PROPOSITIONAL LOGIC (SESSION 1)

ANTHONY W. LIN YALE-NUS COLLEGE, SINGAPORE

WHY STUDY FORMAL LOGIC?

- Aid reasoning
- Remove ambiguity in natural language
- Mechanise reasoning
- Deep connection with computation

WHY STUDY PROPOSITIONAL LOGIC?

- The simplest, yet the most useful, formal logic
- One of the oldest formal logic (from 300 BC)
- Ubiquitous in computer science

OUR GOAL TODAY

- Introduction (reminder?) to propositional logic
- Be familiar with fundamental concepts, e.g.,:
 - syntax and semantics
 - satisfiability vs. validity
 - proofs
 - normal forms
- Getting started with SAT-solvers
- Solving interesting problems with SAT

FOOD FOR THOUGHT

How does logic relate to computation? How does logic relate to programming?

SYNTAX (APPEARANCE) VS. SEMANTICS (MEANING)

PROPOSITIONAL LOGIC: SYNTAX OF FORMULAS

(Atomic) Proposition (a.k.a. variable): P, Q, ...
e.g. P = "It rains" Q = "I am wet"
(Logical) Connectives: ∧, ∨, ↔, →, ¬, ⊕
e.g. P → Q

e.g. $(p \lor (q \to \neg a)) \land (\neg p \lor a \lor \neg b)$

CONNECTIVES (OPERATORS)

 $\land, \lor, \leftrightarrow,
ightarrow, \oplus$ are binary operators

☐ is a unary operator

The names are:

- AND: ∧ (和) a.k.a. conjunction
- OR: ∨ (或) a.k.a. disjunction
- IMPLIES (If X, then Y): → (若X則Y)
- IF AND ONLY IF (IFF): ↔ (若且唯若)
- EXCLUSIVE OR (XOR): ⊕

WARNING: SO FAR, FORMULAS ARE JUST A BUNCH OF SYMBOLS WITH NO "MEANINGS"

PROPOSITIONAL LOGIC: SEMANTICS OF FORMULAS

Goal: assigning "meanings" to formulas

No grey area: a formula can only be 100% true or 100% false! a.k.a. (truth) assignment

An interpretation *I* is a function mapping each proposition to either **1** (True) or **0** (False)

Logicians often write $I \models F$ (read: *I* satisfies *F*) if *I* makes the formula *F* true (defined by induction on *F*)

EXTENDING THE SEMANTICS TO GENERAL FORMULAS

Enumerate all the cases using a truth table

I(A)	I(B)	$I(A \wedge B)$
0	0	0
0	1	0
1	0	0
1	1	1

<u>Note</u>: Sometimes people omit mention of I <u>Example</u>: A ="I ate today", B = "I ate yesterday"

TASK: WRITE A TRUTH TABLE FOR EACH OF THE OTHER CONNECTIVES

ANSWER: CHECK ONLINE/TEXTBOOK (DO IT NOW IF YOU HAVEN'T!!)

COMMON PITFALLS

• OR in logic is not necessarily exclusive, unlike daily usage, e.g., He will join us, or he will die.

Darth Vader (talking about Luke Skywalker), Star Wars: Emperor Strikes Back.

- Fifty shades of natural languages (e.g. THEN):
 - 1. Past time: I was eating then so couldn't answer
 - 2. Sequence: Finish homework, then play
 - 3. Logical inference: If it rains, then I'll be wet
 - 4. In addition: I moved to Taipei because I like the city, and <u>then</u> there's so many other contributing factors.

COMMON PITFALLS (CONT.)

- $P \rightarrow Q$ can be "vacuously" true when P is false
 - P = "馬英九 is British" Q = "馬英九 is European"

PARSING AMBIGUITY

Question: Does $A \land B \lor C$ mean $(A \land B) \lor C$ or $A \land (B \lor C)$?

<u>Rule 1</u>: Always bracket your formulas to prevent parsing ambiguity

<u>Rule 2</u>: Avoid unnecessary bracketing, e.g., never write:

 $(((A) \land (B \lor C)))$

TASK: WRITE A TRUTH TABLE FOR: 1. $(A \land B) \lor C$ 2. $A \land (B \lor C)$

LOOK DIFFERENT BUT MEAN THE SAME

(SEMANTICAL) EQUIVALENCE

Two formulas F and F' are (semantically) equivalent (write $F \equiv F'$) if they agree on every interpretation, i.e., For each I, I(F) = I(F')

<u>Exercises</u>: check whether the following equivalences hold

1. $(A \land B) \lor C \equiv A \land (B \lor C)$ 2. $A \land B \equiv B \land A$ 3. $A \equiv \neg \neg A$

WORKED-OUT EXAMPLE 1

<u>Task</u>: Prove that $A \rightarrow B \equiv \neg A \lor B$

Solution:

A	B	$\neg A$	$A \to B$	$\neg A \lor B$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

These values agree!

WORKED-OUT EXAMPLE 2

Task: Disprove the equivalence

$$(A \land B) \lor C \equiv A \land (B \lor C)$$

<u>Solution</u>: Only need to find one interpretation where the two sides disagree, e.g.,

 $A\mapsto 0, B\mapsto 0, C\mapsto 1$

MORE EQUIVALENT FORMULAS

Exercise:

IFF = If and only if $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$

Two De-Morgan's Laws: $\neg(A \lor B) \equiv \neg A \land \neg B$ $\neg(A \land B) \equiv \neg A \land \neg B$ $\neg(A \land B) \equiv \neg A \lor \neg B$ Distributivity: $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

MORE EXERCISES

Express the all-true formula \top in terms of \neg , V 1. Express the all-false formula \perp in terms of \neg , \land 2. 3. Prove that Λ is commutative and associative $A \wedge B \equiv B \wedge A$ $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ 4. Prove the same as (3) holds for \vee 5. Prove "Identity Laws": $A \wedge T = A$ $A \lor \bot = A$

MORE EXERCISES

6. Prove "Domination Laws": A ∧ ⊥ = ⊥ A ∨ ⊤ = ⊤
7. Prove "Idempotent Laws": A ∧ A = A A ∨ A = A
8. Prove "Contraposition": A → B ≡ ¬B → ¬A

MORE EXERCISE

Prove "Modus Ponens":

$(A \to B) \land A \equiv A \land B$

e.g. If I eat, then I don't starve. I eat. Therefore, I don't starve

Prove "Modus Tollens":

$$(A \to B) \land \neg B \equiv \neg A \land \neg B$$

SUBSTITUTION PRINCIPLE

Motivation: We have proven that $A \rightarrow B \equiv \neg A \lor B$ Q1: Can we deduce a similar equivalence? $(A \land C) \rightarrow B \equiv \neg (A \land C) \lor B$

Q2: What about the following? $(A \land C) \rightarrow B \equiv (\neg A \lor \neg C) \lor B$

YES! No need to reprove. Just use the substitution principle

SUBSTITUTION PRINCIPLE (CONT)

A variable substitution is a function σ mapping variables to formulas, e.g.,

 $A \mapsto (A \wedge C)$

Extend this to all formulas by applying to each occurrence of a variable, e.g.,

 $\sigma(A \to B) = (A \land C) \to B$

SUBSTITUTION PRINCIPLE (CONT)

THEOREM: Given two equivalent formulas F,F' and two variable substitution σ, σ' , if for each variable A

$\sigma(A) \equiv \sigma'(A)$

then

 $\sigma(F) \equiv \sigma'(F')$

Note: People often use this theorem without even knowing

EXAMPLE

To prove that $(A \wedge C) \rightarrow B \equiv (\neg A \vee \neg C) \vee B$, Step 1: $A \rightarrow B \equiv \neg A \lor B$ (shown before) Step 2: $(A \land C) \rightarrow B \equiv \neg (A \land C) \lor B$ using substitution principle ($\sigma = \sigma' : A \mapsto A \land C$) Step 3: $\neg (A \land C) \equiv \neg A \lor \neg C$ (De Morgan's) Step 4: $\neg (A \land C) \lor B \equiv (\neg A \lor \neg C) \lor B$ (sub. pr.)

COROLLARIES OF SUBSTITUTION PRINCIPLES

All basic equivalences generalise to formulas, e.g., $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$ $\neg (A \lor B) \equiv \neg A \land \neg B$ $\neg (A \land B) \equiv \neg A \lor \neg B$ $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

where A, B, and C are formulas

EXERCISE

Prove that all propositional logic formulas can be expressed in terms of the following operators:

1. \neg , \land 2. \neg , \lor 3. \neg , \rightarrow

Note: make your use of substitution principles explicit

EXERCISE (HARDER)

<u>Q1</u>: Provide a recursive definition of propositional formulas

<u>Q2</u>: Prove substitution principle by induction

SATISFIABILITY, VALIDITY, AND ALL THAT

MOTIVATION

- Satisfiability and validity are fundamental concepts
- Especially useful for applications in computer science (e.g. constraint programming, knowledge reasoning, databases, verification, ...)

SATISFIABILITY VS. VALIDITY

A formula is:

satisfiable if it is true under some interpretation, eg "I ate today" and "I ate yesterday"
valid if it is true under all interpretations, eg ((Eat → ¬Starve) ∧ Eat) → ¬Starve
unsatisfiable if it is not satisfiable, eg "I cannot do it ..." but actually "I can"

PONDERABLES

Q1: Can a formula and its negation be both satisfiable?

A1: YES!

Q2: What is the relationship between satisfiability and validity?

A2: A formula is valid iff its negation is unsatisfiable

MORE PONDERABLES

Q3: What is the connection between validity and equivalence?

A3: $F \equiv F'$ iff the formula $F \leftrightarrow F'$ is valid

EXERCISES

Q1: Why is the following formula valid? ((Eat $\rightarrow \neg$ Starve) \land Eat) $\rightarrow \neg$ Starve

Q2: Prove satisfiability, and disprove validity of:
((Eat → ¬Starve) ∧ ¬Starve) → Eat
Q3: Formalise and prove validity of: "If Eric studies, he does not fail exams. If Eric does not play too often, he studies. Eric fails exams. Thus, Eric plays too often."

TECHNIQUES FOR CHECKING SATISFIABILITY/VALIDITY

- 1. <u>Truth table</u>. Exponential-time (in # variables)
- 2. <u>Sequent calculus</u> (using equivalences). Can be faster, but slow in the worst case.
- 3. <u>Resolution</u>: A bit similar to sequent calculus
- 4. DPLL: Fast in practice (Ric will cover it)