• Equivalently,

smaller ∶∶ Int → Int → Int
smaller x y ∣ x ≤ y = x

∣ otherwise = y
• Helpful when there are many choices:

signum ∶∶ Int → Int
signum x ∣ x > 0 = 1

∣ x == 0 = 0
∣ x < 0 = −1

Otherwise we’d have to write

signum x = if x > 0 then 1
else if x == 0 then 0 else − 1

3



λ Expressions

• Since functions are first-class constructs, we can
also construct functions in expressions.

• A λ expression denotes an anonymous function.

– λx → e: a function with argument x and
body e.

– λx→ λy → e abbreviates to λx y → e.

– In ASCII, we write λ as /
• Yet another way to define smaller:

smaller ∶∶ Int → Int → Int
smaller = λx y → if x ≤ y then x else y

• Why λs? Sometimes we may want to quickly
define a function and use it only once.

• In fact, λ is a more primitive concept.

Local Definitions
There are two ways to define local bindings in

Haskell.

• let-expression:

f ∶∶ Float → Float → Float
f x y = let a = (x + y)/2

b = (x + y)/3
in (a + 1) × (b + 2)

• where-clause:

f ∶∶ Int → Int → Int
f x y ∣ x ≤ 10 = x + a

∣ x > 10 = x − a
where a = square (y + 1)

• let can be used in expressions (e.g. 1 +
(let..in..)), while where qualifies multiple
guarded equations.

3 Types

Types

• The universe of values is partitioned into collec-
tions, called types.

• Some basic types: Int , Float , Bool , Char . . .

• Type “constructors”: functions, lists, trees . . . to
be introduced later.

• Operations on values of a certain type might
not make sense for other types. For example:
square square 3.

• Strong typing: the type of a well-formed expres-
sion can be deducted from the constituents of
the expression.

– It helps you to detect errors.

– More importantly, programmers may con-
sider the types for the values being defined
before considering the definition them-
selves, leading to clear and well-structured
programs.

Polymorphic Types

• Suppose square ∶∶ Int → Int and sqrt ∶∶ Int →
Float .

– square ⋅ square ∶∶ Int → Int

– sqrt ⋅ square ∶∶ Int → Float

• The (⋅) operator has different types in the two
expressions:

– (⋅) ∶∶ (Int → Int) → (Int → Int) → (Int →
Int)

– (⋅) ∶∶ (Int → Float) → (Int → Int) → (Int →
Float)

• To allow (⋅) to be used in many situations, we
introduce type variables and let its type be: (b→
c)→ (a→ b)→ (a→ c).

Summary So Far

• Functions are essential building blocks in a
Haskell program. They can be applied, com-
posed, passed as arguments, and returned as re-
sults.

• Types sometimes guide you through the design
of a program.

• Equational reasoning: let the symbols do the
work!

4



Recommanded Textbooks

• Introduction to Functional Programming using
Haskell [Bir98]. My recommended book. Cov-
ers equational reasoning very well.

• Programming in Haskell [Hut07]. A thin but
complete textbook.

Online Haskell Tutorials

• Learn You a Haskell for Great Good! [Lip11], a
nice tutorial with cute drawings!

• Yet Another Haskell Tutorial [DI02].

• A Gentle Introduction to Haskell by Paul Hudak,
John Peterson, and Joseph H. Fasel: a bit old,
but still worth a read. [HPF00]

• Real World Haskell [OSG98]. Freely available
online. It assumes some basic knowledge of
Haskell, however.

4 Simple Datatypes

4.1 Booleans

Booleans
The datatype Bool can be introduced with a

datatype declaration:

data Bool = False ∣ True

(But you need not do so. The type Bool is already
defined in the Haskell Prelude.)

Datatype Declaration

• In Haskell, a data declaration defines a new
type.

data Type = Con1 Type11 Type12 . . .
∣ Con2 Type21 Type22 . . .
∣ ∶

• The declaration above introduces a new type,
Type, with several cases.

• Each case starts with a constructor, and several
(zero or more) arguments (also types).

• Informally it means “a value of type Type is ei-
ther a Con1 with arguments Type11, Type12. . . ,
or a Con2 with arguments Type21, Type22. . . ”

• Types and constructors begin in capital letters.

Functions on Booleans

Negation:

not ∶∶ Bool → Bool
not False = True
not True = False

• Notice the definition by pattern matching. The
definition has two cases, because Bool is defined
by two cases. The shape of the function follows
the shape of its argument.

Functions on Booleans

Conjunction and disjunction:

(&&), (∣∣) ∶∶ Bool → Bool → Bool
False && x = False
True && x = x
False ∣∣ x = x
True ∣∣ x = True

Functions on Booleans

Equality check:

(==), (≠) ∶∶ Bool → Bool → Bool
x == y = (x && y) ∣∣ (not x && not y)
x ≠ y = not (x == y)

• = is a definition, while == is a function.

• ≠ is written / = in ASCII.

Example

leapyear ∶∶ Int → Bool
leapyear y = (y ‘mod ‘ 4 == 0) &&

(y ‘mod ‘ 100 ≠ 0 ∣∣ y ‘mod ‘ 400 == 0)

• Note: y ‘mod ‘ 100 could be written mod y 100.
The backquotes turns an ordinary function to an
infix operator.

• It’s just personal preference whether to do so.

4.2 Characters

Characters

5



• You can think of Char as a big data definition:

data Char = ’a’ ∣ ’b’ ∣ . . .
with functions:

ord ∶∶ Char → Int
chr ∶∶ Int → Char

• Characters are compared by their order:

isDigit ∶∶ Char → Bool
isDigit x = ’0’ ≤ x && x ≤ ’9’

Equality Check

• Of course, you can test equality of characters
too:

(==) ∶∶ Char → Char → Bool

• (==) is an overloaded name — one name shared
by many different definitions of equalities, for dif-
ferent types:

– (==) ∶∶ Int → Int → Bool

– (==) ∶∶ (Int ,Char)→ (Int ,Char)→ Bool

– (==) ∶∶ [Int]→ [Int]→ Bool ...

• Haskell deals with overloading by a general
mechanism called type classes. It is considered a
major feature of Haskell.

• While the type class is an interesting topic, we
might not cover much of it since it is orthogonal
to the central message of this course.

4.3 Products

Tuples

• The polymorphic type (a, b) is essentially the
same as the following declaration:

data Pair a b = MkPair a b

• Or, had Haskell allow us to use symbols:

data (a, b) = (a, b)

• Two projections:

fst ∶∶ (a, b)→ a
fst (a, b) = a
snd ∶∶ (a, b)→ b
snd (a, b) = b

5 Functions on Lists

Lists in Haskell

• Traditionally an important datatype in func-
tional languages.

• In Haskell, all elements in a list must be of the
same type.

– [1,2,3,4] ∶∶ [Int]
– [True,False,True] ∶∶ [Bool]
– [[1,2], [], [6,7]] ∶∶ [[Int]]
– [] ∶∶ [a], the empty list (whose element type

is not determined).

• String is an abbreviation for [Char]; "abcd" is
an abbreviation of [’a’,’b’,’c’,’d’].

List as a Datatype

• [] ∶∶ [a] is the empty list whose element type is
not determined.

• If a list is non-empty, the leftmost element is
called its head and the rest its tail.

• The constructor (∶) ∶∶ a → [a] → [a] builds a list.
E.g. in x ∶ xs, x is the head and xs the tail of the
new list.

• You can think of a list as being defined by

data [a] = [] ∣ a ∶ [a]

• [1,2,3] is an abbreviation of 1 ∶ (2 ∶ (3 ∶ [])).

Head and Tail

• head ∶∶ [a]→ a. e.g. head [1,2,3] = 1.

• tail ∶∶ [a]→ [a]. e.g. tail [1,2,3] = [2,3].
• init ∶∶ [a]→ [a]. e.g. init [1,2,3] = [1,2].
• last ∶∶ [a]→ a. e.g. last [1,2,3] = 3.

• They are all partial functions on non-empty lists.
e.g. head [] = �.

• null ∶∶ [a] → Bool checks whether a list is
empty.

null [] = True
null (x ∶ xs) = False

6



5.1 List Generation

List Generation

• [0..25] generates the list [0,1,2..25].

• [0,2..25] yields [0,2,4..24].

• [2..0] yields [].

• The same works for all ordered types. For exam-
ple Char :

– [’a’..’z’] yields [’a’,’b’,’c’..’z’].

• [1..] yields the infinite list [1,2,3..].

List Comprehension

• Some functional languages provide a convenient
notation for list generation. It can be defined in
terms of simpler functions.

• e.g. [x × x ∣ x← [1..5],odd x] = [1,9,25].

• Syntax: [e ∣ Q1,Q2..]. Each Qi is either

– a generator x ← xs, where x is a (local)
variable or pattern of type a while xs is an
expression yielding a list of type [a], or

– a guard, a boolean valued expression (e.g.
odd x).

– e is an expression that can involve new local
variables introduced by the generators.

List Comprehension

Examples:

• [(a, b) ∣ a ← [1..3], b ← [1..2]] =
[(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)]

• [(a, b) ∣ b ← [1..2], a ← [1..3]] =
[(1,1), (2,1), (3,1), (1,2), (2,2), (3,2)]

• [(i, j) ∣ i ← [1..4], j ← [i + 1..4]] =
[(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)]

• [(i, j) ∣← [1..4], even i, j ← [i + 1..4],odd j] =
[(2,3)]

5.2 Combinators on Lists

Two Modes of Programming

• Functional programmers switch between two
modes of programming.

– Inductive/recursive mode: go into the
structure of the input data and recursively
process it.

– Combinatorial mode: compose programs
using existing functions (combinators), pro-
cess the input in stages.

• We will try the latter style today. However, that
means we have to familiarise ourselves to a large
collection of library functions.

• In the next lecture we will talk about how these
library functions can be defined, in the former
style.

Length and Indexing

• (!!) ∶∶ [a] → Int → a. List indexing starts from
zero. e.g. [1,2,3]!!0 = 1.

• length ∶∶ [a]→ Int . e.g. length [0..9] = 10.

Append and Concatenation

• Append: (++) ∶∶ [a] → [a] → [a]. In ASCII one
types (++).

– [1,2]++[3,4,5] = [1,2,3,4,5]
– []++[3,4,5] = [3,4,5] = [3,4,5]++[]

• Compare with (∶) ∶∶ a → [a] → [a]. It is a type
error to write [] ∶ [3,4,5]. (++) is defined in terms
of (∶).

• concat ∶∶ [[a]]→ [a].
– e.g. concat [[1,2], [], [3,4], [5]] =

[1,2,3,4,5].
– concat is defined in terms of (++).

Take and Drop

• take n takes the first n elements of the list. For
a definition:

take ∶∶ Int → [a]→ [a]
take 0 xs = []
take (n + 1) [] = []
take (n + 1) (x ∶ xs) = x ∶ take n xs

7



– For example, take 0 xs = []
– take 3 "abcde" = "abc"

– take 3 "ab" = "ab"

• Working with infinite list: take 5 [1..] =
[1,2,3,4,5]. Thanks to normal order (lazy) eval-
uation.

• Dually, drop n drops the first n elements of the
list. For a definition:

drop ∶∶ Int → [a]→ [a]
drop 0 xs = xs
drop (n + 1) [] = []
drop (n + 1) (x ∶ xs) = drop n xs

– For example, drop 0 xs = xs

– drop 3 "abcde" = "cd"

– drop 3 "ab" = ""
• take n xs ++drop n xs = xs, as long as n /= �.

Map and λ

• map ∶∶ (a → b) → [a] → [b]. e.g.
map (1+) [1,2,3,4,5] = [2,3,4,5,6].

• map square [1,2,3,4] = [1,4,9,16].
• Every once in a while you may need a small func-

tion which you do not want to give a name to.
At such moments you can use the λ notation:

– map (λx→ x × x) [1,2,3,4] = [1,4,9,16]
– In ASCII λ is written /.

• λ is an important primitive notion. We will talk
more about it later.

Filter

• filter ∶∶ (a→ Bool)→ [a]→ [a].
– e.g. filter even [2,7,4,3] = [2,4]
– filter (λn → n ‘mod ‘ 3 == 0) [3,2,6,7] =

[3,6]
• Application: count the number of occurrences of

′a′ in a list:

– length ⋅ filter (’a’ ==)
– Or length ⋅ filter (λx→ ’a’ == x)

• Note a list comprehension can always be trans-
lated into a combination of primitive list gener-
ators and map, filter , and concat .

Zip

• zip ∶∶ [a]→ [b]→ [(a, b)]
• e.g. zip "abcde" [1,2,3] = [(’a’,1), (’b’,2),

(’c’,3)]
• The length of the resulting list is the length of

the shorter input list.

Positions

• Exercise: define positions ∶∶ Char → String →
[Int], such that positions x xs returns the
positions of occurrences of x in xs. E.g.
positions ’o’ "roodo" = [1,2,4].

• positions x xs = map snd (filter ((x ==) ⋅
fst) (zip xs [0..])

• Or, positions x xs = map snd (filter (λ(y, i) →
x == y) (zip xs [0..])

• What if you want only the position of the first
occurrence of x?

pos ∶∶ Char → String → Int
pos x xs = head (positions x xs)

– Due to lazy evaluation (normal order eval-
uation), positions of the other occurrences
are not evaluated!

– Note For now, think of “lazy evaluation”
as another (more popular) name for normal
order evaluation. Some people distinguish
them by saying that normal order evalua-
tion is a mathematical idea while lazy eval-
uation is a way to implement normal order
evaluation.

Morals of the Story

• Lazy evaluation helps to improve modularity.

– List combinators can be conveniently re-
used. Only the relevant parts are com-
puted.

• The combinator style encourages “wholemeal
programming”.

– Think of aggregate data as a whole, and
process them as a whole!

8



6 λ expressions

• λx → e denotes a function whose argument is x
and whose body is e.

• (λx → e1) e2 denotes the function (λx → e1)
applied to e2. It can be reduced to e1 with its
free occurrences of x replaced by e2.

• E.g.

(λx→ x × x) (3 + 4)
= (3 + 4) × (3 + 4)
= 49 .

• λ expression is a primitive and essential notion.
Many other constructs can be seen as syntax
sugar of λ’s.

• For example, our previous definition of square
can be seen as an abbreviation of

square ∶∶ Int → Int
square = λx→ x × x .

– Indeed, square is merely a value that hap-
pens to be a function, which is in turn given
by a λ expression.

• λ’s are like all values — they can appear inside
an expression, be passed as parameters, returned
as results, etc.

• In fact, it is possible to build a complete pro-
gramming language consisting of only λ expres-
sions and applications. Look up “λ calculus”.

• λx→ λy → e is abbreviated to λxy → e.

• The following definitions are all equivalent:

smaller x y = if x ≤ y then x else y
smaller x = λy → if x ≤ y then x else y
smaller = λx→ λy → if x ≤ y then x else y
smaller = λxy → if x ≤ y then x else y .

7 Fold on Lists

Replacing Constructors

• The function foldr is among the most important
functions on lists.

foldr ∶∶ (a→ b→ b)→ b→ [a]→ b

• One way to look at foldr (⊕) e is that it replaces
[ ] with e and (∶) with (⊕):

foldr (⊕) e [1,2,3,4]
= foldr (⊕) e (1 ∶ (2 ∶ (3 ∶ (4 ∶ [ ]))))
= 1⊕ (2⊕ (3⊕ (4⊕ e))).

• sum = foldr (+) 0.

• One can see that id = foldr (∶) [ ].

Some Trivial Folds on Lists

• Function maximum returns the maximum ele-
ment in a list:

– maximum = foldr max -∞.

• Function prod returns the product of a list:

– prod = foldr (×) 1.

• Function and returns the conjunction of a list:

– and = foldr (&&) True.

• Lets emphasise again that id on lists is a fold:

– id = foldr (∶) [ ].

Some Slightly Complex Folds

• length = foldr (λx n→ 1 + n) 0.

• map f = foldr (λx xs → f x ∶ xs) [ ].

• xs ++ ys = foldr (∶) ys xs. Compare this with id !

• filter p = foldr (fil p) [ ] where fil p x xs =
if p x then (x ∶ xs) else xs.

The Ubiquitous Fold

• In fact, any function that takes a list as its input
can be written in terms of foldr — although it
might not be always practical.

• With fold it comes one of the most impor-
tant theorem in program calculation — the fold-
fusion theorem. We might not have time to cover
it, though.

9



8 Induction on Natural Num-
bers

Total Functional Programming

• The next few lectures concerns inductive defini-
tions and proofs of datatypes and programs.

• While Haskell provides allows one to define non-
terminating functions, infinite data structures,
for now we will only consider its total, finite frag-
ment.

• That is, we temporarily

– consider only finite data structures,

– demand that functions terminate for all
value in its input type, and

– provide guidelines to construct such func-
tions.

• Infinite datatypes and non-termination will be
discussed later in this course.

The So-Called “Mathematical Induction”

• Let P be a predicate on natural numbers.

– What is a predicate? Such a predicate can
be seen as a function of type N→ Bool .

– So far, we see Haskell functions as simple
mathematical functions too.

– However, Haskell functions will turn out to
be more complex than mere mathematical
functions later. To avoid confusion, we do
not use the notation N → Bool for predi-
cates.

• We’ve all learnt this principle of proof by induc-
tion: to prove that P holds for all natural num-
bers, it is sufficient to show that

– P 0 holds;

– P (1 + n) holds provided that P n does.

Proof by Induction on Natural Numbers

• We can see the above inductive principle as a
result of seeing natural numbers as defined by
the datatype 1

data N = 0 ∣ 1+ N .

1Not a real Haskell definition.

• That is, any natural number is either 0, or 1+ n
where n is a natural number.

• The type N is the smallest set such that

1. 0 is in N;

2. if n is in N, so is 1+ n.

• Thus to show that P holds for all natural num-
bers, we only need to consider these two cases.

• In this lecture, 1+ is written in bold font to em-
phasise that it is a data constructor (as opposed
to the function (+), to be defined later, applied
to a number 1).

Inductively Defined Functions

• Since the type N is defined by two cases, it is
natural to define functions on N following the
structure:

exp ∶∶ N→ N→ N
exp b 0 = 1
exp b (1+ n) = b × exp b n .

• Even addition can be defined inductively

(+) ∶∶ N→ N→ N
0 + n = n
(1+ m) + n = 1+ (m + n) .

• Exercise: define (×)?

Without the n + k Pattern

• Unfortunately, newer versions of Haskell aban-
doned the “n + k pattern” used in the previous
slide. And there is not a built-in type for N.
Instead we have to write:

exp ∶∶ Int → Int → Int
exp b 0 = 1
exp b n = b × exp b (n − 1) .

• For the purpose of this course, the pattern 1 + n
reveals the correspondence between N and lists,
and matches our proof style. Thus we will use it
in the lecture.

• Remember to remove them in your code.

10



Proof by Induction

• To prove properties about N, we follow the struc-
ture as well.

• E.g. to prove that exp b (m + n) = exp b m ×
exp b n.

• One possibility is to preform induction on m.
That is, prove P m for all m ∶∶ N, where P m ≡
exp b (m + n) = exp b m × exp b n.

Case m ∶= 0:

exp b (0 + n)
= { defn. of (+) }

exp b n
= { defn. of (×) }

1 × exp b n
= { defn. of exp }

exp b 0 × exp b n .

Proof by Induction

Case m ∶= 1+ m:

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1+ (m + n))
= { defn. of exp }

b × exp b (m + n)
= { induction }

b × (exp b m × exp b n)
= { (×) associative }

(b × exp b m) × exp b n
= { defn. of exp }

exp b (1+ m) × exp b n .

Structure Proofs by Programs

• The inductive proof could be carried out
smoothly, because both (+) and exp are defined
inductively on its lefthand argument (of type N).

• The structure of the proof follows the structure
of the program, which in turns follows the struc-
ture of the datatype the program is defined on.

Lists and Natural Numbers

• We have yet to prove that (×) is associative.

• The proof is quite similar to the proof for asso-
ciativity of (++), which we will talk about later.

• In fact, N and lists are closely related in struc-
ture.

• Most of us are used to think of numbers as
atomic and lists as structured data. Neither is
necessarily true.

• For the rest of the course we will demonstrate
induction using lists, while taking the properties
for N as given.

9 Induction on Lists

Inductively Defined Lists

• Recall that a (finite) list can be seen as a
datatype defined by: 2

data [a] = [] ∣ a ∶ [a] .

• Every list is built from the base case [ ], with
elements added by (∶) one by one: [1,2,3] = 1 ∶
(2 ∶ (3 ∶ [ ])).

• The type [a] is the smallest set such that

1. [ ] is in [a];
2. if xs is in [a] and x is in a, x ∶ xs is in [a]

as well.

• But what about infinite lists?

– For now let’s consider finite lists only, as
having infinite lists make the semantics
much more complicated. 3

– In fact, all functions we talk about today
are total functions. No � involved.

Inductively Defined Functions on Lists

• Many functions on lists can be defined according
to how a list is defined:

sum ∶∶ [Int]→ Int
sum [ ] = 0
sum (x ∶ xs) = x + sum xs .

map ∶∶ (a→ b)→ [a]→ [b]
map f [ ] = [ ]
map f (x ∶ xs) = f x ∶ map f xs .

2Not a real Haskell definition.
3What does that mean? We will talk about it later.

11



– sum [1..10] = 55

– map (1+) [1,2,3,4] = [2,3,4,5]

9.1 Append, and Some of Its Proper-
ties

List Append

• The function (++) appends two lists into one

(++) ∶∶ [a]→ [a]→ [a]
[ ]++ ys = ys
(x ∶ xs)++ ys = x ∶ (xs ++ ys) .

• Compare the definition with that of (+)!

Proof by Structural Induction on Lists

• Recall that every finite list is built from the base
case [ ], with elements added by (∶) one by one.

• The type [a] is the smallest set such that

1. [ ] is in [a];
2. if xs is in [a] and x is in a, x ∶ xs is in [a]

as well.

• To prove that some property P holds for all finite
lists, we show that

1. P [ ] holds;

2. P (x ∶ xs) holds, provided that P xs holds.

Appending is Associative
To prove that xs ++(ys ++ zs) = (xs ++ ys)++ zs. Case

xs ∶= [ ]:
[ ]++(ys ++ zs)

= { defn. of (++) }
ys ++ zs

= { defn. of (++) }
([ ]++ ys)++ zs .

Appending is Associative
Case xs ∶= x ∶ xs:

(x ∶ xs)++(ys ++ zs)
= { defn. of (++) }

x ∶ (xs ++(ys ++ zs))
= { induction }

x ∶ ((xs ++ ys)++ zs)
= { defn. of (++) }

(x ∶ (xs ++ ys))++ zs
= { defn. of (++) }

((x ∶ xs)++ ys)++ zs .

Length

• The function length defined inductively:

length ∶∶ [a]→ Int
length [ ] = 0
length (x ∶ xs) = 1+ length xs .

• Exercise: prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys

Concatenation

• While (++) repeatedly applies (∶), the function
concat repeatedly calls (++):

concat ∶∶ [[a]]→ [a]
concat [ ] = [ ]
concat (xs ∶ xss) = xs ++ concat xss .

• Compare with sum.

• Exercise: prove sum ⋅ concat = sum ⋅map sum.

9.2 More Inductively Defined Func-
tions

Definition by Induction/Recursion

• Rather than giving commands, in functional pro-
gramming we specify values; instead of perform-
ing repeated actions, we define values on induc-
tively defined structures.

• Thus induction (or in general, recursion) is the
only “control structure” we have. (We do iden-
tify and abstract over plenty of patterns of re-
cursion, though.)

• Note Terminology: an inductive definition, as
we have seen, define “bigger” things in terms of
“smaller” things. Recursion, on the other hand,
is a more general term, meaning “to define one
entity in terms of itself.”

• To inductively define a function f on lists, we
specify a value for the base case (f [ ]) and, as-
suming that f xs has been computed, consider
how to construct f (x ∶ xs) out of f xs.

12



Filter

• filter p xs keeps only those elements in xs that
satisfy p.

filter ∶∶ (a→ Bool)→ [a]→ [a]
filter p [ ] = [ ]
filter p (x ∶ xs) ∣ p x = x ∶ filter p xs

∣ otherwise = filter p xs .

Take and Drop

• Recall take and drop, which we used in the pre-
vious exercise.

take ∶∶ Int → [a]→ [a]
take 0 xs = [ ]
take (1+ n) [ ] = [ ]
take (1+ n) (x ∶ xs) = x ∶ take n xs .

drop ∶∶ Int → [a]→ [a]
drop 0 xs = xs
drop (1+ n) [ ] = [ ]
drop (1+ n) (x ∶ xs) = drop n xs .

• Prove: take n xs ++drop n xs = xs, for all n and
xs.

TakeWhile and DropWhile

• takeWhile p xs yields the longest prefix of xs such
that p holds for each element.

takeWhile ∶∶ (a→ Bool)→ [a]→ [a]
takeWhile p [ ] = [ ]
takeWhile p (x ∶ xs) ∣ p x = x ∶ takeWhile p xs

∣ otherwise = [ ] .

• dropWhile p xs drops the prefix from xs.

dropWhile ∶∶ (a→ Bool)→ [a]→ [a]
dropWhile p [ ] = [ ]
dropWhile p (x ∶ xs) ∣ p x = dropWhile p xs

∣ otherwise = x ∶ xs .

• Prove: takeWhile p xs ++dropWhile p xs = xs.

List Reversal

• reverse [1,2,3,4] = [4,3,2,1].
reverse ∶∶ [a]→ [a]
reverse [ ] = [ ]
reverse (x ∶ xs) = reverse xs ++[x] .

All Prefixes and Suffixes

• inits [1,2,3] = [[ ], [1], [1,2], [1,2,3]]
inits ∶∶ [a]→ [[a]]
inits [ ] = [[ ]]
inits (x ∶ xs) = [ ] ∶ map (x ∶) (inits xs) .

• tails [1,2,3] = [[1,2,3], [2,3], [3], [ ]]
tails ∶∶ [a]→ [[a]]
tails [ ] = [[ ]]
tails (x ∶ xs) = (x ∶ xs) ∶ tails xs .

Totality

• Structure of our definitions so far:

f [ ] = . . .
f (x ∶ xs) = . . . f xs . . .

– Both the empty and the non-empty cases
are covered, guaranteeing there is a match-
ing clause for all inputs.

– The recursive call is made on a “smaller”
argument, guranteeing termination.

• Together they guarantee that every input is
mapped to some output. Thus they define to-
tal functions on lists.

9.3 Other Patterns of Induction

Variations with the Base Case

• Some functions discriminate between several
base cases. E.g.

fib ∶∶ N→ N
fib 0 = 0
fib 1 = 1
fib (2 + n) = fib (1 + n) + fib n .

• Some functions make more sense when it is de-
fined only on non-empty lists:

f [x] = . . .
f (x ∶ xs) = . . .

• What about totality?

– They are in fact functions defined on a dif-
ferent datatype:

data [a]+ = Singleton a ∣ a ∶ [a]+ .

13



– We do not want to define map, filter again
for [a]+. Thus we reuse [a] and pretend
that we were talking about [a]+.

– It’s the same with N. We embedded N into
Int .

– Ideally we’d like to have some form of sub-
typing. But that makes the type system
more complex.

Lexicographic Induction

• It also occurs often that we perform lexicographic
induction on multiple arguments: some argu-
ments decrease in size, while others stay the
same.

• E.g. the function merge merges two sorted lists
into one sorted list:

merge ∶∶ [Int]→ [Int]→ [Int]
merge [ ] [ ] = [ ]
merge [ ] (y ∶ ys) = y ∶ ys
merge (x ∶ xs) [ ] = x ∶ xs
merge (x ∶ xs) (y ∶ ys) ∣ x ≤ y = x ∶ merge xs (y ∶ ys)

∣ otherwise = y ∶ merge (x ∶ xs) ys .

Zip

Another example:

zip ∶∶ [a]→ [b]→ [(a, b)]
zip [ ] [ ] = [ ]
zip [ ] (y ∶ ys) = [ ]
zip (x ∶ xs) [ ] = [ ]
zip (x ∶ xs) (y ∶ ys) = (x, y) ∶ zip xs ys .

Non-Structural Induction

• In most of the programs we’ve seen so far, the
recursive call are made on direct sub-components
of the input (e.g. f (x ∶ xs) = ..f xs..). This is
called structural induction.

– It is relatively easy for compilers to recog-
nise structural induction and determine
that a program terminates.

• In fact, we can be sure that a program terminates
if the arguments get “smaller” under some (well-
founded) ordering.

Mergesort

• In the implemenation of mergesort below, for ex-
ample, the arguments always get smaller in size.

msort ∶∶ [Int]→ [Int]
msort [ ] = [ ]
msort [x] = [x]
msort xs = merge (msort ys) (msort zs) ,

where n = length xs ‘div ‘ 2
ys = take n xs
zs = drop n xs .

– What if we omit the case for [x]?
• If all cases are covered, and all recursive calls

are applied to smaller arguments, the program
defines a total function.

A Non-Terminating Definition

• Example of a function, where the argument to
the recursive does not reduce in size:

f ∶∶ Int → Int
f 0 = 0
f n = f n .

• Certainly f is not a total function. Do such def-
initions “mean” something? We will talk about
these later.

10 User Defined Inductive
Datatypes

Internally Labelled Binary Trees

• This is a possible definition of internally labelled
binary trees:

data Tree a = Null ∣ Node a (Tree a) (Tree a) ,

• on which we may inductively define functions:

sumT ∶∶ Tree N→ N
sumT Null = 0
sumT (Node x t u) = x + sumT t + sumT u .

Exercise: given (↓) ∶∶ N → N → N, which yields
the smaller one of its arguments, define the following
functions

1. minT ∶∶ Tree N → N, which computes the mini-
mal element in a tree.

14



2. mapT ∶∶ (a → b) → Tree a → Tree b, which ap-
plies the functional argument to each element in
a tree.

3. Can you define (↓) inductively on N? 4

Induction Principle for Tree

• What is the induction principle for Tree?

• To prove that a predicate P on Tree holds for
every tree, it is sufficient to show that

1. P Null holds, and;

2. for every x, t, and u, if P t and P u holds,
P (Node x t u) holds.

• Exercise: prove that for all n and t,
minT (mapT (n+) t) = n + minT t. That is,
minT ⋅mapT (n+) = (n+) ⋅minT .

Induction Principle for Other Types

• Recall that data Bool = False ∣ True. Do we
have an induction principle for Bool?

• To prove a predicate P on Bool holds for all
booleans, it is sufficient to show that

1. P False holds, and

2. P True holds.

• Well, of course.

• What about (A×B)? How to prove that a pred-
icate P on (A ×B) is always true?

• One may prove some property P1 on A and some
property P2 on B, which together imply P .

• That does not say much. But the “induction
principle” for products allows us to extract, from
a proof of P , the proofs P1 and P2.

• Every inductively defined datatype comes with its
induction principle.

• We will come back to this point later.

4In the standard Haskell library, (↓) is called min.

References

[Bir98] Richard Simpson Bird. Introduction to
Functional Programming using Haskell.
Prentice Hall, 1998.

[DI02] Hal Daume III. Yet another haskell tu-
torial. http://en.wikibooks.org/wiki/

Haskell/YAHT, 2002.

[HPF00] Paul Hudak, John Peterson, and Joseph
Fasel. A gentle introduction to haskell,
version 98. http://www.haskell.org/

tutorial/, 2000.

[Hut07] Graham Hutton. Programming in Haskell.
Cambridge University Press, 2007.

[Lip11] Miran Lipovača. Learn You a Haskell for
Great Good! No Starch Press, 2011. Avail-
able online at http://learnyouahaskell.
com/.

[OSG98] Bryan O’Sullivan, Don Stewart, and John
Goerzen. Real World Haskell. O’Reilly,
1998. Available online at http://book.

realworldhaskell.org/.

15



A GHCi Commands

⟨statement⟩ evaluate/run ⟨statement⟩
: repeat last command
:\{\n ..lines.. \n:\}\n} multiline command
:add [*]<module> ... add module(s) to the current target set
:browse[!] [[*]<mod>] display the names defined by module <mod> (!: more details; *:

all top-level names)
:cd <dir> change directory to <dir>

:cmd <expr> run the commands returned by <expr>::IO String

:ctags[!] [<file>] create tags file for Vi (default: "tags") (!: use regex instead of
line number)

:def <cmd> <expr> define command :<cmd> (later defined command has precedence,
::<cmd> is always a builtin command)

:edit <file> edit file
:edit edit last module
:etags [<file>] create tags file for Emacs (default: "TAGS")
:help, :? display this list of commands
:info [<name> ...] display information about the given names
:issafe [<mod>] display safe haskell information of module <mod>

:kind <type> show the kind of <type>
:load [*]<module> ... load module(s) and their dependents
:main [<arguments> ...] run the main function with the given arguments
:module [+/-] [*]<mod> ... set the context for expression evaluation
:quit exit GHCi
:reload reload the current module set
:run function [<arguments> ...] run the function with the given arguments
:script <filename> run the script <filename>
:type <expr> show the type of <expr>
:undef <cmd> undefine user-defined command :<cmd>

:!<command> run the shell command <command>

Commands for debugging

:abandon at a breakpoint, abandon current computation
:back go back in the history (after :trace)
:break [<mod>] <l> [<col>] set a breakpoint at the specified location
:break <name> set a breakpoint on the specified function
:continue resume after a breakpoint
:delete <number> delete the specified breakpoint
:delete * delete all breakpoints
:force <expr> print <expr>, forcing unevaluated parts
:forward go forward in the history (after :back)
:history [<n>] after :trace, show the execution history
:list show the source code around current breakpoint
:list identifier show the source code for <identifier>
:list [<module>] <line> show the source code around line number <line>
:print [<name> ...] prints a value without forcing its computation
:sprint [<name> ...] simplifed version of :print
:step single-step after stopping at a breakpoint
:step <expr> single-step into <expr>

16



:steplocal single-step within the current top-level binding
:stepmodule single-step restricted to the current module
:trace trace after stopping at a breakpoint
:trace <expr> evaluate <expr> with tracing on (see :history)

Commands for changing settings

:set <option> ... set options
:seti <option> ... set options for interactive evaluation only
:set args <arg> ... set the arguments returned by System.getArgs

:set prog <progname> set the value returned by System.getProgName

:set prompt <prompt> set the prompt used in GHCi
:set editor <cmd> set the command used for :edit
:set stop [<n>] <cmd> set the command to run when a breakpoint is hit
:unset <option> ... unset options

Options for :set and :unset

+m allow multiline commands
+r revert top-level expressions after each evaluation
+s print timing/memory stats after each evaluation
+t print type after evaluation
-<flags> most GHC command line flags can also be set here (eg. -v2,

-fglasgow-exts, etc). For GHCi-specific flags, see User’s Guide,
Flag reference, Interactive-mode options.

Commands for displaying information

:show bindings show the current bindings made at the prompt
:show breaks show the active breakpoints
:show context show the breakpoint context
:show imports show the current imports
:show modules show the currently loaded modules
:show packages show the currently active package flags
:show language show the currently active language flags
:show <setting> show value of <setting>, which is one of [args, prog, prompt,

editor, stop]
:showi language show language flags for interactive evaluation

17


