Quantifier-Free Equality and Data Structures

Ming-Hsien Tsai Academia Sinica

Reference book: Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to Verification. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Theory of Equality

- Denoted by T_E
- Referred to as the theory of EUF (Equality with Uninterpreted Functions)
- Play a central role in combining theories that share the equality predicate

In This Lecture

- The theory T_E and its quantifier-free fragment
- Deciding T_E -satisfiability of quantifier-free Σ_E -formulae
 - Congruence closure algorithm
- Implementation of the decision procedure
- T_{RDS} recursive data structures
 - T_{cons} lists
- T_A arrays

Relations

Binary Relation

- Consider a set S and a binary relation R over S
- For two elements $s_1, s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$

S: Integers

R: <

S: Humans

R: IsChildOf

Equivalence Relation

- The relation R is an equivalence relation if it is
 - reflexive: $\forall s \in S$. sRs;
 - symmetric: $\forall s_1, s_2 \in S$. $s_1Rs_2 \rightarrow s_2Rs_1$;
 - transitive: $\forall s_1, s_2, s_3 \in S$. $s_1Rs_2 \land s_2Rs_3 \rightarrow s_1Rs_3$

$$=$$
, $\bullet \equiv \bullet \pmod{c}$

Congruence Relation

 The relation R is a congruence relation if it additionally obeys congruence: for every n-ary function f,

$$\forall S, T. (\land_{i=1 \text{ to } n} s_i Rt_i) \rightarrow f(S) Rf(T)$$

Theory of Equality

Signature of T_E

$$\Sigma_E: \{=, a, b, c, ..., f, g, h, ..., p, q, r, ...\},$$

consists of

- =, a binary predicate;
- and all constant, function and predicate symbols

Σ_E -formulae

$$\bullet \quad x = g(y, x) \to f(x) = f(g(y, z))$$

•
$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

$$f(a) \neq a$$
 abbreviates $\neg (f(a) = a)$

Axioms of Equality

- Reflexivity
 - \bullet $\forall x. \ x = x$
- Symmetry
 - $\forall x, y. \ x = y \rightarrow y = x$
- Transitivity
 - $\forall x, y, z$. $x = y \land y = z \rightarrow x = z$

Axioms of Equality

- Reflexivity
 - \bullet $\forall x. \ x = x$

with the three axioms, = is defined to be an equivalence relation

- Symmetry
 - $\forall x,y. \ x=y \rightarrow y=x$
- Transitivity
 - $\forall x, y, z$. $x = y \land y = z \rightarrow x = z$

Equality of Function Terms

When two function terms are equal?

$$f(x) = f(g(y, z))$$

Function Congruence

- Function congruence (axiom schema)
 - $\forall X, Y$. $(\land_{i=1 \text{ to } n} x_i = y_i) \rightarrow f(X) = f(Y)$
- Instantiated axioms:
 - $\forall x,y. \ x=y \rightarrow f(x)=f(y)$
 - $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow g(x_1, x_2) = g(y_1, y_2)$

Function Congruence

Function congruence (axiom schema)

•
$$\forall X, Y$$
. $(\land_{i=1 \text{ to } n} x_i = y_i) \rightarrow f(X) = f(Y)$

Instantiated axioms:

•
$$\forall x,y. \ x=y \rightarrow f(x)=f(y)$$

$$ullet$$
 $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow g(x_1, x_2) = g(y_1, y_2)$

makes = a congruence relation

Capital *X* and *Y* are vectors of variables

Predicate Congruence

- Predicate congruence
 - $\forall X, Y$. $(\land_{i=1 \text{ to } n} x_i = y_i) \rightarrow (p(X) \leftrightarrow p(Y))$

- Is the following Σ_E -formula T_E -satisfiable?
 - $f(x) = f(y) \land x \neq y$

$$x \neq y$$
 abbreviates $\neg(x = y)$

Is the following Σ_E -formula T_E -satisfiable?

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

Is the following Σ_E -formula T_E -satisfiable?

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

1.
$$f(f(f(a))) = f(a)$$
 (function congruence)

Is the following Σ_E -formula T_E -satisfiable?

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

1.
$$f(f(f(a))) = f(a)$$

(function congruence)

2.
$$f(f(f(f(a)))) = f(f(a))$$

(function congruence)

Is the following Σ_E -formula T_E -satisfiable?

$$f(f(f(a))) = a \land f(f(f(f(a))))) = a \land f(a) \neq a$$

1.
$$f(f(f(a))) = f(a)$$

(function congruence)

2.
$$f(f(f(f(a)))) = f(f(a))$$

(function congruence)

3.
$$f(f(a)) = f(f(f(f(a))))$$

(symmetry)

Is the following Σ_E -formula T_E -satisfiable?

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

1.
$$f(f(f(a))) = f(a)$$

(function congruence)

2.
$$f(f(f(f(a)))) = f(f(a))$$

(function congruence)

3.
$$f(f(a)) = f(f(f(f(a))))$$

(symmetry)

4.
$$f(f(a)) = a$$

(transitivity)

Get Rid of Predicate Congruence

- Transform a Σ_E -formula to a Σ_E -formula without predicates other than =
- Example p1
 - $x = y \rightarrow (p(x) \leftrightarrow p(y))$ is transformed to
 - $x = y \rightarrow ((f_p(x) = \bullet) \leftrightarrow (f_p(y) = \bullet))$
- Example p2
 - $p(x) \wedge q(x, y) \wedge q(y, z) \rightarrow \neg q(x, z)$ is transformed to
 - $f_p(x) = \bullet \land f_q(x, y) = \bullet \land f_q(y, z) = \bullet \rightarrow f_q(x, z) \neq \bullet$

In The Following

- Consider Σ_E -formulae without predicates other than
- T_E -satisfiability of Σ_E -formulae is undecidable
 - Σ_E -formula means quantifier-free Σ_E -formula
- Consider formulae in disjunctive normal form (DNF)

$$(a_1 \wedge a_2 \wedge ... \wedge a_n) \vee ... \vee (b_1 \wedge b_2 \wedge ... \wedge b_m)$$

Congruence Closure Algorithm

Observation

- Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive literals s=t of a Σ_E -formula F produces more equalities over terms occurring in F
- There are only a finite number of terms in F
- Only a finite number of equalities among these terms are possible
- Then, either
 - some equality is formed that directly contradicts a negative literal s' ≠ t' of
 F; or
 - the propagation of equalities ends without finding a contradiction

Observation

- Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive literals s=t of a Σ_E -formula F produces more equalities over terms occurring in F
- There are only a finite number of terms in F
- Only a finite number of equalities among these terms are possible
- Then, either
 - some equality is formed that directly contradicts a negative literal s' ≠ t' of
 F; or
 - the propagation of equalities ends without finding a contradiction

form the congruence closure of =

Class

- Consider an equivalence relation R over a set S
- The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{\text{\tiny def}}{=} \{s' \in S : sRs'\}$$

• If R is a congruence relation over S, then $[s]_R$ is the congruence class of s

Example of Class

 Consider the set Z of integers and the equivalence relation =₂ such that

•
$$m \equiv_2 n \text{ iff } (m \mod 2) = (n \mod 2)$$

$$[3]_{\equiv 2} = \{n \in \mathbb{Z} : (n \mod 2) = (3 \mod 2)\}$$

= $\{n \in \mathbb{Z} : (n \mod 2) = 1\}$
= $\{n \in \mathbb{Z} : n \text{ is odd}\}$

Partition

A partition P of S is a set of subsets of S that is total,

$$(\cup_{S'\in P} S') = S,$$

and disjoint,

$$\forall S_1, S_2 \in P. \ S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$$

Quotient

- The quotient S/R of S by the equivalence (congruence) relation R is a partition of S: it is a set of equivalence (congruence) classes
 - $S/R = \{ [s]_R : s \in S \}$

Example of Quotient

- The quotient \mathbb{Z}/\equiv_2 is a partition: it is the set of equivalence classes
 - $\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$

Equivalence Relation, Partition, and Quotient

- An equivalence relation R induces a partition S/R of S
- A given partition P of S induces an equivalence relation over S
 - s_1Rs_2 iff for some $S' \in P$, both $s_1,s_2 \in S'$

Relation Refinement

- Consider two binary relations R_1 and R_2 over the set S
- R_1 is a refinement of R_2 , or $R_1 < R_2$, if
 - $\forall s_1, s_2 \in S$. $s_1 R_1 s_2 \to s_1 R_2 s_2$
- We also say that R_1 refines R_2
- Viewing the relations as sets of pairs, $R_1 \subseteq R_2$

Example 1 of Relation Refinement

- $S = \{a, b\}$
- $R_1: \{aR_1b\}$
- $R_2: \{aR_2b, bR_2b\}$
- $R_1 < R_2$

Example 2 of Relation Refinement

- Consider set S
- $\bullet R_1 : \{sR_1s : s \in S\}$
- $R_2: \{sR_2t: s,t \in S\}$
- $R_1 < R_2$

Example 2 of Relation Refinement

• Consider set S

•
$$R_1: \{sR_1s: s \in S\}$$
 $P_1: \{\{s\}: s \in S\}$

- $R_2: \{sR_2t: s,t \in S\}$
- $\bullet \quad R_1 < R_2$

Example 2 of Relation Refinement

Consider set S

•
$$R_1: \{sR_1s: s \in S\}$$
 $P_1: \{\{s\}: s \in S\}$

•
$$R_2: \{sR_2t: s,t \in S\}$$
 $P_2: \{S\}$

 $\bullet \quad R_1 < R_2$

Example 3 of Relation Refinement

- Consider the set Z
- $R_1: \{xR_1y: x \ mod \ 2=y \ mod \ 2\}$
- $R_2: \{xR_1y: x \ mod \ 4 = y \ mod \ 4\}$
- $\bullet \quad R_2 < R_1$

Closure

- The equivalence closure \mathbb{R}^E of the binary relation \mathbb{R} over S is the equivalence relation such that
 - R refines R^E : $R < R^E$;
 - for all other equivalence relations R' such that R < R', either
 - $R' = R^E$, or
 - $R^E < R'$
- ${\it R}^{\it E}$ is the smallest equivalence relation that covers ${\it R}$

Example of Equivalence Closure

- Then,
 - $aRb, bRc, dRd \in R^{E}$ (since $R \subseteq R^{E}$);
 - $aRa, bRb, cRc \in R^{E}$ (by reflexivity);
 - $bRa, cRb \in R^{E}$ (by symmetry);
 - $aRc \in R^{E}$ (by transitivity);
 - $cRa \in R^{E}$ (by symmetry);

- $S = \{a, b, c, d\}$
- $R = \{aRb, bRc, dRd\}$

- Hence
 - $\bullet \ \ R^E = \{\mathit{aRb}, \ \mathit{bRa}, \ \mathit{aRa}, \ \mathit{bRb}, \ \mathit{bRc}, \ \mathit{cRb}, \ \mathit{cRc}, \ \mathit{aRc}, \ \mathit{cRa}, \ \mathit{dRd}\}$

Congruence Closure

• The congruence closure ${\cal R}^C$ of ${\cal R}$ is the smallest congruence relation that covers ${\cal R}$

Congruence Closure

• The congruence closure ${\cal R}^{C}$ of ${\cal R}$ is the smallest congruence relation that covers ${\cal R}$

Compute the congruence closure of a term set

Subterm Set

- Subterm set S_F of Σ_E -formula F is the set that contains precisely the subterms of F
- Example:
 - $F: f(a, b) = a \land f(f(a, b), b) \neq a$
 - $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

Congruence Relation over Subterm Set

$$F: s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

- F is T_E -satisfiable iff there exists a congruence relation ~ over S_F such that
 - for each $i \in \{1, ..., m\}, s_i \sim t_i$;
 - for each $i \in \{m + 1, ..., n\}, s_i \neq t_i$

T_E -interpretation

- The congruence relation ~ defines a T_E -interpretation I: $(D_{\rm I}, \, a_I)$ of F
 - D_I consists of $|S_F| / \sim |$ elements
 - a_I assigns elements of D_I to the terms of S_F in a way that respects ~
 - a_I assigns to = a binary relation over D_I that behaves like \sim
- We abbreviate $(D_I, a_I) \models F$ with $\sim \models F$

Congruence Closure Algorithm

$$F: s_1 = t_1 \wedge \ldots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_n \neq t_n$$

1. Construct the congruence closure ~ of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F

- 2. If $s_i \sim t_i$ for any $i \in \{m+1, ..., n\}$, return unsatisfiable
- 3. Otherwise, $\sim \models F$, so return satisfiable

Step 1

- Begin with \sim_0 given by the partition $\{\{s\}: s \in S_F\}$
- Import $s_i=t_i$ by merging the congruence classes $[s_i]_{\sim i-1}$ and $[t_i]_{\sim i-1}$
 - Form the union of $[s_i]_{\sim i-1}$ and $[t_i]_{\sim i-1}$
 - Propagate new congruences that arise within the union

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

• $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

• $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

$$(f(a, b) = a)$$

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

• $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$

$$(f(a, b) = a)$$

• $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

- $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$
- $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

$$(f(a, b) = a)$$

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

•
$$\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$$

$$(f(a, b) = a)$$

• $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

(function congruence)

• $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

•
$$\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$$

$$(f(a, b) = a)$$

• $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$

- $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$
- T_E -unsatisfiable

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

• $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

•
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}\$$
 $(f^3(a) = a)$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

- $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f'(a)\}, \{f'(a)\}, \{f'(a)\}, \{f'(a)\}\}\$ $(f^3(a) = a)$
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

•
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

$$(f^3(a) = a)$$

• $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

- $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

(function congruence)

• $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

- $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$

(function congruence)

• $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$

$$(f^5(a) = a)$$

 $(f^3(a) = a)$

$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

- $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
- $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$
- $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$

$$(f^3(a) = a)$$

$$(f^5(a) = a)$$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

•
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

•
$$\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$
- $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$

$$(f^3(a) = a)$$

(function congruence)

$$(f^5(a) = a)$$

$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

•
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

•
$$\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

• $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$

•
$$\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

• $\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$

$$(f^3(a) = a)$$

(function congruence)

$$(f^{5}(a) = a)$$

$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

•
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

•
$$\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

- $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$
- $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$
- $\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$

$$(f^3(a) = a)$$

(function congruence)

$$(f^5(a) = a)$$

(function congruence)

 T_E -unsatisfiable

$$F: f(x) = f(y) \land x \neq y$$

• $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$

$$F: f(x) = f(y) \land x \neq y$$

•
$$\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}\$$

$$(f(x) = f(y))$$

$$F: f(x) = f(y) \land x \neq y$$

•
$$\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$$

$$(f(x) = f(y))$$

• $\{\{x\}, \{y\}, \{f(x), f(y)\}\}$

$$F: f(x) = f(y) \land x \neq y$$

•
$$\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$$

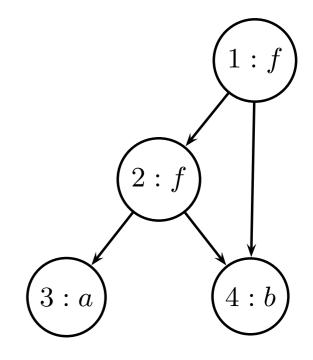
$$(f(x) = f(y))$$

- $\{\{x\}, \{y\}, \{f(x), f(y)\}\}$
- T_E -satisfiable

Implementation

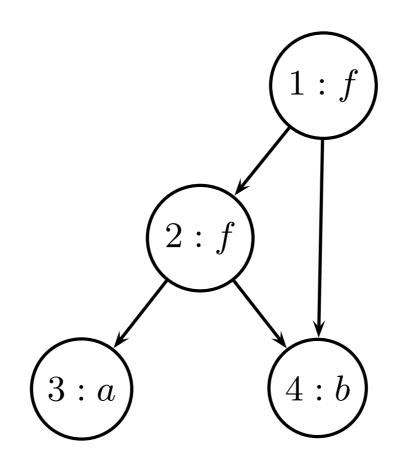
DAG

- A directed graph $G: \langle N, E \rangle$
 - nodes $N = \{n_1, n_2, ..., n_k\}$
 - edges $E = \{..., \langle n_i, n_j \rangle, ...\}$



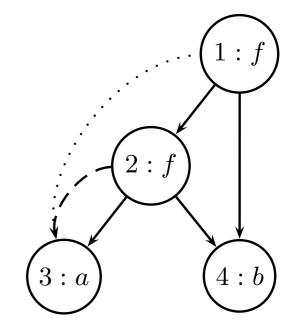
 A directed acyclic graph (DAG) is a directed graph containing no loop (or cycle)

Subterm Set as DAG



 $\{a, b, f(a, b), f(f(a, b), b)\}$

Node



```
type node = \{
```

id: id

fn: string

args: id list

mutable find: id

mutable ccpar: id set

(unique identification number)

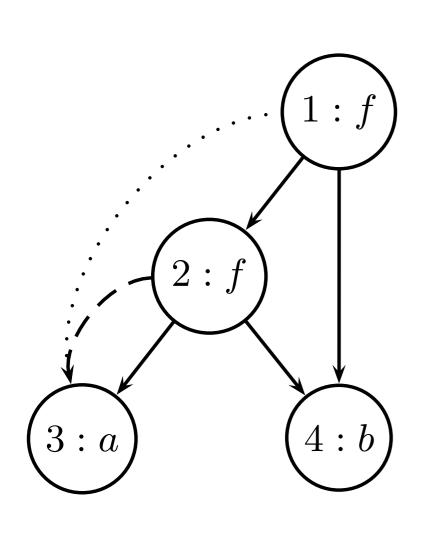
(constant or function symbol)

(identification numbers of the function arguments)

(another node in its congruence class)
(following a chain of find references leads to the representative)

(congruence closure parents,Ø for non-representative nodes)

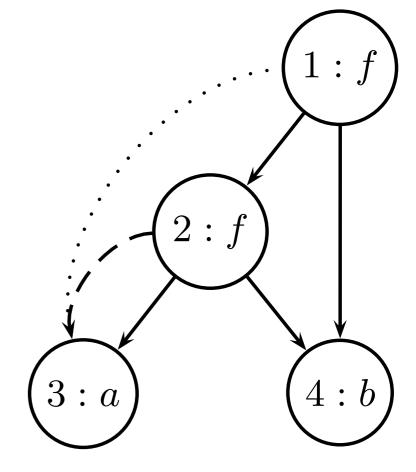
DAG as Partition



```
egin{array}{lll} {
m node} \ 2 = \{ & {
m node} \ 3 = \{ \ {
m id} = 2; & {
m id} = 3; \ {
m fn} = \emph{s}; & {
m args} = []; \ {
m find} = 3; & {
m ccpar} = \emptyset; & {
m ccpar} = \{1, \, 2\}; \ \} \end{array}
```

Partition: $\{ \{ f(f(a, b), b), f(a, b), a\}, \{b\} \}$

NODE *i* returns the node *n* with id *i*

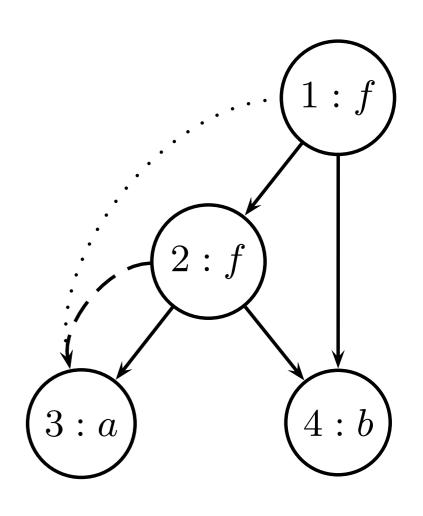


(NODE i).id = i (NODE 2).find = 3

let rec FIND i =

let n = NODE i in

if n.find = i then i else FIND n.find



FIND 2 = 3

FIND 1 = 3

let UNION $i_1 i_2 =$

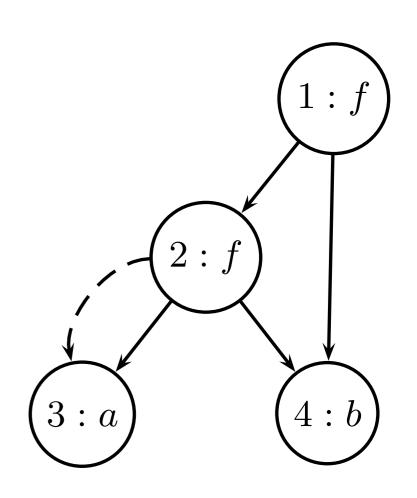
let $n_1 = \text{NODE (FIND } i_1)$ in

let $n_2 = \text{NODE} \text{ (FIND } i_2 \text{) in}$

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};$

 $n_1.\text{ccpar} \leftarrow \emptyset$



let UNION i_1 i_2 =

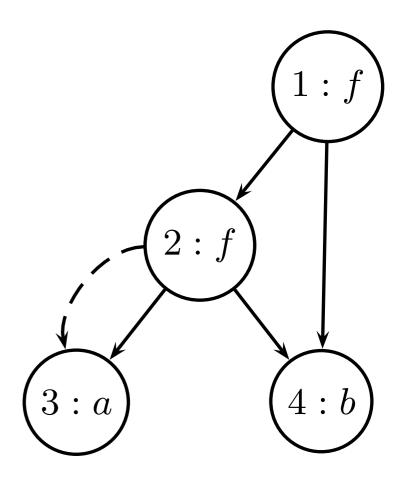
let $n_1 = \text{NODE (FIND } i_1)$ in

let $n_2 = \text{NODE} \text{ (FIND } i_2 \text{) in}$

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};$

 $n_1.\text{ccpar} \leftarrow \emptyset$



let UNION i_1 i_2 =

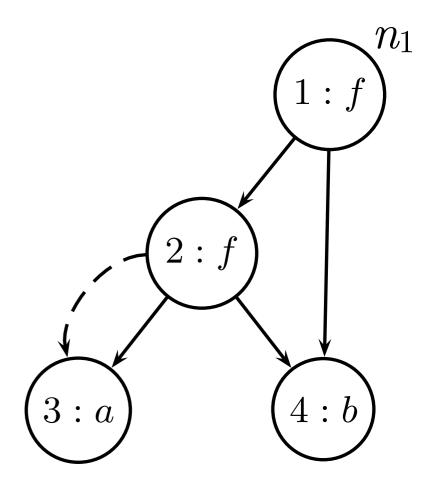
let $n_1 = \text{NODE (FIND } i_1)$ in

let $n_2 = \text{NODE} \text{ (FIND } i_2 \text{) in}$

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};$

 $n_1.\text{ccpar} \leftarrow \emptyset$



let UNION i_1 i_2 =

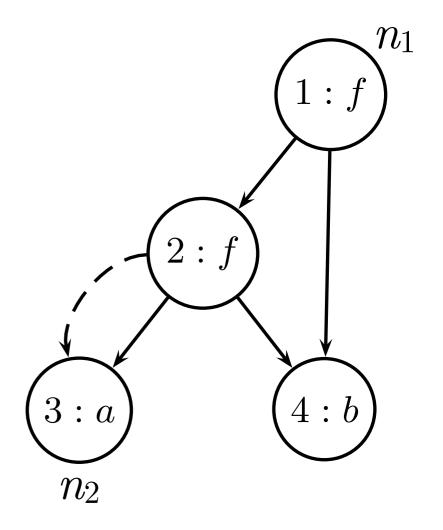
let $n_1 = \text{NODE (FIND } i_1)$ in

let $n_2 = \text{NODE} \text{ (FIND } i_2 \text{) in}$

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};$

 $n_1.\text{ccpar} \leftarrow \emptyset$



let UNION i_1 i_2 =

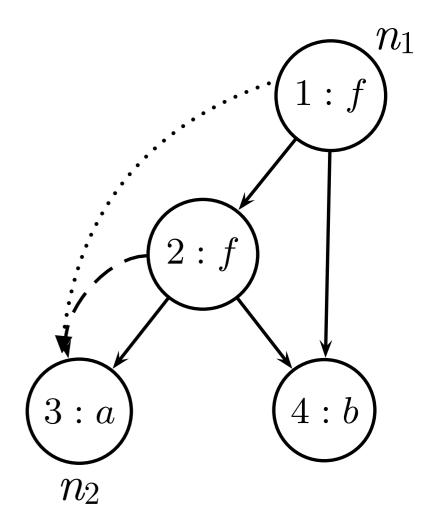
let $n_1 = \text{NODE (FIND } i_1)$ in

let $n_2 = \text{NODE} \text{ (FIND } i_2 \text{) in}$

 $n_1.\text{find} \leftarrow n_2.\text{find};$

 $n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};$

 $n_1.\text{ccpar} \leftarrow \emptyset$



Union-Find Algorithm - CCPAR

let CCPAR i =

(NODE (FIND i)).ccpar

Congruence Closure Algorithm - CONGRUENT

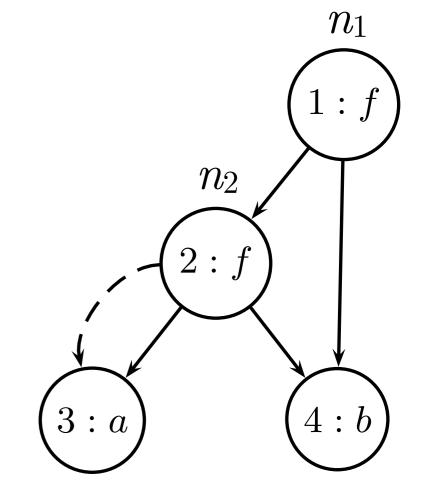
let CONGRUENT i_1 i_2 =

let
$$n_1 = \text{NODE } i_1$$
 in

let $n_2 = \text{NODE } i_2$ in

$$n_1.\text{fn} = n_2.\text{fn}$$

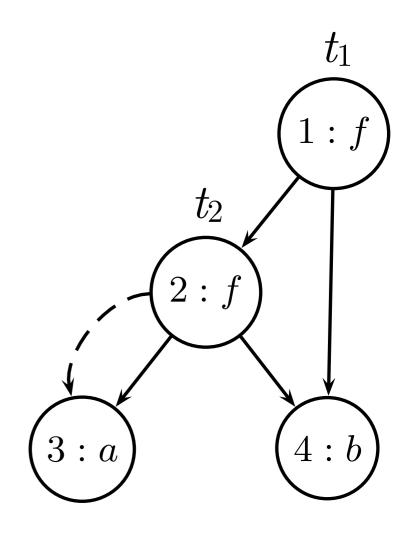
$$\wedge |n_1.\mathrm{args}| = |n_2.\mathrm{args}|$$



$$\land \forall i \in \{1, ..., |n_1.args|\}. \text{ FIND } n_1.args[i] = \text{FIND } n_2.args[i]$$

Congruence Closure Algorithm - MERGE

```
let rec MERGE i_1 i_2 =
  if FIND i_1 \neq FIND i_2 then begin
    let P_1 = \text{CCPAR } i_1 \text{ in}
    let P_2 = \text{CCPAR } i_2 \text{ in}
    UNION i_1 i_2;
    foreach t_1, t_2 \in P_1 \times P_2 do
       if FIND t_1 \neq \text{FIND } t_2 \land \text{CONGRUENT } t_1 \ t_2
       then MERGE t_1 t_2
    done
```



end

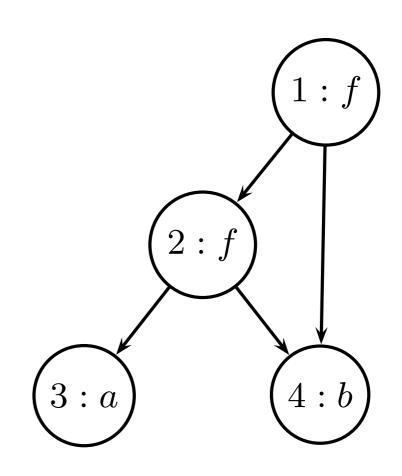
Decision Procedure for T_E Satisfiability

$$F: s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

- 1. Construct the initial DAG for the subterm set S_F
- 2. For $i \in \{1, ..., m\}$, MERGE $s_i t_i$
- 3. If FIND $s_i = \text{FIND } t_i$ for some $i \in \{m + 1, ..., n\}$, return unsatisfiable
- 4. Otherwise, return satisfiable

$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

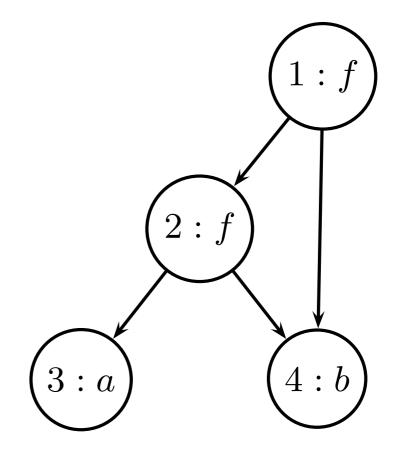
 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$



$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

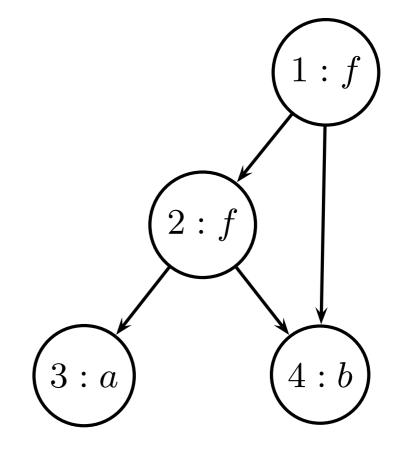
1.MERGE 2 3



$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3 $(1)P_2 = \text{CCPAR 2} = \{1\}$



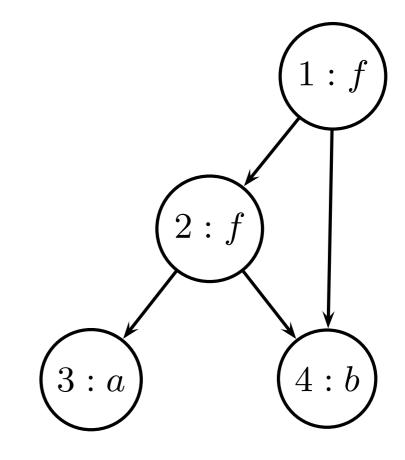
$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

$$(1)P_2 = \text{CCPAR } 2 = \{1\}$$

$$(2)P_3 = \text{CCPAR } 3 = \{2\}$$



$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

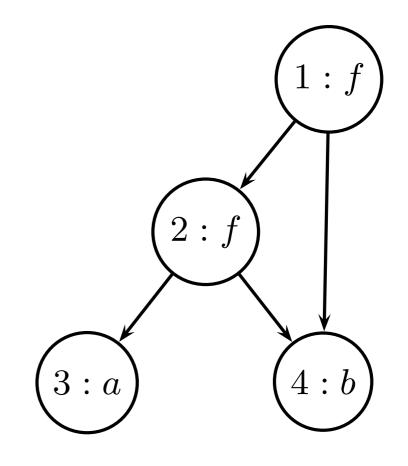
 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

$$(1)P_2 = \text{CCPAR } 2 = \{1\}$$

$$(2)P_3 = \text{CCPAR } 3 = \{2\}$$

(3)UNION 2 3



$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

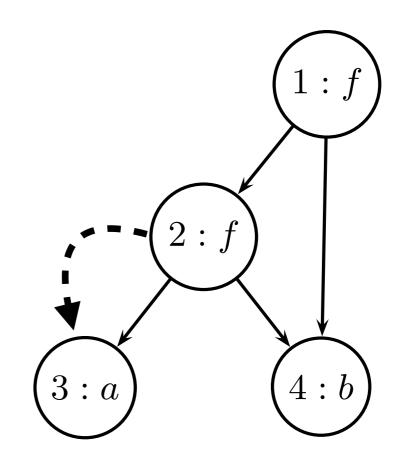
 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

$$(1)P_2 = \text{CCPAR } 2 = \{1\}$$

$$(2)P_3 = \text{CCPAR } 3 = \{2\}$$

(3)UNION 2 3

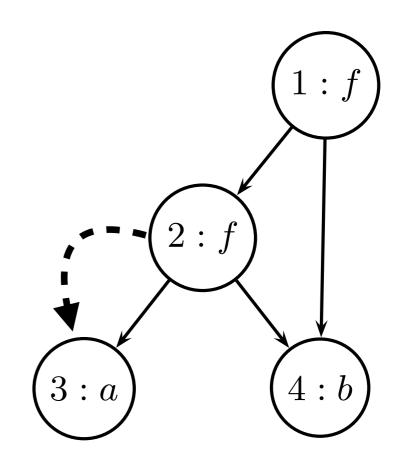


$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

- $(1)P_2 = \text{CCPAR } 2 = \{1\}$
- $(2)P_3 = \text{CCPAR } 3 = \{2\}$
- (3)UNION 2 3
- (4)MERGE 1 2

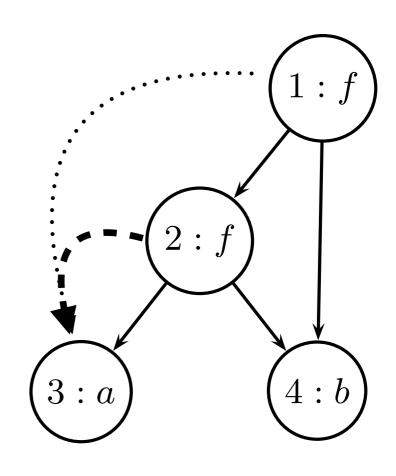


$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

- $(1)P_2 = \text{CCPAR } 2 = \{1\}$
- $(2)P_3 = \text{CCPAR } 3 = \{2\}$
- (3)UNION 2 3
- (4)MERGE 1 2



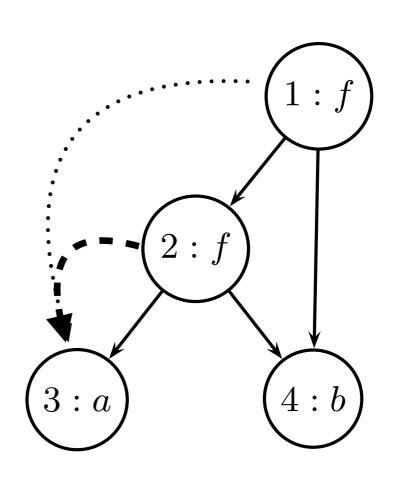
$$F: f(a, b) = a \land f(f(a, b), b) \neq a$$

 $S_F = \{a, b, f(a, b), f(f(a, b), b)\}$

1.MERGE 2 3

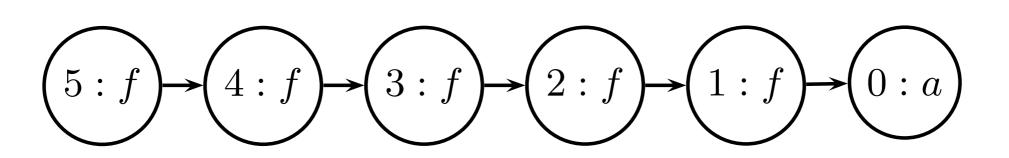
- $(1)P_2 = \text{CCPAR } 2 = \{1\}$
- $(2)P_3 = \text{CCPAR } 3 = \{2\}$
- (3)UNION 2 3
- (4)MERGE 1 2

 T_E -unsatisfiable



$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

 $S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$

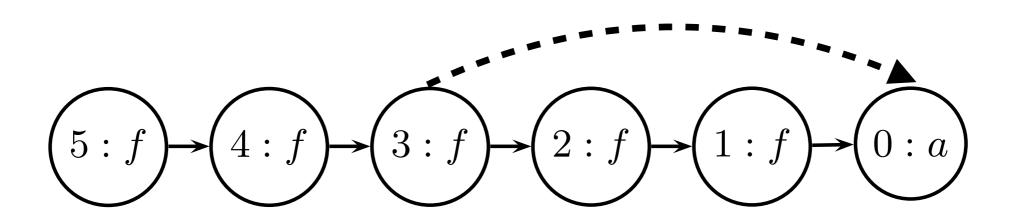


$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$
 $S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$ 1. MERGE 3 0

$$(5:f) \rightarrow (4:f) \rightarrow (3:f) \rightarrow (2:f) \rightarrow (1:f) \rightarrow (0:a)$$

$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

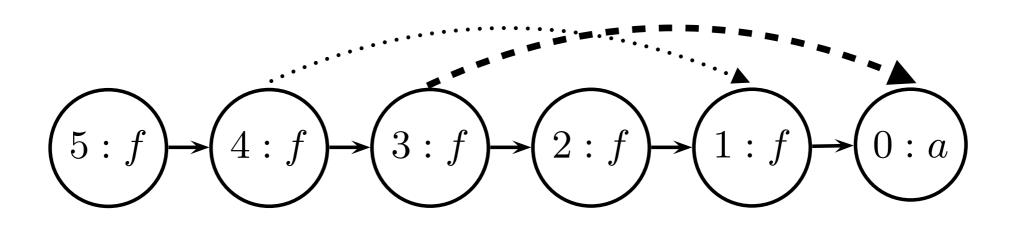
 $S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$



$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

 $S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$

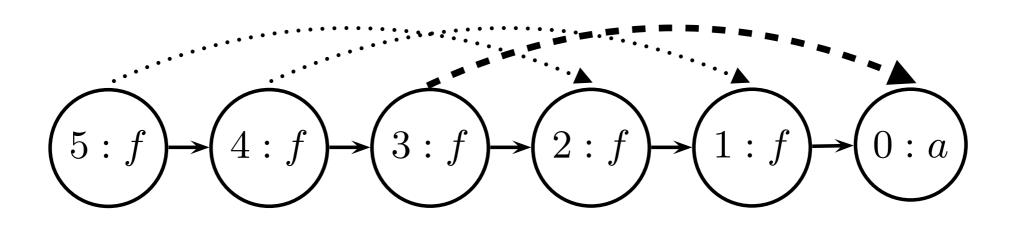
1. MERGE 3 0



$$F: f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

 $S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$

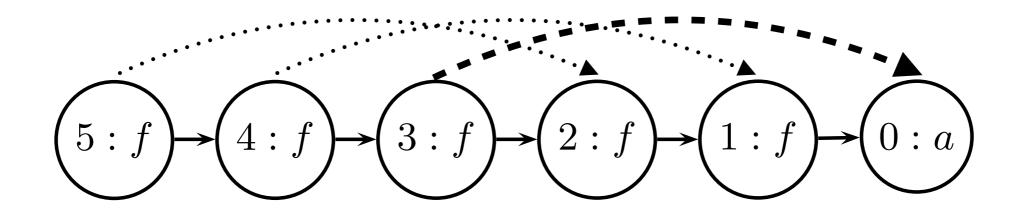
1. MERGE 3 0



$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$$

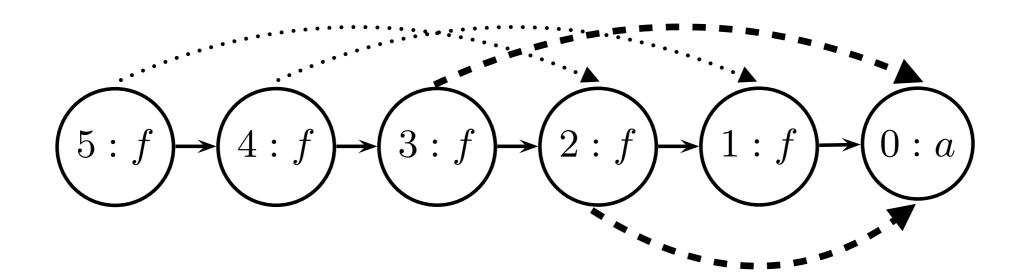
- 1. MERGE 3 0
- 2. MERGE 5 0



$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$$

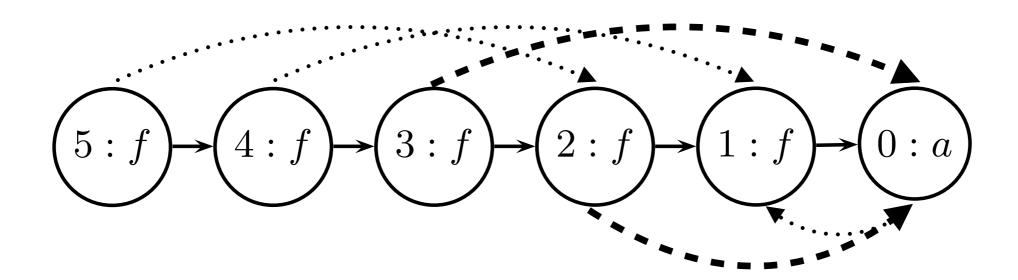
- 1. MERGE 3 0
- 2. MERGE 5 0



$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$$

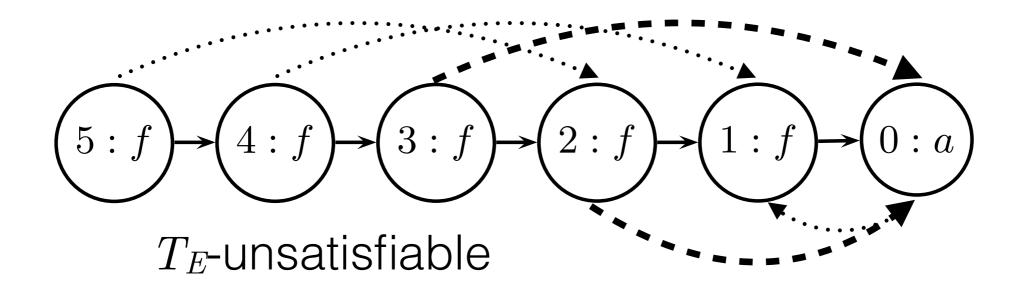
- 1. MERGE 3 0
- 2. MERGE 5 0



$$F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$S_F = \{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$$

- 1. MERGE 3 0
- 2. MERGE 5 0



Soundness and Completeness

Theorem (Sound & Complete). Quantifier-free conjunctive Σ_E -formula F is T_E -satisfiable iff the congruence closure algorithm returns satisfiable

Complexity

Let e be the number of edges and n be the number of nodes in the initial DAG.

Theorem (Complexity). The congruence closure algorithm run in time $O(e^2)$ for O(n) MERGEs.

Recursive Data Structures

T_{RDS}

- Can model
 - records
 - lists
 - trees
 - stacks
- Cannot model
 - queues

Theory of Lists - T_{cons}

$$\Sigma_{cons}: \{cons, car, cdr, atom, =\}$$

- cons: a binary function, called the constructor;
- *car*: a unary function, called the left projector;
- *cdr*: a unary function, called the right projector;
- *atom*: a unary predicate;
- =: a binary predicate

$$car(cons(a, b)) = a$$

 $cdr(cons(a, b)) = b$

Axioms of T_{cons}

- Axioms of (reflexivity), (symmetry), and (transitivity) of T_E
- Instantiations of the (function congruence) axiom schema for cons, car, and cdr:
 - $\forall x_1, x_2, y_1, y_2$. $x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$
 - $\forall x, y. \ x = y \rightarrow car(x) = car(y)$
 - $\forall x, y. \ x = y \rightarrow cdr(x) = cdr(y)$
- An instantiation of the (predicate congruence) axiom schema for atom:
 - $\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$

Axioms of T_{cons}

•
$$\forall x, y. \ car(cons(x, y)) = x$$
 (left projection)

•
$$\forall x, y. \ cdr(cons(x, y)) = y$$
 (right projection)

•
$$\forall x. \ \neg atom(x) \rightarrow cons(car(x), \ cdr(x)) = x$$
 (construction)

•
$$\forall x, y. \ \neg atom(cons(x, y))$$
 (atom)

Decidability

- T_{cons} : undecidable
- quantifier-free T_{cons} : decidable

Preprocess

By the (construction) axiom, replace

$$\neg atom(u_i)$$

with

$$u_i = cons(u_i^1, u_i^2)$$

$$\forall x. \ \neg atom(x) \rightarrow cons(car(x), \ cdr(x)) = x$$
 (construction)

Decision Procedure

$$F: s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

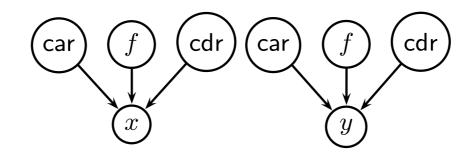
 $\land atom(u_1) \land ... \land atom(u_l)$

- Construct the initial DAG for the subterm set $S_{\!F}$
- By the (left projection) and (right projection) axioms, for each node n such that $n.\mathrm{fn} = cons$,
 - add car(n) to the DAG and MERGE car(n) n.args[1];
 - add cdr(n) to the DAG and MERGE cdr(n) n.args[2];
- For $i \in \{1, ..., m\}$, MERGE $s_i t_i$
- For $i \in \{m+1, ..., n\}$, if FIND $s_i = \text{FIND } t_i$, return unsatisfiable
- By the (atom axiom), for $i \in \{1, ..., l\}$, if $\exists v$. FIND $v = \text{FIND } u_i \land v.\text{fn} = cons$, return unsatisfiability
- Otherwise, return satisfiable

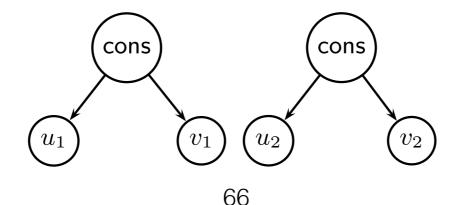
Combining T_E and $\mathrm{T_{cons}}$ - Example

$$F: car(x) = car(y) \land cdr(x) = cdr(y) \land f(x) \neq f(y) \land \neg atom(x) \land \neg atom(y)$$

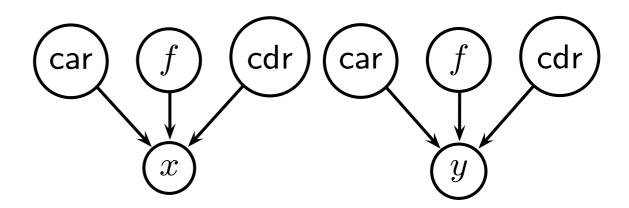
$$F': car(x) = car(y) \land cdr(x) = cdr(y) \land f(x) \neq f(y) \land x = cons(u_1, v_1) \land y = cons(u_2, v_2)$$



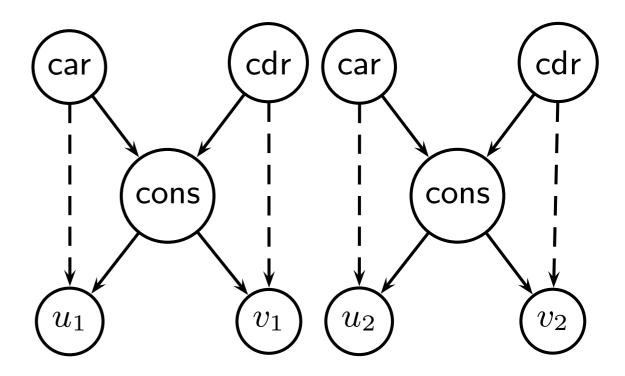
Step 1: initial DAG



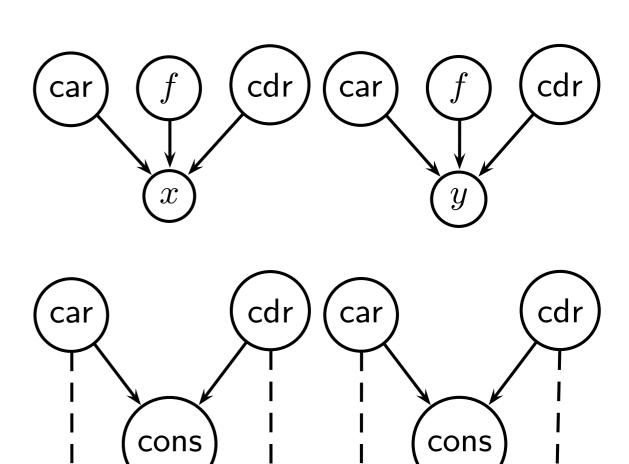
Combining T_E and T_{cons} - Example



Step 2: add car(n) and cdr(n)



Step 3: MERGE s_i t_i

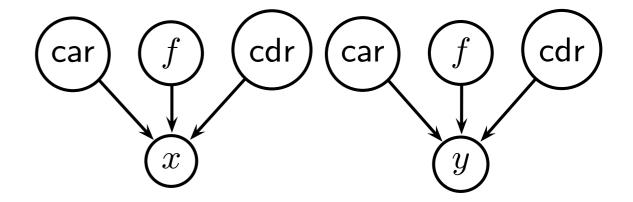


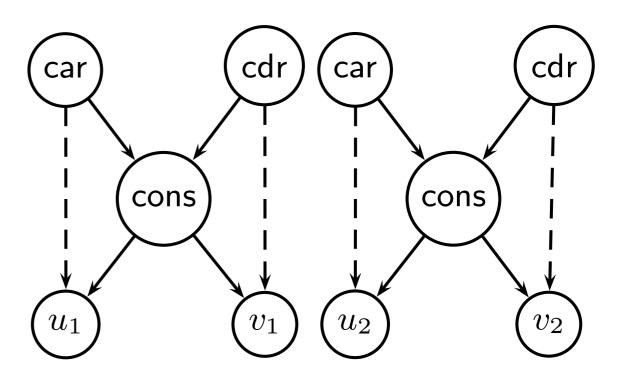
 u_2

 u_1

Step 3: MERGE s_i t_i

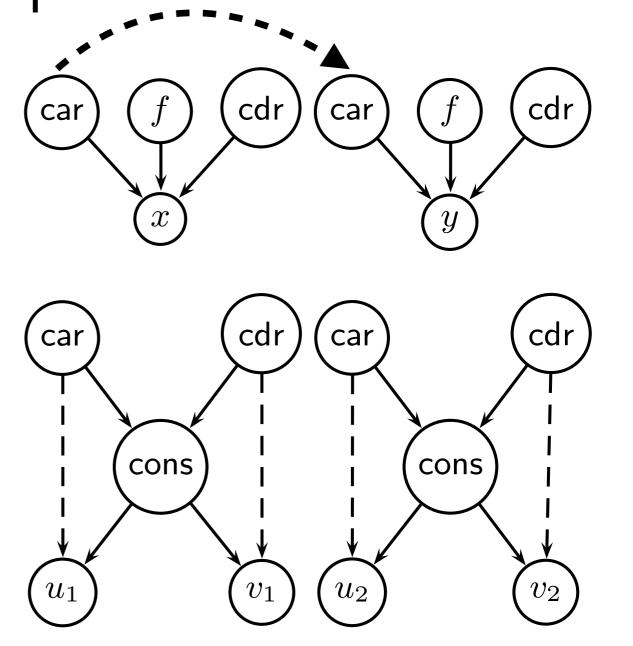
1. car(x) = car(y)



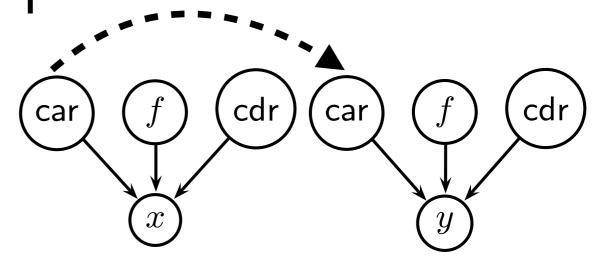


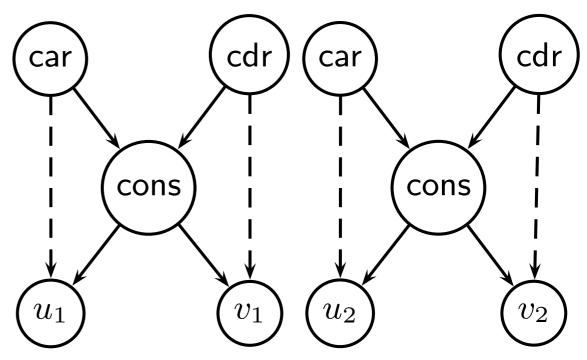
Step 3: MERGE s_i t_i

1. car(x) = car(y)

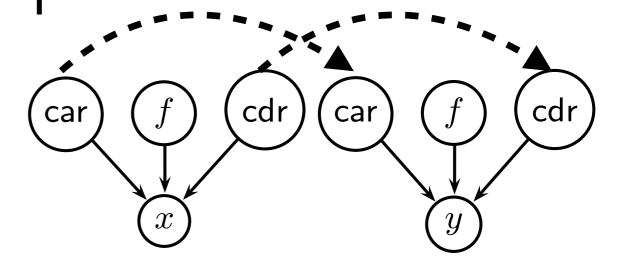


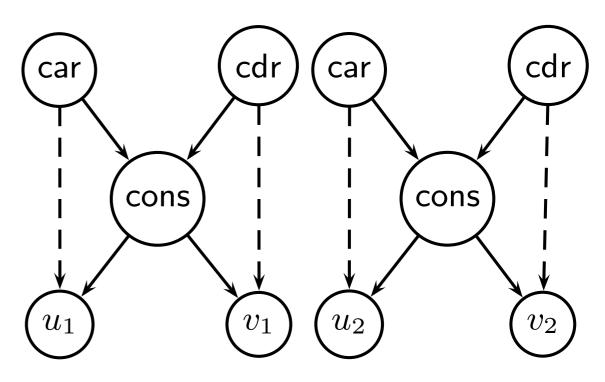
- 1. car(x) = car(y)



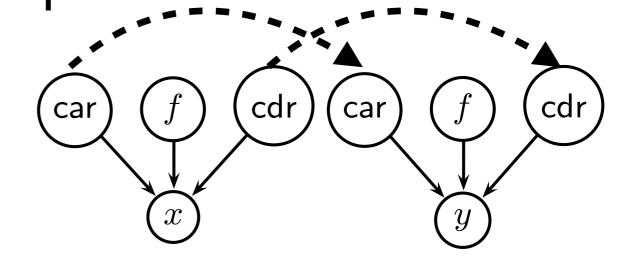


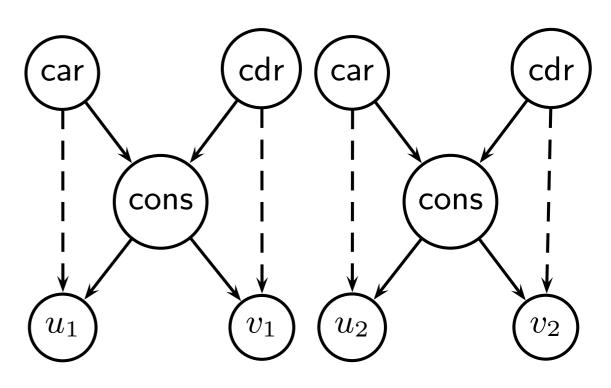
- 1. car(x) = car(y)



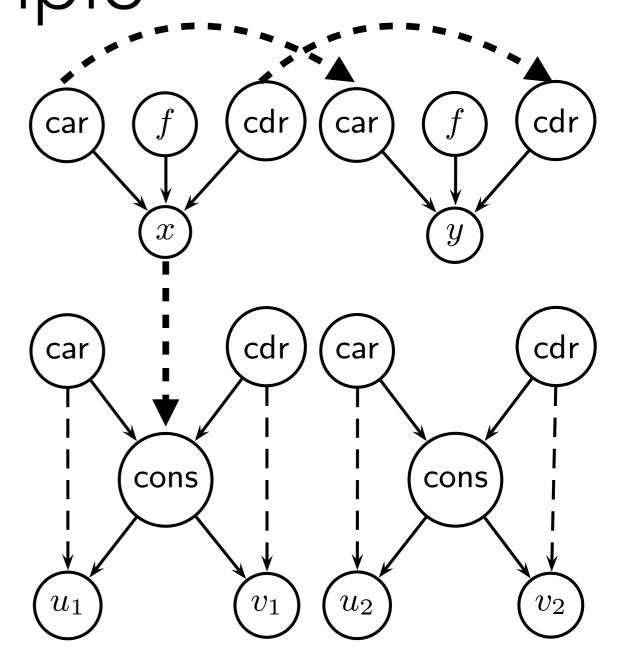


- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$

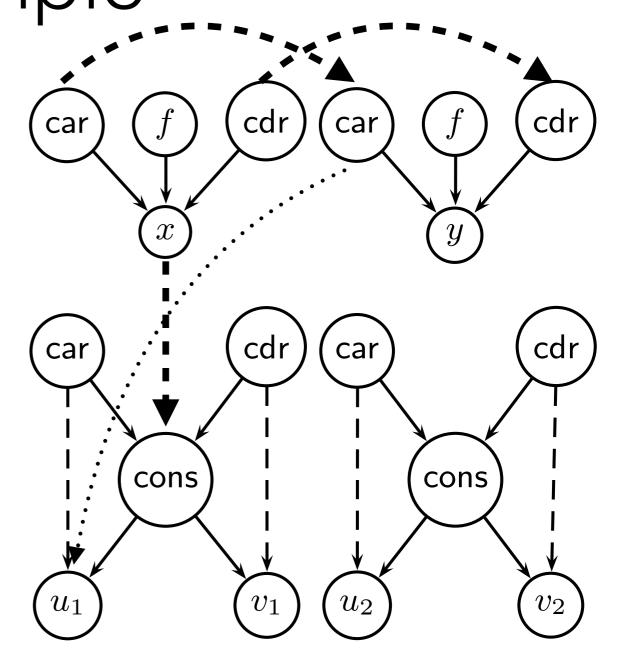




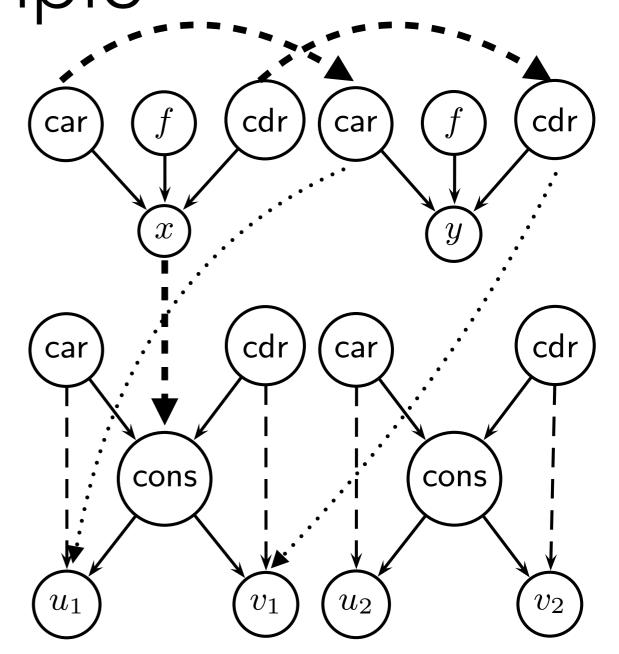
- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$



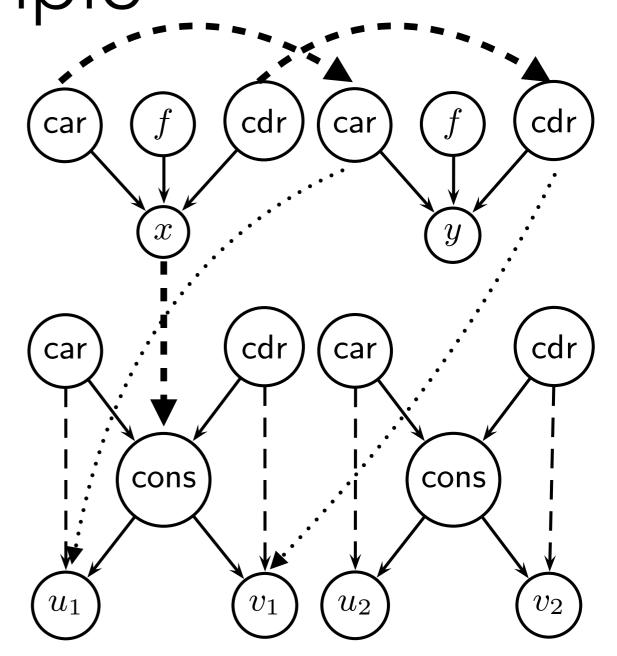
- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$



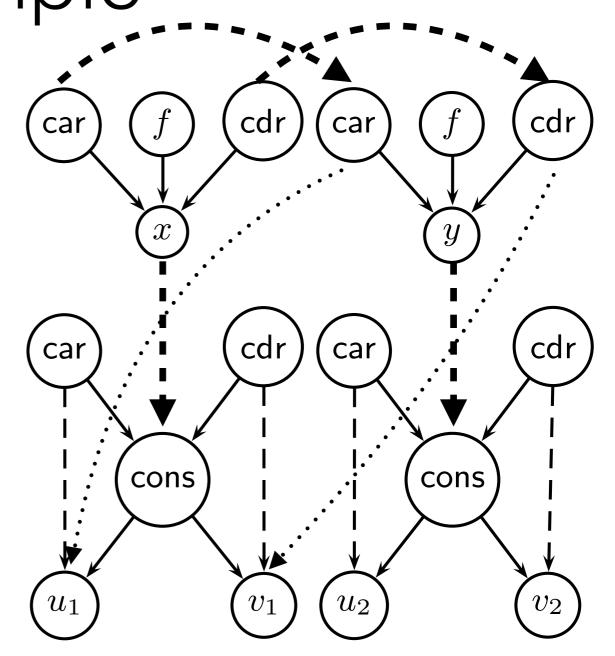
- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$



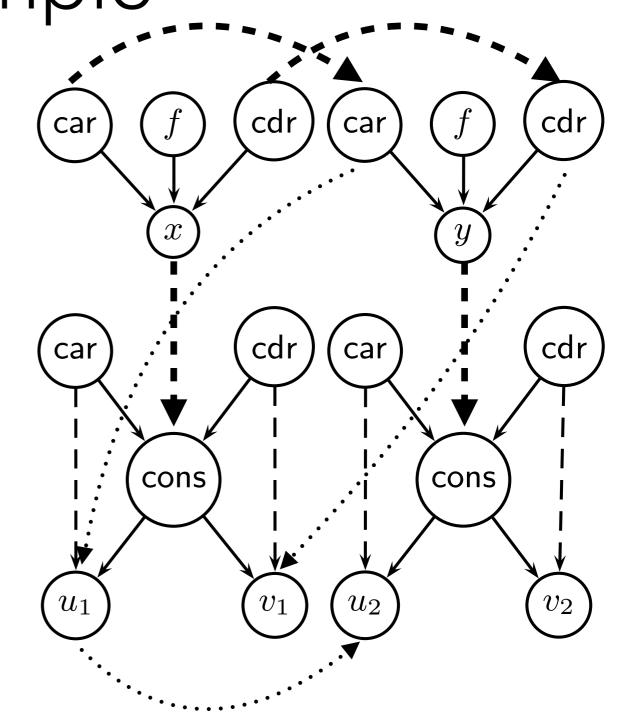
- 1. car(x) = car(y)
- 2. cdr(x) = cdr(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$



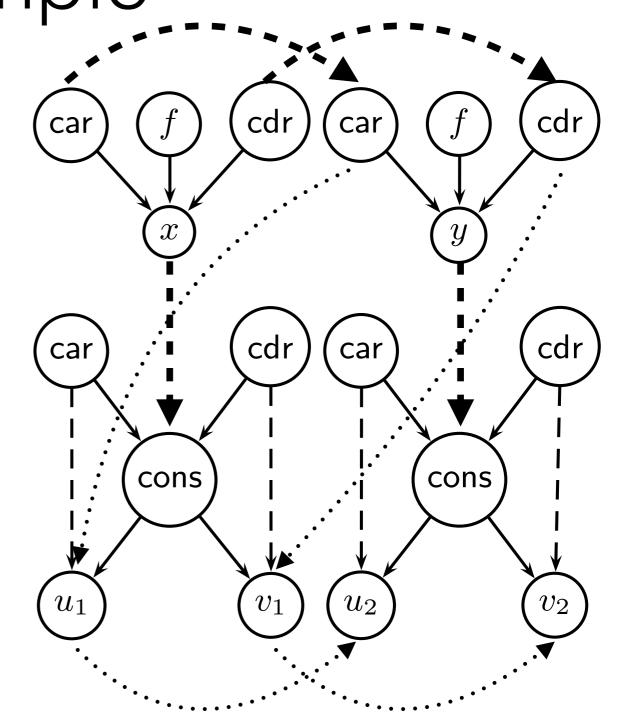
- 1. car(x) = car(y)
- 2. cdr(x) = cdr(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$



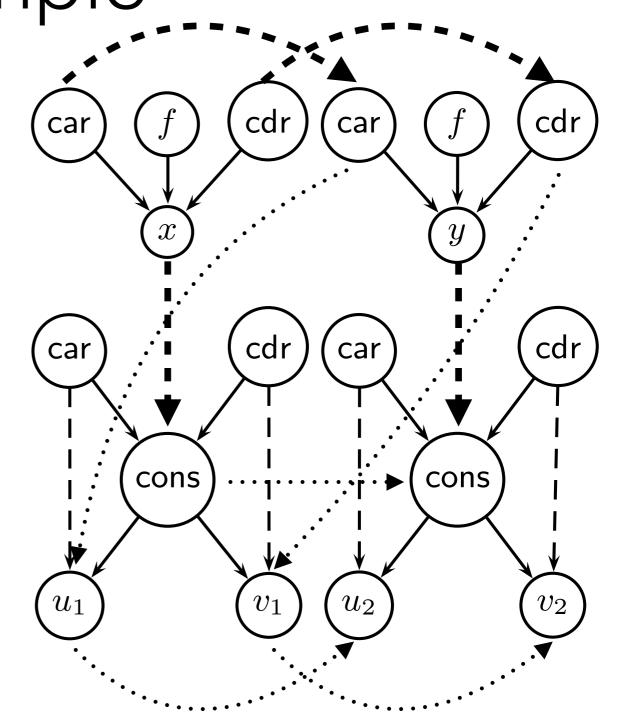
- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$



- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$



- 1. car(x) = car(y)
- 3. $x = cons(u_1, v_1)$
- 4. $y = cons(u_2, v_2)$



Step 3: MERGE s_i t_i

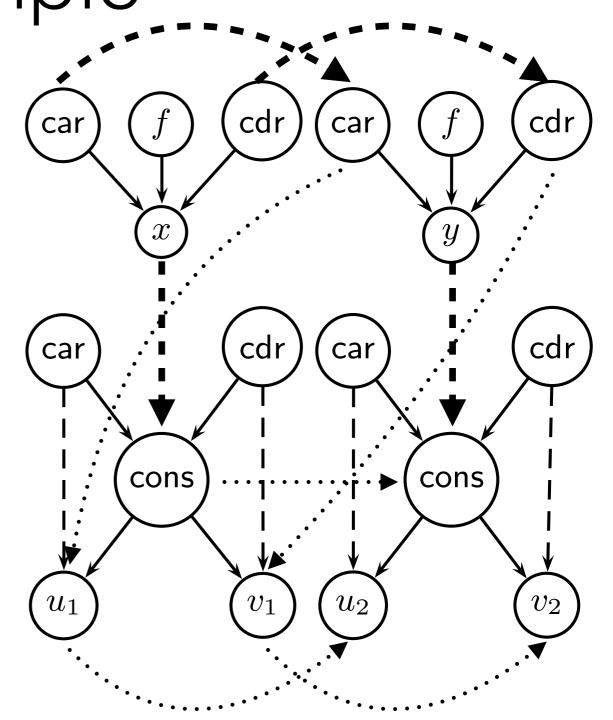
1.
$$car(x) = car(y)$$

$$2. cdr(x) = cdr(y)$$

3.
$$x = cons(u_1, v_1)$$

4.
$$y = cons(u_2, v_2)$$

 $(T_{cons} \cup T_E)$ -unsatisfiable



Arrays

Theory of Arrays - T_A

$$\Sigma_{\mathrm{A}}: \{\bullet [\bullet], \bullet \langle \bullet \triangleleft \bullet \rangle, =\}$$

- a[i]: a binary function; a[i] represents the value of array a at position i;
- $a\langle i \triangleleft v \rangle$: a ternary function; $a\langle i \triangleleft v \rangle$ represents the modified array a in which position i has value v;
- =: a binary predicate

Axioms of T_A

• Axioms of (reflexivity), (symmetry), and (transitivity) of T_E

•
$$\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$$

(array congruence)

•
$$\forall a, v, i, j$$
. $i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$

(read-over-write 1)

•
$$\forall a, v, i, j. \ i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$$

(read-over-write 2)

Decision Procedure

- Based on a reduction to T_E -satisfiability via applications of the (read-over-write) axioms
- If the formula does not contain any write terms, then the read terms can be viewed as uninterpreted function terms
- Otherwise, any write term must occur in the context of a read

Decision Procedure - Step 1

If F does not contain any write terms $a\langle i \triangleleft v \rangle$, perform the following steps.

- 1. Associate each array variable a with a fresh function symbol f_a , and replace each read term a[i] with $f_a(i)$
- 2. Decide and return the T_E -satisfiability of the resulting formula

Decision Procedure - Step 2

Select some read-over-write term $a\langle i \neg v \rangle[j]$, and split on two cases:

1. According to (read-over-write 1), replace

$$F[a\langle i \triangleleft v \rangle[j]]$$
 with $F_1: F[v] \wedge i = j$

and recurse on F_1 . If F_1 is found to be T_A -satisfiable, return satisfiable

2. According to (read-over-write 2), replace

$$F[a\langle i \triangleleft v \rangle[j]]$$
 with F_2 : $F[a[j]] \wedge i \neq j$

and recurse on F_2 . If F_2 is found to be T_A -satisfiable, return satisfiable

If both F_1 and F_2 are found to be T_A -unsatisfiable, return unsatisfiable

Example of T_A

$$F: i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$$

- First case:
 - F_1 : $i_2 = j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_2 \neq a[j]$
 - F_1 ': $i_2 = j \land i_1 = j \land i_1 \neq i_2 \land f_a(j) = v_1 \land v_2 \neq f_a(j)$
 - F_1 is T_A -unsatisfiable

Example of T_A

$$F: i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$$

- Second case:
 - F_2 : $i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle [j] \neq a[j]$
 - F_3 : $i_1 = j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_1 \neq a[j]$
 - F_4 : $i_1 \neq j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a[j] \neq a[j]$
 - F_2 is T_A -unsatisfiable

Soundness and Completeness

Theorem (Sound & Complete). Given quantifier-free conjunctive Σ_A -formula F, the decision procedure returns satisfiable iff F is T_A -satisfiable; otherwise, it returns unsatisfiable

Complexity

Theorem (Complexity). T_A -satisfiability of quantifier-free conjunctive Σ_A -formula is NP-complete

Summary

- Congruence closure algorithm
 - relations, equivalence relations, congruence relations, partitions, quotients, classes, closures
- DAG-based implementation
 - union-find, merge
- Recursive data structures
 - \bullet T_{cons}
- Arrays