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Quantifier-Free Fragment of TQ

Let TQ denote the theory of rationals.

We consider only linear constraints in this lecture.
I That is, propositions are of the form

n∑
i=1

aixi ≈ b

where ai , b ∈ Q and ≈∈ {<,≤}.
The quantifier-free fragment of TQ considers formulae of the form:

G : ∀x1, x2, . . . , xn.F [x1, x2, . . . , xn]

where x1, x2, . . . , xn are rational variables, F has no quantifiers with
free variables x1, x2, . . . , xn.

We want to decide if G holds, equivalently, F is TQ-valid.
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Validity and Unsatisfiability

Observe that
G : ∀x1, x2, . . . , xn.F [x1, x2, . . . , xn]

and
¬G : ∃x1, x2, . . . , xn.¬F [x1, x2, . . . , xn]

are equivalent.

F is TQ-valid iff ¬F is TQ-unsatisfiable.

We thus only consider TQ-satisfiability in this lecture.
I Note that both validity and satisfiability are needed if there are

quantifier alternations such as ∀x∃y or ∃x∀y .
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Conjunctive Quantifier-Free TQ-Formulae

Recall that any propositional logic formula can be transformed to
disjunctive normal form (DNF).

To further simplify the problem, we only consider conjunctive
quantifier-free formulae:

n∑
j=1

a1jxj ≈1 b1

∧
n∑

j=1

a2jxj ≈2 b2

· · ·

∧
n∑

j=1

amjxj ≈m bm

where aij , bi ∈ TQ and ≈i∈ {<,≤} for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Linear Algebra

It is too tedious to write conjunctive quantifier-free TQ-formulae.

We will review and use notations from linear algebra.

Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic June 23, 2015 6 / 57



Vector and Matrix

An n-vector is a column ā ∈ Qn. The transpose āT is a row of the
same ordered elements:

ā =


a1

a2
...

an

 and āT = [a1 a2 · · · an]

Similarly, we use x̄ for a variable n-vector with variables x1, x2, . . . , xn.

An m× n-matrix A ∈ Qm×n and its transpose AT ∈ Qn×m are defined
similarly:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

 and AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

a1n a2n · · · amn
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Row and Column Vectors of Matrix

Let A ∈ Qm×n be an m × n-matrix.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn


A row āi of A is the row vector

āi = [ ai1 ai2 · · · ain ]

A column āj of A is the column vector

āj =


a1j

a2j
...

amj

 = [ a1j a2j · · · amj ]T
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Vector-Vector Multiplication

Let ā, b̄ ∈ Q1×n be vectors.

Define

āb̄T = [ a1 a2 · · · an ]


b1

b2
...

bn

 =
n∑

i=1

aibi .
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Matrix-Vector Multiplication

Let A ∈ Qm×n and x̄ ∈ Qn×1.

Define

Ax̄ =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn




x1

x2
...

xn

 =



n∑
i=1

a1ixi

n∑
i=1

a2ixi

...
n∑

i=1
amixi
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Matrix-Matrix Multiplication

Let A ∈ Qm×n and B ∈ Qn×`.

Define

AB =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn




b11 b12 · · · b1`

b21 b22 · · · b2`
...

bn1 bn2 · · · bn`



=


c11 c12 · · · c1`

c21 c22 · · · c2`
...

cm1 cm2 · · · cm`


where

cik =
n∑

j=1

aijbjk

for 1 ≤ i ≤ m and 1 ≤ k ≤ `.
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Useful Notations

0̄ is a column vector of 0’s.

1̄ is a column vector of 1’s.

I Hence 0̄T x̄ = 0 and 1̄T x̄ =
n∑

i=1

xi when x̄ = [ x1 x2 · · · xn ]

Define the identity matrix

I =

 1 0
. . .

0 1


I Hence IA = AI = A for any A ∈ Qn×n.

Finally, define the unit vector

ei = [ 0 · · · 1 · · · 0 ]T

where all elements are 0 except the i-th position.
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Linear Equations

Consider the conjunctive quantifier-free linear TQ-formula:

n∑
j=1

a1jxj = b1

∧ n∑
j=1

a2jxj = b2

∧
· · ·
∧ n∑

j=1

amjxj = bm

Define A ∈ Qm×n, x̄ ∈ Qn×1, and b̄ ∈ Qm×1 as follows.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn


x̄ = [ x1 x2 · · · xn ]T

b̄ = [ b1 b2 · · · bm ]T

Then Ax̄ = b̄ describes the same quantifier-free formula.
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Solving Linear Equations I

Ax̄ = b̄ can be solved by elementary row operations:
I Swap two rows.
I Multiply a row by a nonzero scalar.
I Add one row to another.

It sounds a bit scary but it really is high school mathematics.
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Solving Linear Equations II

Let’s solve
3x1 + x2 + 2x3 = 6
x1 + x3 = 1

2x1 + 2x2 + x3 = 2

with high school mathematics (but new notation): 3 1 2 6
1 0 1 1
2 2 1 2

 7→

 3 1 2 6
1 0 1 1
0 2 −1 0

 7→

 0 1 −1 3
1 0 1 1
0 2 −1 0

 7→ 1 0 1 1
0 1 −1 3
0 2 −1 0

 7→

 1 0 1 1
0 1 −1 3
0 0 1 −6

 7→

 1 0 0 7
0 1 0 −3
0 0 1 −6


That is, [ x1 x2 x3 ] = [ 7 −3 −6 ].
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Linear Inequality

Let A ∈ Qm×n, x̄ a variable n-vector, and b̄ an m-vector.

The linear inequality
G : Ax̄ ≤ b̄

represents

G :
m∧
i=1

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

The set of n-dimensional points described by a linear inequality is
called a polyhedron.
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Convexity of Polyhedron

A set S ⊆ Rn is convex if for every v̄1, v̄2 ∈ S ,

λv̄1 + (1− λ)v̄2 ∈ S for λ ∈ [0, 1].

Theorem

Any polyhedron is convex.

Proof.

Let Ax̄ ≤ b̄ defines a polyhedron P, and v̄1, v̄2 ∈ P. Then

Av̄1 ≤ b̄ and Av̄2 ≤ b̄.

Let λ ∈ [0, 1]. We have Aλv̄1 ≤ λb̄ and A(1− λ)v̄2 ≤ (1− λ)b̄. Hence
A(λv̄1 + (1− λ)v̄2) = Aλv̄1 + A(1− λ)v̄2 ≤ λb̄ + (1− λ)b̄ = b̄.
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Vertex and Adjacent Vertices

Let A ∈ Qm×n, x̄ a variable n-vector, and b̄ an m-vector.

Consider the linear inequality Ax̄ ≤ b̄.

An n-vector v̄ is a vertex of Ax̄ ≤ b̄ if there is an n × n-submatrix A0

of A and corresponding n-subvector b̄0 of b̄ such that A0v̄ = b̄0.
I The rows in A0 and b̄0 are called the defining constraints of v̄ .

Two vertices are adjacent if their defining constraints differ by only
one constraint.
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Linear Program

Let A ∈ Qm×n, x̄ a variable n-vector, c̄ an n-vector, and b̄ an
m-vector.

The linear program (or linear optimization problem)

max c̄T x̄
subject to

Ax̄ ≤ b̄

is solved by an n-vector v̄∗ which satisfies Av̄∗ ≤ b̄ with the maximal
value c̄T v̄∗.

I c̄T x̄ is the objective function.
I Ax̄ ≤ b̄ is the constraints.

If Ax̄ ≤ b̄ is unsatisfiable, the maximum is −∞ by convention.

If the maximum is unbounded, we say the maximum is ∞ by
convention.
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Example I

Consider

max [ 1 1 −1 −1 ]


x
y
z1

z2


subject to

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 0 0
1 0 −1 0
0 1 0 −1




x
y
z1

z2

 ≤


0
0
0
0
3
2
2


x + y − z1 − z2 is the objective function.
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Example II

[ 2 1 0 0 ]T is a vertex because of rows 3, 4, 5, 6.
0 0 −1 0
0 0 0 −1
1 1 0 0
1 0 −1 0




2
1
0
0

 =


0
0
3
2


Also, [ 0 0 0 0 ]T is a vertex. (why?)
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Duality Theorem

Theorem

Let A ∈ Qm×n, b̄ an m-vector, and c̄ an n-vector. If Ax̄ ≤ b̄ is satisfiable,
then

max{c̄T x̄ : Ax̄ ≤ b̄} = min{ȳT b̄ : ȳ ≥ 0 and ȳTA = c̄T}.

x̄ ia a variable n-vector and ȳ is a variable m-vector.

Observe that the right hand side is a system of equality.
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TQ Satisfiability I

In TQ, two inequalities (< and ≤) are allowed.

Linear programming only allows ≤.

Consider

F :
m∧
i=1

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

∧
∧̀
j=1

aj1x1 + aj2x2 + · · ·+ ajnxn < βj

and

F ′ :
m∧
i=1

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

∧
∧̀
j=1

aj1x1 + aj2x2 + · · ·+ ajnxn + xn+1 ≤ βj

∧ xn+1 > 0

F is TQ-satisfiable iff F ′ is TQ-satisfiable.

Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic June 23, 2015 23 / 57



TQ Satisfiability II

To solve F ′, consider

max xn+1

subject to
m∧
i=1

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi∧̀
j=1

aj1x1 + aj2x2 + · · ·+ ajnxn + xn+1 ≤ βj

F ′ is TQ-satisfiable iff the optimum is positive.

If F does not have any strict inequality, consider

max 1
subject to

m∧
i=1

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi

F is TQ-satisfiable iff the optimum is 1 by convention.
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The Simplex Method

Consider the generic linear program:

M : max c̄T x̄
subject to

G : Ax̄ ≤ b̄

The simplex method solves the linear program M by
1 find an initial vertex v̄1 with Av̄1 ≤ b̄.
2 at iteration i ,

1 if v̄i maximizes the objective function among its adjacent vertices,
return v̄i .

2 otherwise, set v̄i+1 to an adjacent vertex with a greater objective value.

Note that the simplex method returns a vertex v̄∗ with a local
optimum.

By the convexity of polyhedra, v̄∗ also attains the global optimum.
(why?)
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Finding Initial Vertex I

Given G : Ax̄ ≤ b̄, we construct another linear program M0 to find an
initial vertex in G .

We first reformulate G as follows.
I Replace a variable x with x+ − x− where x+ and x− are non-negative.
I Divide Ax̄ ≤ b̄ into two by the signs of bi to obtain

D1x̄ ≤ ḡ1 and D2x̄ ≥ ḡ2 where ḡ1 ≥ 0̄, ḡ2 ≥ 0̄.

Hence we assume G has following form:

G : x̄ ≥ 0̄
D1x̄ ≤ ḡ1

D2x̄ ≥ ḡ2
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Finding Initial Vertex II

Define
M0 : max 1̄T (D2x̄ − z̄)

subject to
x̄ ≥ 0̄
z̄ ≥ 0̄

D1x̄ ≤ ḡ1

D2x̄ − z̄ ≤ ḡ2

Observe that x̄ = 0̄, z̄ = 0̄ is a vertex in M0.
I D10̄ = 0̄ ≤ ḡ1 and D20̄− 0̄ = 0̄ ≤ ḡ2.

Moreove, M0 has the optimum 1̄T ḡ2 iff G is TQ-satisfiable.
I Suppose the optimum 1̄T ḡ2 is attained by x̄∗, z̄∗. Then

D2x̄∗ − z̄∗ = ḡ2. Thus D2x̄∗ = ḡ2 + z̄∗ ≥ ḡ2. We have D1x̄∗ ≤ ḡ1 and
D2x̄∗ ≥ ḡ2. G is satisfied by x̄∗.

I Conversely, suppose x̄∗ satisfies G . Then D1x̄∗ ≤ ḡ1, D2x̄∗ ≥ ḡ2, and
x̄∗ ≥ 0̄. Take z̄∗ = D2x̄∗ − ḡ2. Then z̄∗ ≥ 0̄ and D2x̄∗ − z̄∗ ≤ ḡ2.
Furthermore, 1̄T (D2x̄∗ − z̄∗) = 1̄T ḡ2 is the optimum.
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Finding Initial Vertex III

We can rearrange M0 as a linear program.

M0 : max 1̄T [D2 − I ]

[
x̄
z̄

]
subject to

−I
−I

D2

D2 −I

[ x̄
z̄

]
≤


0̄
0̄
ḡ1

ḡ2


0̄ is an initial vertex in M0.

We just need to traverse adjacent vertices in M0 to find the optimum
of M0.

If the optimum is 1̄T ḡ2, we also find an initial vertex v̄1 in M.
I Then we traverse adjacent vertices in M to find the optimum of M.

Otherwise, G is not satisfiable. M has optimum −∞.
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Example I

Consider F : x + y ≥ 1 ∧ x − y ≥ −1.

F is equivalent to the following constraints:

G :

[
−1 −1
−1 1

] [
x
y

]
≤
[
−1

1

]
Reformulate G and obtain

G :


x+

x−
y+

y−

 ≥ 0̄, [ −1 1 1 −1 ]


x+

x−
y+

y−

 ≤ [1]

[ 1 −1 1 −1 ]


x+

x−
y+

y−

 ≥ [1]
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Example II

Hence the linear program M0 is:

M0 : max [ 1 −1 1 −1 ][ x+ x− y+ y− ]T − [z ]
subject to

[ x+ x− y+ y− z ]T ≥ 0̄

[ −1 1 1 −1 ]


x+

x−
y+

y−

 ≤ [1]

[ 1 −1 1 −1 ]


x+

x−
y+

y−

− [z ] ≤ [1]

F is TQ-satisfiable iff M0 has optimum 1̄T ḡ2 = 1.
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Example III

M0 can be rearranged in the generic form:

M0 : max [ 1 −1 1 −1 −1 ]


x+

x−
y+

y−
z


subject to

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
−1 1 1 −1 0
1 −1 1 −1 −1




x+

x−
y+

y−
z

 ≤


0
0
0
0
0
1
1
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Vertex Traversal

Assume that we have a vertex v̄i in the following linear program:

M : max c̄T x̄
subject to

Ax̄ ≤ b̄

We find the vertex v̄∗ maximizing c̄T x̄ iteratively.

At iteration i
I A vertex v̄i in M is known.
I Check if v̄i attains the maximum.

F If the maximum is found, return v̄i .
F Otherwise,find an adjacent vertex v̄i+1 with greater objective value.
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Checking Maximum

Let v̄i be a vertex of Ax̄ ≤ b̄.

Hence there is an n × n-submatrix Ai of A such that Ai v̄i = b̄i .
I Recall that Ai v̄i = b̄i is the defining constraints of v̄i .
I There can be several such Ai . If so, choose a non-singular submatrix.

Using high school mathematics, find ūi such that Ai ūi = c̄i .

Define ū by extending missing dimensions of ūi with 0’s.

Hence we obtain an m-vector ū with ūTA = c̄T .
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ū ≥ 0̄

If ū ≥ 0̄, v̄i indeed attains the maximum.

This can be shown by applying Duality Theorem.

Recall that ūTA = c̄T and Ai v̄i = b̄i .

Let R be the row indices of Ai in A.

Consider every row in Av̄i and b̄.
I For j ∈ R, Ai v̄i = b̄i and the j-term of ūTAv̄i = the j-term of ūT b̄.
I For j ′ 6∈ R, uj′ = 0 and the j ′-term of ūTAv̄i = the j ′-term of ūT b̄.

Hence we have ūTAv̄i = ūT b̄.

Since ū ≥ 0̄ and ūTA = c̄T , ūT b̄ ≥ min{ȳT b̄ : ȳ ≥ 0̄, ȳTA = c̄T}.
By duality, min{ȳT b̄ : ȳ ≥ 0̄, ȳTA = c̄T} = max{c̄T x̄ : Ax̄ ≤ b̄}.
Therefore,

c̄T v̄i = ūTAv̄i = ūT b̄ ≥ min{ȳT b̄ : ȳ ≥ 0̄, ȳTA = c̄T}
= max{c̄T x̄ : Ax̄ ≤ b̄}.
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Example I

Consider the vertex v̄1 = [ 0 0 ]T in

max [ −1 1 ]x̄
subject to −1 0

0 −1
2 1

 x̄ ≤

 0
0
2


ū1 = [ 1 −1 ]T is a solution to[

−1 0
0 −1

]T
ū =

[
−1

1

]
Hence ū = [ 1 −1 0 ]T .

Note that ū 6≥ 0̄.
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Example II

Recall the example F : x + y ≥ 1 ∧ x − y ≥ −1.

v̄1 = [ 0 0 0 0 0 ]T is a vertex with defining constraints
−1 0 0 0 0

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1




x+

x−
y+

y−
z

 =


0
0
0
0
0


ū1 = [ −1 1 −1 1 1 ]T is a solution to

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


T 

x+

x−
y+

y−
z

 =


1
−1

1
−1
−1


Hence ū = [ −1 1 −1 1 1 0 0 ]T 6≥ 0̄
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ū 6≥ 0̄

When ū 6≥ 0̄, v̄i is not the optimal point.

We want to find a direction ȳ toward an adjacent vertex.

If ū 6≥ 0̄, there must be a defining constraint corresponding to some
uk < 0.

We move away from the corresponding defining constraint while
preserving other defining constraints.
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Finding the Direction ȳ

Suppose ū 6≥ 0̄.

Let k be the minimal index of ū such that uk < 0.

Let k ′ be the index of ūi corresponding to k.

Using high school mathematics, find ȳ by solving

Ai ȳ = −ek ′ .

Observe
I ā`ȳ = 0 for every row ā` of Ai with index other than k ′.

F Hence ȳ preserves other defining constraints.

I āk′ ȳ = −1 for the k ′ row āk′ of Ai .
F Hence ȳ moves away from the offending constraint.

Consider v̄i + λȳ for λ > 0.
I ā`(v̄i + λȳ) = b` for every row ā` of Ai with index other than k ′.

All defining constraints but k ′ are still satisfied!
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Example I

Recall v̄1 = [ 0 0 ]T and ū = [ 1 −1 0 ]T in the following
example:

max [ −1 1 ]x̄
subject to −1 0

0 −1
2 1

 x̄ ≤

 0
0
2


The offending defining constraint is row k ′ = 2.

Hence we find ȳ by solving[
−1 1

1 −1

]
ȳ = −e2 =

[
0
−1

]
ȳ = [ 0 1 ]T .
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Example II

v̄1

v̄2

x1

x2

ȳ

c̄T x̄

v̄1 = [ 0 0 ]T c̄ = [ −1 1 ]T ȳ = [ 0 1 ]T
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Example

Recall v̄1 = [ 0 0 0 0 0 ]T and ū1 = [ −1 1 −1 1 1 ]T in

max [ 1 −1 1 −1 −1 ]
[

x+ x− y+ y− z
]T

subject to

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
−1 1 1 −1 0

1 −1 1 −1 −1




x+

x−
y+

y−
z

 ≤


0
0
0
0
0
1
1


An offending defining constraint is row k ′ = 1.

We find ȳ by solving −I ȳ = −e1.

ȳ = [ 1 0 0 0 0 ]T .
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Obtaining v̄i+i from v̄i and ȳ

Remember ȳ is a “good” direction to move.

Hence we try to find v̄i+1 = v̄i + λi ȳ with some λi > 0.

There are two requirements for v̄i+1:
I All constraints must still be satisfied.
I v̄i+1 is a vertex.

Therefore, we want to find the greatest λi > 0 such that
A(v̄i + λi ȳ) ≤ b̄.

When we find such a λi , set v̄i+1 = v̄i + λi ȳ .

There are two cases to consider:
I Aȳ 6≤ 0̄, then λi exists.
I Aȳ ≤ 0̄, λi can be arbitrarily large (why?).
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Aȳ 6≤ 0̄

This is straightforward.

Using high school mathematics to find another vertex.

Consider the objective value

c̄T v̄i+1 = c̄T (v̄i + λi ȳ)

= c̄T v̄i + λi c̄
T ȳ

= c̄T v̄i + λi c̄
T ȳ

= c̄T v̄i + λi ū
TAȳ

= c̄T v̄i + λi ū
T (−ek)

= c̄T v̄i + λi (−uk)

> c̄T v̄i

Moving from the vertex v̄i to the vertex v̄i+1 always improves the
objective value.
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Example I

Recall v̄1 = [ 0 0 ]T and ȳ = [ 0 1 ]T in

max [ −1 1 ]x̄
subject to −1 0

0 −1
2 1

 x̄ ≤

 0
0
2


Choose λ1 such that −1 0

0 −1
2 1

([ 0
0

]
+ λ1

[
0
1

])
≤

 0
0
2


Recall that row 2 is the offending constraint.

We now find a vertex defined by row 0 and 3.
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Example II

That is, solving

[ 2 1 ]([ 0 0 ]T + λ1[ 0 1 ]T ) = 2

λ1 = 2.

Hence v̄2 = v̄1 + λ1ȳ = [ 0 0 ]T + 2[ 0 1 ]T = [ 0 2 ]T .

Recall that row 1 is satisfied for any λ1.

Since the defining constraints of v̄2 are row 0 and 3, we have

A =

[
−1 0

2 1

]
and b̄2 =

[
0
2

]
.
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Example III

Let us find ū2 by solving AT
2 ū2 = c̄ :[
−1 2

0 1

]
ū2 =

[
−1

1

]
By high school mathematics, ū2 = [ 3 1 ]T and hence

ū = [ 3 0 1 ]T

Since ū ≥ 0̄, we have found the optimum

c̄T v̄2 = [ −1 1 ]

[
0
2

]
= 2
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Aȳ ≤ 0̄

In this case, the optimum is unbounded.

Recall Av̄i ≤ b̄, we have

A(v̄i + λȳ) = Av̄i + λAȳ ≤ b̄.

That is, v̄i + λȳ satisfies all constraints for any λ ≥ 0.

Moreover, the objective value

c̄T (v̄i + λȳ) = c̄T v̄i + λc̄T ȳ

= c̄T v̄i + λūTAȳ

= c̄T v̄i + λūT (−ek)

= c̄T v̄i − λuk .

Since uk < 0, the objective value can be arbitrarily large as λ→∞.
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Example I

Recall v̄1 = [ 0 0 0 0 0 ]T and ȳ = [ 1 0 0 0 0 ]T in

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
−1 1 1 −1 0

1 −1 1 −1 −1




x+

x−
y+

y−
z

 ≤


0
0
0
0
0
1
1


We try to find v̄2 defined by row 7 since

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
−1 1 1 −1 0

1 −1 1 −1 −1




1
0
0
0
0

 =



−1
0
0
0
0
−1

1
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Example II

Hence we find λ1 = 1 by solving

[ 1 −1 1 −1 −1 ](v̄T
1 + λ1[ 1 0 0 0 0 ]T ) = 1

Thus v̄2 = v̄1 + λ1ȳ = [ 1 0 0 0 0 ]T .

The defining constraints for v̄1 are rows 7, 2, 3, 4, 5.

Hence

A2 =


1 −1 1 −1 −1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 and b̄2 =


1
0
0
0
0

 .
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Example III

Using high school mathematics, we now find ū2 by solving AT
2 ū2 = c̄ :

1 0 0 0 0
−1 −1 0 0 0

1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

 ū2 =


1
−1

1
−1
−1

 .

We have ū2 = [ 1 0 0 0 0 ]T .

Since ū2 ≥ 0̄ and hence ū ≥ 0̄, the optimum is

c̄T v̄2 = [ 1 −1 1 −1 −1 ][ 1 0 0 0 0 ]T = 1.
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Complete Example

Consider the TQ-formula:

F : x ≥ 0 ∧ y ≥ 0 ∧ x ≥ 2 ∧ y ≥ 2 ∧ x + y ≤ 3.

Equivalently, consider the linear program:

M : max 1
subject to

G :


−1 0

0 −1
−1 0

0 −1
1 1


[

x
y

]
≤


0
0
−2
−2

3
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Complete Example – Constructing M0

Since G has constraints x ≥ 0 and y ≥ 0, we do not need
x+, x−, y+, y−.
Moreover,

[

D1︷ ︸︸ ︷
1 1 ]

[
x
y

]
≤ [

ḡ1︷︸︸︷
3 ] and

D2︷ ︸︸ ︷[
1 0
0 1

] [
x
y

]
≥

ḡ2︷ ︸︸ ︷[
2
2

]
Hence

M0 : max [ 1 1 −1 −1 ][ x y z1 z2 ]T

subject to

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 0 0
1 0 −1 0
0 1 0 −1




x
y
z1

z2

 ≤


0
0
0
0
3
2
2
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Iteration i = 1 I

v̄1 =


0
0
0
0

, A1 =


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1


1
2
3
4

, b̄1 =


0
0
0
0

.

Obtain ū1 =


−1
−1

1
1

 by solving AT
1 ū1 = c̄ =


1
1
−1
−1

.

Row 1 is an offending constraint.

Obtain ȳ =


1
0
0
0

 by solving A1ȳ = −e1.
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Iteration i = 1 II

Aȳ = [ −1 0 0 0 1 1 0 ]T .

Find the maximal λ = 2 so that v̄1 + λȳ satisfies rows 5 and 6.

[
1 1 0 0
1 0 −1 0

]
(


0
0
0
0

+ λ


1
0
0
0

) ≤
[

3
2

]

Hence v̄2 = v̄1 + λȳ =


2
0
0
0

.
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Iteration i = 2 I

v̄2 =


2
0
0
0

, A2 =


1 0 −1 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


6
2
3
4

, b̄2 =


2
0
0
0

.

Obtain ū2 =


1
−1

0
1

 by solving AT
2 ū2 = c̄ =


1
1
−1
−1

.

Row 2 is an offending constraint.

Obtain ȳ =


0
1
0
0

 by solving A2ȳ = −e2.
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Iteration i = 2 II

Aȳ = [ 0 −1 0 0 1 0 1 ]T .

Find the maximal λ = 1 so that v̄2 + λȳ satisfies rows 5 and 7.

[
1 1 0 0
0 1 0 −1

]
(


2
0
0
0

+ λ


0
1
0
0

) ≤
[

3
2

]

Hence v̄3 = v̄2 + λȳ =


2
1
0
0

.
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Iteration i = 3 I

v̄3 =


2
1
0
0

, A3 =


1 0 −1 0
1 1 0 0
0 0 −1 0
0 0 0 −1


6
5
3
4

, b̄3 =


2
3
0
0

.

Obtain ū3 =


0
1
1
1

 by solving AT
3 ū3 = c̄ =


1
1
−1
−1

.

ū3 ≥ 0̄, v̄3 attains the optimum c̄T v̄3 = 3 of M0.

Recall that G is TQ-satisfiable iff the optimum of M0 is
vG = 1̄T ḡ2 = 4.

Hence the formula F is not TQ-satisfiable.
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