Quantifier-Free Linear Arithmetic

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

June 23, 2015

Bow-Yaw Wang (Academia Sinica)

Quantifier-Free Linear Arithmetic

June 23, 2015 1 / 57

1 Quantifier-Free Fragment of $T_{\mathbb{Q}}$

2 Linear Algebra (Review)

3 Linear Programs

4 The Simplex Method

Bow-Yaw Wang (Academia Sinica)

Quantifier-Free Fragment of $T_{\mathbb{Q}}$

- Let $T_{\mathbb{Q}}$ denote the theory of rationals.
- We consider only *linear* constraints in this lecture.
 - That is, propositions are of the form

$$\sum_{i=1}^n a_i x_i \approx b$$

where $a_i, b \in \mathbb{Q}$ and $\approx \in \{<, \leq\}$.

• The quantifier-free fragment of $T_{\mathbb{Q}}$ considers formulae of the form:

$$G: \forall x_1, x_2, \ldots, x_n. F[x_1, x_2, \ldots, x_n]$$

where x_1, x_2, \ldots, x_n are rational variables, F has no quantifiers with free variables x_1, x_2, \ldots, x_n .

• We want to decide if G holds, equivalently, F is $T_{\mathbb{Q}}$ -valid.

Observe that

$$G: \forall x_1, x_2, \ldots, x_n. F[x_1, x_2, \ldots, x_n]$$

and

$$\neg G: \exists x_1, x_2, \ldots, x_n. \neg F[x_1, x_2, \ldots, x_n]$$

are equivalent.

- *F* is $T_{\mathbb{Q}}$ -valid iff $\neg F$ is $T_{\mathbb{Q}}$ -unsatisfiable.
- We thus only consider $T_{\mathbb{Q}}$ -satisfiability in this lecture.
 - Note that both validity and satisfiability are needed if there are quantifier alternations such as ∀x∃y or ∃x∀y.

Conjunctive Quantifier-Free $T_{\mathbb{Q}}$ -Formulae

- Recall that any propositional logic formula can be transformed to disjunctive normal form (DNF).
- To further simplify the problem, we only consider conjunctive quantifier-free formulae:

$$\sum_{j=1}^{n} a_{1j} x_j \approx_1 b_1$$

$$\wedge \quad \sum_{j=1}^{n} a_{2j} x_j \approx_2 b_2$$

$$\cdots$$

$$\wedge \quad \sum_{j=1}^{n} a_{mj} x_j \approx_m b_m$$

where $a_{ij}, b_i \in T_{\mathbb{Q}}$ and $\approx_i \in \{<, \le\}$ for $1 \le i \le m$ and $1 \le j \le n$.

- It is too tedious to write conjunctive quantifier-free $T_{\mathbb{Q}}$ -formulae.
- We will review and use notations from linear algebra.

Vector and Matrix

An *n*-vector is a column ā ∈ Qⁿ. The transpose ā^T is a row of the same ordered elements:

$$\bar{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \text{ and } \bar{a}^T = [a_1 \ a_2 \ \cdots \ a_n]$$

- Similarly, we use \bar{x} for a variable *n*-vector with variables x_1, x_2, \ldots, x_n .
- An m × n-matrix A ∈ Q^{m×n} and its transpose A^T ∈ Q^{n×m} are defined similarly:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Row and Column Vectors of Matrix

• Let $A \in \mathbb{Q}^{m \times n}$ be an $m \times n$ -matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \vdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• A row \bar{a}_i of A is the row vector

$$\bar{a}_i = [a_{i1} a_{i2} \cdots a_{in}]$$

• A column \bar{a}_i of A is the column vector

$$\bar{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} = \begin{bmatrix} a_{1j} & a_{2j} & \cdots & a_{mj} \end{bmatrix}^T$$

Bow-Yaw Wang (Academia Sinica)

- Let $ar{a}, ar{b} \in \mathbb{Q}^{1 imes n}$ be vectors.
- Define

$$\bar{a}\bar{b}^{T} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \sum_{i=1}^n a_i b_i.$$

-

-

Bow-Yaw Wang (Academia Sinica)

- Let $A \in \mathbb{Q}^{m \times n}$ and $\bar{x} \in \mathbb{Q}^{n \times 1}$.
- Define

$$A\bar{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \vdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i}x_i \\ \sum_{i=1}^n a_{2i}x_i \\ \vdots \\ \sum_{i=1}^n a_{mi}x_i \end{bmatrix}$$

э

Matrix-Matrix Multiplication

• Let $A \in \mathbb{Q}^{m \times n}$ and $B \in \mathbb{Q}^{n \times \ell}$.

Define

$$AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1\ell} \\ b_{21} & b_{22} & \cdots & b_{2\ell} \\ \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{n\ell} \end{bmatrix}$$
$$= \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1\ell} \\ c_{21} & c_{22} & \cdots & c_{2\ell} \\ \vdots & \vdots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{m\ell} \end{bmatrix}$$

where

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}$$

for
$$1 \leq i \leq m$$
 and $1 \leq k \leq \ell$.

-

- ∢ ∃ ▶

3

Useful Notations

- $\overline{0}$ is a column vector of 0's.
- $\overline{1}$ is a column vector of 1's.

► Hence
$$\overline{0}^T \overline{x} = 0$$
 and $\overline{1}^T \overline{x} = \sum_{i=1}^n x_i$ when $\overline{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$

• Define the *identity* matrix

$$I = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{bmatrix}$$

- Hence IA = AI = A for any $A \in \mathbb{Q}^{n \times n}$.
- Finally, define the unit vector

$$e_i = [0 \cdots 1 \cdots 0]^T$$

where all elements are 0 except the *i*-th position.

Bow-Yaw Wang (Academia Sinica)

Quantifier-Free Linear Arithmetic

Linear Equations

• Consider the conjunctive quantifier-free linear $T_{\mathbb{Q}}$ -formula:

$$\sum_{j=1}^{n} a_{1j}x_j = b_1 \bigwedge \sum_{j=1}^{n} a_{2j}x_j = b_2 \bigwedge \cdots \bigwedge \sum_{j=1}^{n} a_{mj}x_j = b_m$$

• Define $A \in \mathbb{Q}^{m \times n}$, $\bar{x} \in \mathbb{Q}^{n \times 1}$, and $\bar{b} \in \mathbb{Q}^{m \times 1}$ as follows.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
$$\bar{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$
$$\bar{b} = \begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix}^T$$

• Then $A\bar{x} = \bar{b}$ describes the same quantifier-free formula.

- $A\bar{x} = \bar{b}$ can be solved by *elementary row operations*:
 - Swap two rows.
 - Multiply a row by a nonzero scalar.
 - Add one row to another.
- It sounds a bit scary but it really is high school mathematics.

Solving Linear Equations II

Let's solve

with high school mathematics (but new notation):

- Let $A \in \mathbb{Q}^{m \times n}$, \bar{x} a variable *n*-vector, and \bar{b} an *m*-vector.
- The linear inequality

$$G: A\bar{x} \leq \bar{b}$$

represents

$$G: \bigwedge_{i=1}^m a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \leq b_i$$

• The set of *n*-dimensional points described by a linear inequality is called a *polyhedron*.

Convexity of Polyhedron

• A set $S \subseteq R^n$ is *convex* if for every $\bar{v}_1, \bar{v}_2 \in S$,

$$\lambda ar{v}_1 + (1-\lambda)ar{v}_2 \in S$$
 for $\lambda \in [0,1]$.

Theorem

Any polyhedron is convex.

Proof.

Let $A\bar{x} \leq \bar{b}$ defines a polyhedron P, and $\bar{v}_1, \bar{v}_2 \in P$. Then

$$A\overline{v}_1 \leq \overline{b}$$
 and $A\overline{v}_2 \leq \overline{b}$.

Let $\lambda \in [0, 1]$. We have $A\lambda \bar{v}_1 \leq \lambda \bar{b}$ and $A(1 - \lambda)\bar{v}_2 \leq (1 - \lambda)\bar{b}$. Hence $A(\lambda \bar{v}_1 + (1 - \lambda)\bar{v}_2) = A\lambda \bar{v}_1 + A(1 - \lambda)\bar{v}_2 \leq \lambda \bar{b} + (1 - \lambda)\bar{b} = \bar{b}$.

くほと くほと くほと

- Let $A \in \mathbb{Q}^{m \times n}$, \bar{x} a variable *n*-vector, and \bar{b} an *m*-vector.
- Consider the linear inequality $A\bar{x} \leq \bar{b}$.
- An *n*-vector \bar{v} is a vertex of $A\bar{x} \leq \bar{b}$ if there is an $n \times n$ -submatrix A_0 of A and corresponding *n*-subvector \bar{b}_0 of \bar{b} such that $A_0\bar{v} = \bar{b}_0$.
 - The rows in A_0 and \overline{b}_0 are called the *defining constraints* of \overline{v} .
- Two vertices are *adjacent* if their defining constraints differ by only one constraint.

- Let $A \in \mathbb{Q}^{m \times n}$, \bar{x} a variable *n*-vector, \bar{c} an *n*-vector, and \bar{b} an *m*-vector.
- The linear program (or linear optimization problem)

 $\begin{array}{ll} \max & \bar{c}^T \bar{x} \\ \text{subject to} \\ & A \bar{x} \leq \bar{b} \end{array}$

is solved by an *n*-vector \bar{v}^* which satisfies $A\bar{v}^* \leq \bar{b}$ with the maximal value $\bar{c}^T \bar{v}^*$.

- $\bar{c}^T \bar{x}$ is the objective function.
- $A\bar{x} \leq \bar{b}$ is the *constraints*.
- If $A\bar{x} \leq \bar{b}$ is unsatisfiable, the maximum is $-\infty$ by convention.
- $\bullet\,$ If the maximum is unbounded, we say the maximum is ∞ by convention.

Example I

• Consider

$$\begin{array}{c} \max \quad \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \end{bmatrix} \\ \text{subject to} \\ \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$

• $x + y - z_1 - z_2$ is the objective function.

æ

くほと くほと くほと

• $\begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T$ is a vertex because of rows 3, 4, 5, 6.

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \\ 2 \end{bmatrix}$$

• Also, $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ is a vertex. (why?)

Theorem

Let $A \in \mathbb{Q}^{m \times n}$, \bar{b} an m-vector, and \bar{c} an n-vector. If $A\bar{x} \leq \bar{b}$ is satisfiable, then

$$\max\{\bar{c}^T\bar{x}: A\bar{x} \leq \bar{b}\} = \min\{\bar{y}^T\bar{b}: \bar{y} \geq 0 \text{ and } \bar{y}^TA = \bar{c}^T\}$$

- \bar{x} is a variable *n*-vector and \bar{y} is a variable *m*-vector.
- Observe that the right hand side is a system of equality.

$\mathcal{T}_{\mathbb{Q}}$ Satisfiability I

- In $T_{\mathbb{Q}}$, two inequalities (< and \leq) are allowed.
- Linear programming only allows \leq .
- Consider

$$F: \qquad \bigwedge_{i=1}^{m} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \leq b_i \\ \wedge \qquad \bigwedge_{j=1}^{\ell} a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n < \beta_j$$

and

$$F': \qquad \bigwedge_{\substack{i=1\\\ell}}^{m} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$
$$\land \qquad \bigwedge_{j=1}^{\ell} a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n + x_{n+1} \le \beta_j$$
$$\land \qquad x_{n+1} > 0$$

• F is $T_{\mathbb{Q}}$ -satisfiable iff F' is $T_{\mathbb{Q}}$ -satisfiable.

$T_{\mathbb{Q}}$ Satisfiability II

• To solve F', consider

$$\max x_{n+1}$$
subject to
$$\bigwedge_{\substack{i=1\\\ell}}^{m} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

$$\bigwedge_{\substack{i=1\\\ell}}^{n} a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n + x_{n+1} \le \beta_j$$

- F' is $T_{\mathbb{Q}}$ -satisfiable iff the optimum is positive.
- If F does not have any strict inequality, consider

$$\begin{array}{ll} \max & 1\\ \text{subject to} \\ & \bigwedge_{i=1}^{m} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \leq b \end{array}$$

• F is $T_{\mathbb{Q}}$ -satisfiable iff the optimum is 1 by convention.

• Consider the generic linear program:

$$M: \max \bar{c}^T \bar{x} \ ext{subject to} \ G: A ar{x} \leq ar{b}$$

- The simplex method solves the linear program M by
 - **1** find an initial vertex \overline{v}_1 with $A\overline{v}_1 \leq \overline{b}$.
 - 2 at iteration i,
 - if v
 _i maximizes the objective function among its adjacent vertices, return v
 _i.
 - **2** otherwise, set \bar{v}_{i+1} to an adjacent vertex with a greater objective value.
- Note that the simplex method returns a vertex \bar{v}^* with a *local* optimum.
- By the convexity of polyhedra, \bar{v}^* also attains the *global* optimum. (why?)

Finding Initial Vertex I

- Given G : Ax̄ ≤ b̄, we construct another linear program M₀ to find an initial vertex in G.
- We first reformulate G as follows.
 - Replace a variable x with $x_+ x_-$ where x_+ and x_- are non-negative.
 - Divide $A\bar{x} \leq \bar{b}$ into two by the signs of b_i to obtain

(

 $D_1 \bar{x} \leq \bar{g}_1$ and $D_2 \bar{x} \geq \bar{g}_2$ where $\bar{g}_1 \geq \bar{0}, \bar{g}_2 \geq \bar{0}$.

• Hence we assume *G* has following form:

$$egin{array}{rcl} \widehat{f g}:& ar{x}&\geq&ar{0}\ D_1ar{x}&\leq&ar{g}_1\ D_2ar{x}&\geq&ar{g}_2 \end{array}$$

Finding Initial Vertex II

Define

• Observe that $\bar{x} = \bar{0}, \bar{z} = \bar{0}$ is a vertex in M_0 .

• $D_1\overline{0} = \overline{0} \leq \overline{g}_1$ and $D_2\overline{0} - \overline{0} = \overline{0} \leq \overline{g}_2$.

• Moreove, M_0 has the optimum $\overline{1}^T \overline{g}_2$ iff G is $T_{\mathbb{Q}}$ -satisfiable.

- Suppose the optimum $\overline{1}^T \overline{g}_2$ is attained by $\overline{x}^*, \overline{z}^*$. Then $D_2 \overline{x}^* - \overline{z}^* = \overline{g}_2$. Thus $D_2 \overline{x}^* = \overline{g}_2 + \overline{z}^* \ge \overline{g}_2$. We have $D_1 \overline{x}^* \le \overline{g}_1$ and $D_2 \overline{x}^* \ge \overline{g}_2$. G is satisfied by \overline{x}^* .
- Conversely, suppose \bar{x}^* satisfies G. Then $D_1\bar{x}^* \leq \bar{g}_1$, $D_2\bar{x}^* \geq \bar{g}_2$, and $\bar{x}^* \geq \bar{0}$. Take $\bar{z}^* = D_2\bar{x}^* \bar{g}_2$. Then $\bar{z}^* \geq \bar{0}$ and $D_2\bar{x}^* \bar{z}^* \leq \bar{g}_2$. Furthermore, $\bar{1}^T(D_2\bar{x}^* \bar{z}^*) = \bar{1}^T\bar{g}_2$ is the optimum.

Finding Initial Vertex III

• We can rearrange M_0 as a linear program.

$$M_{0}: \max \quad \bar{1}^{T}[D_{2}-I] \begin{bmatrix} \bar{x} \\ \bar{z} \end{bmatrix}$$

subject to
$$\begin{bmatrix} -I \\ D_{2} \\ D_{2} & -I \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{z} \end{bmatrix} \leq \begin{bmatrix} \bar{0} \\ \bar{0} \\ \bar{g}_{1} \\ \bar{g}_{2} \end{bmatrix}$$

- $\overline{0}$ is an initial vertex in M_0 .
- We just need to traverse adjacent vertices in M_0 to find the optimum of M_0 .
- If the optimum is $\overline{1}^T \overline{g}_2$, we also find an initial vertex \overline{v}_1 in M.
 - ► Then we traverse adjacent vertices in *M* to find the optimum of *M*.
- Otherwise, G is not satisfiable. M has optimum $-\infty$.

Example I

• Consider $F: x + y \ge 1 \land x - y \ge -1$.

• F is equivalent to the following constraints:

$$G: \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

• Reformulate G and obtain

$$G: \begin{bmatrix} x_{+} \\ x_{-} \\ y_{+} \\ y_{-} \end{bmatrix} \ge \bar{0}, \begin{bmatrix} -1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_{+} \\ x_{-} \\ y_{+} \\ y_{-} \end{bmatrix} \le \begin{bmatrix} 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_{+} \\ x_{-} \\ y_{+} \\ y_{-} \end{bmatrix} \ge \begin{bmatrix} 1 \end{bmatrix}$$

Example II

• Hence the linear program M_0 is:

$$M_{0}: \max [1 -1 1 -1] [x_{+} x_{-} y_{+} y_{-}]^{T} - [z]$$

subject to
$$[x_{+} x_{-} y_{+} y_{-} z]^{T} \ge \bar{0}$$

$$[-1 1 1 -1] \begin{bmatrix}x_{+} \\ x_{-} \\ y_{+} \\ y_{-}\end{bmatrix} \le [1]$$

$$[1 -1 1 -1] \begin{bmatrix}x_{+} \\ x_{-} \\ y_{+} \\ y_{-}\end{bmatrix} - [z] \le [1]$$

• F is $T_{\mathbb{Q}}$ -satisfiable iff M_0 has optimum $\overline{1}^T \overline{g}_2 = 1$.

Example III

• M_0 can be rearranged in the generic form:

$$M_{0}: \max \begin{bmatrix} 1 & -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_{+} \\ x_{-} \\ y_{+} \\ y_{-} \\ z \end{bmatrix}$$

subject to
$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_{+} \\ x_{-} \\ y_{+} \\ y_{-} \\ z \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Bow-Yaw Wang (Academia Sinica)

31 / 57

• Assume that we have a vertex \bar{v}_i in the following linear program:

 $M: \max \ \bar{c}^T \bar{x}$
subject to
 $A\bar{x} \leq \bar{b}$

- We find the vertex \bar{v}^* maximizing $\bar{c}^T \bar{x}$ iteratively.
- At iteration i
 - A vertex \overline{v}_i in *M* is known.
 - Check if \bar{v}_i attains the maximum.
 - * If the maximum is found, return \bar{v}_i .
 - * Otherwise, find an adjacent vertex \bar{v}_{i+1} with greater objective value.

- Let \bar{v}_i be a vertex of $A\bar{x} \leq \bar{b}$.
- Hence there is an $n \times n$ -submatrix A_i of A such that $A_i \bar{v}_i = \bar{b}_i$.
 - Recall that $A_i \bar{v}_i = \bar{b}_i$ is the defining constraints of \bar{v}_i .
 - There can be several such A_i . If so, choose a non-singular submatrix.
- Using high school mathematics, find \bar{u}_i such that $A_i \bar{u}_i = \bar{c}_i$.
- Define \bar{u} by extending missing dimensions of \bar{u}_i with 0's.
- Hence we obtain an *m*-vector \bar{u} with $\bar{u}^T A = \bar{c}^T$.

$\bar{u} \geq \bar{0}$

- If $\bar{u} \geq \bar{0}$, \bar{v}_i indeed attains the maximum.
- This can be shown by applying Duality Theorem.
- Recall that $\bar{u}^T A = \bar{c}^T$ and $A_i \bar{v}_i = \bar{b}_i$.
- Let R be the row indices of A_i in A.
- Consider every row in $A\bar{v}_i$ and \bar{b} .
 - For $j \in R$, $A_i \bar{v}_i = \bar{b}_i$ and the *j*-term of $\bar{u}^T A \bar{v}_i =$ the *j*-term of $\bar{u}^T \bar{b}$.
 - ▶ For $j' \notin R$, $u_{j'} = 0$ and the j'-term of $\bar{u}^T A \bar{v}_i$ = the j'-term of $\bar{u}^T \bar{b}$.
- Hence we have $\bar{u}^T A \bar{v}_i = \bar{u}^T \bar{b}$.
- Since $\bar{u} \ge \bar{0}$ and $\bar{u}^T A = \bar{c}^T$, $\bar{u}^T \bar{b} \ge \min\{\bar{y}^T \bar{b} : \bar{y} \ge \bar{0}, \bar{y}^T A = \bar{c}^T\}$.
- By duality, $\min\{\bar{y}^T\bar{b}:\bar{y}\geq\bar{0},\bar{y}^TA=\bar{c}^T\}=\max\{\bar{c}^T\bar{x}:A\bar{x}\leq\bar{b}\}.$
- Therefore,

$$\bar{c}^T \bar{v}_i = \bar{u}^T A \bar{v}_i = \bar{u}^T \bar{b} \geq \min\{ \bar{y}^T \bar{b} : \bar{y} \geq \bar{0}, \bar{y}^T A = \bar{c}^T \}$$
$$= \max\{ \bar{c}^T \bar{x} : A \bar{x} \leq \bar{b} \}.$$

Example I

• Consider the vertex $\bar{v}_1 = [\begin{array}{cc} 0 & 0 \end{array}]^T$ in

$$\begin{array}{c|c} \max & \begin{bmatrix} -1 & 1 \end{bmatrix} \bar{x} \\ \text{subject to} \\ & \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \bar{x} \leq \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \end{array}$$

• $\bar{u}_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ is a solution to

$$\left[\begin{array}{rrr} -1 & 0 \\ 0 & -1 \end{array}\right]^T \bar{u} = \left[\begin{array}{r} -1 \\ 1 \end{array}\right]$$

- Hence $\bar{u} = [1 -1 0]^T$.
- Note that $\bar{u} \not\geq \bar{0}$.

Example II

• Recall the example $F: x + y \ge 1 \land x - y \ge -1$.

• $\bar{v}_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ is a vertex with defining constraints

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_+ \\ x_- \\ y_+ \\ y_- \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
• $\bar{u}_1 = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 \end{bmatrix}^T$ is a solution to
$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}^T \begin{bmatrix} x_+ \\ x_- \\ y_+ \\ y_- \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$
• Hence $\bar{u} = \begin{bmatrix} -1 & 1 & -1 & 1 & 1 & 0 & 0 \end{bmatrix}^T \neq \bar{0}$

- When $\bar{u} \not\geq \bar{0}$, \bar{v}_i is not the optimal point.
- We want to find a direction \bar{y} toward an adjacent vertex.
- If $\bar{u} \geq \bar{0}$, there must be a defining constraint corresponding to some $u_k < 0$.
- We move away from the corresponding defining constraint while preserving other defining constraints.

Finding the Direction \bar{y}

- Suppose $\bar{u} \not\geq \bar{0}$.
- Let k be the minimal index of \bar{u} such that $u_k < 0$.
- Let k' be the index of \bar{u}_i corresponding to k.
- Using high school mathematics, find \bar{y} by solving

$$A_i \bar{y} = -e_{k'}.$$

Observe

- $\bar{a}_{\ell}\bar{y} = 0$ for every row \bar{a}_{ℓ} of A_i with index other than k'.
 - * Hence \bar{y} preserves other defining constraints.
- $\bar{a}_{k'}\bar{y} = -1$ for the k' row $\bar{a}_{k'}$ of A_i .
 - * Hence \bar{y} moves away from the offending constraint.
- Consider $\bar{v}_i + \lambda \bar{y}$ for $\lambda > 0$.
 - $\bar{a}_{\ell}(\bar{v}_i + \lambda \bar{y}) = b_{\ell}$ for every row \bar{a}_{ℓ} of A_i with index other than k'.
- All defining constraints but k' are still satisfied!

Example I

• Recall $\bar{v}_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ and $\bar{u} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$ in the following example:

$$\begin{array}{c|c} \max & \begin{bmatrix} -1 & 1 \end{bmatrix} \bar{x} \\ \text{subject to} \\ \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \bar{x} \leq \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \end{array}$$

- The offending defining constraint is row k' = 2.
- Hence we find \bar{y} by solving

$$\left[egin{array}{cc} -1 & 1 \ 1 & -1 \end{array}
ight] ar{y} = -e_2 = \left[egin{array}{cc} 0 \ -1 \end{array}
ight]$$

• $\bar{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$.

Example II

 $\bar{v}_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ $\bar{c} = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$ $\bar{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$

- A 🖃

3

Example

• Recall $\overline{v}_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ and $\overline{u}_1 = \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}^T$ in

max
$$[1 -1 1 -1 -1] [x_{+} x_{-} y_{+} y_{-} z]^{T}$$

subject to

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_+ \\ x_- \\ y_+ \\ y_- \\ z \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• An offending defining constraint is row k' = 1.

• We find
$$\bar{y}$$
 by solving $-I\bar{y}=-e_1$.

•
$$\bar{y} = [1 \ 0 \ 0 \ 0 \]^T.$$

- Remember \bar{y} is a "good" direction to move.
- Hence we try to find $\bar{v}_{i+1} = \bar{v}_i + \lambda_i \bar{y}$ with some $\lambda_i > 0$.
- There are two requirements for \bar{v}_{i+1} :
 - All constraints must still be satisfied.
- Therefore, we want to find the greatest $\lambda_i > 0$ such that $A(\bar{v}_i + \lambda_i \bar{y}) \leq \bar{b}$.
- When we find such a λ_i , set $\bar{v}_{i+1} = \bar{v}_i + \lambda_i \bar{y}$.
- There are two cases to consider:
 - $A\bar{y} \not\leq \bar{0}$, then λ_i exists.
 - $A\bar{y} \leq \bar{0}$, λ_i can be arbitrarily large (why?).

$A\bar{y} \not\leq \bar{0}$

- This is straightforward.
- Using high school mathematics to find another vertex.
- Consider the objective value

$$\bar{c}^{T} \bar{v}_{i+1} = \bar{c}^{T} (\bar{v}_{i} + \lambda_{i} \bar{y})$$

$$= \bar{c}^{T} \bar{v}_{i} + \lambda_{i} \bar{c}^{T} \bar{y}$$

$$= \bar{c}^{T} \bar{v}_{i} + \lambda_{i} \bar{c}^{T} \bar{y}$$

$$= \bar{c}^{T} \bar{v}_{i} + \lambda_{i} \bar{u}^{T} A \bar{y}$$

$$= \bar{c}^{T} \bar{v}_{i} + \lambda_{i} \bar{u}^{T} (-e_{k})$$

$$= \bar{c}^{T} \bar{v}_{i} + \lambda_{i} (-u_{k})$$

$$> \bar{c}^{T} \bar{v}_{i}$$

• Moving from the vertex \bar{v}_i to the vertex \bar{v}_{i+1} always improves the objective value.

Bow-Yaw Wang (Academia Sinica)

43 / 57

Example I

• Recall
$$\bar{v}_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
 and $\bar{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ in

$$\begin{array}{ccc} \max & \begin{bmatrix} -1 & 1 \end{bmatrix} \bar{x} \\ \text{subject to} \\ \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \bar{x} \leq \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

• Choose λ_1 such that

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \le \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

- Recall that row 2 is the offending constraint.
- We now find a vertex defined by row 0 and 3.

Example II

• That is, solving

$$\begin{bmatrix} 2 & 1 \end{bmatrix} (\begin{bmatrix} 0 & 0 \end{bmatrix}^T + \lambda_1 \begin{bmatrix} 0 & 1 \end{bmatrix}^T) = 2$$

• $\lambda_1 = 2.$

• Hence $\bar{v}_2 = \bar{v}_1 + \lambda_1 \bar{y} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T + 2\begin{bmatrix} 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$.

• Recall that row 1 is satisfied for any λ_1 .

• Since the defining constraints of \bar{v}_2 are row 0 and 3, we have

$$A = \left[egin{array}{cc} -1 & 0 \ 2 & 1 \end{array}
ight] ext{ and } ar{b}_2 = \left[egin{array}{cc} 0 \ 2 \end{array}
ight].$$

Example III

• Let us find \bar{u}_2 by solving $A_2^T \bar{u}_2 = \bar{c}$:

$$\left[\begin{array}{rrr} -1 & 2 \\ 0 & 1 \end{array}\right] \bar{u}_2 = \left[\begin{array}{r} -1 \\ 1 \end{array}\right]$$

• By high school mathematics, $\bar{u}_2 = \begin{bmatrix} 3 & 1 \end{bmatrix}^T$ and hence

$$\bar{u} = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^T$$

• Since $\bar{u} \geq \bar{0}$, we have found the optimum

$$\bar{c}^T \bar{v}_2 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2$$

- In this case, the optimum is unbounded.
- Recall $A\bar{v}_i \leq \bar{b}$, we have

$$A(\bar{v}_i + \lambda \bar{y}) = A\bar{v}_i + \lambda A\bar{y} \leq \bar{b}.$$

- That is, $\bar{v}_i + \lambda \bar{y}$ satisfies all constraints for any $\lambda \ge 0$.
- Moreover, the objective value

$$\begin{aligned} \bar{c}^T (\bar{v}_i + \lambda \bar{y}) &= \bar{c}^T \bar{v}_i + \lambda \bar{c}^T \bar{y} \\ &= \bar{c}^T \bar{v}_i + \lambda \bar{u}^T A \bar{y} \\ &= \bar{c}^T \bar{v}_i + \lambda \bar{u}^T (-e_k) \\ &= \bar{c}^T \bar{v}_i - \lambda u_k. \end{aligned}$$

• Since $u_k < 0$, the objective value can be arbitrarily large as $\lambda \to \infty$.

47 / 57

Example I

• Recall
$$\bar{v}_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$
 and $\bar{y} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^T$ in

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_+ \\ x_- \\ y_+ \\ y_- \\ z \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• We try to find \bar{v}_2 defined by row 7 since

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

Example II

• Hence we find $\lambda_1 = 1$ by solving

• Thus $\bar{v}_2 = \bar{v}_1 + \lambda_1 \bar{y} = [1 \ 0 \ 0 \ 0 \]^T$.

• The defining constraints for \bar{v}_1 are rows 7, 2, 3, 4, 5.

Hence

$$A_2 = \begin{bmatrix} 1 & -1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \text{ and } \bar{b}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

э

- 4 ∃ ▶

• Using high school mathematics, we now find \bar{u}_2 by solving $A_2^T \bar{u}_2 = \bar{c}$:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 & -1 \end{bmatrix} \bar{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

• Since $\bar{u}_2 \geq \bar{0}$ and hence $\bar{u} \geq \bar{0}$, the optimum is

٠

Complete Example

• Consider the $T_{\mathbb{Q}}$ -formula:

 $F: x \ge 0 \land y \ge 0 \land x \ge 2 \land y \ge 2 \land x + y \le 3.$

• Equivalently, consider the linear program:

 $M: \max 1 \\ \text{subject to} \\ G: \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & 0 \\ 0 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ -2 \\ -2 \\ 3 \end{bmatrix}$

• • = • • = •

Complete Example – Constructing M_0

- Since G has constraints $x \ge 0$ and $y \ge 0$, we do not need x_+, x_-, y_+, y_- .
- Moreover,

$$\begin{bmatrix} D_1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \le \begin{bmatrix} \overline{g_1} \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} D_2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \ge \begin{bmatrix} \overline{g_2} \\ 2 \end{bmatrix}$$

Hence

$$M_0: \max [1 \ 1 \ -1 \ -1][x \ y \ z_1 \ z_2]^T$$

subject to

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$

Bow-Yaw Wang (Academia Sinica)

Quantifier-Free Linear Arithmetic

June 23, 2015

52 / 57

-

Iteration i = 1 I

•
$$\bar{v}_1 = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$
, $A_1 = \begin{bmatrix} -1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 & 0 & 0 & -1 \end{bmatrix}$
• Obtain $\bar{u}_1 = \begin{bmatrix} -1\\-1\\1\\1\\1 \end{bmatrix}$ by solving $A_1^T \bar{u}_1 = \bar{c} = \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix}$.
• Row 1 is an offending constraint.
• Obtain $\bar{y} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ by solving $A_1 \bar{y} = -e_1$.

Image: A match a ma

æ

• $A\bar{y} = [-1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0]^T$.

• Find the maximal $\lambda = 2$ so that $\bar{v}_1 + \lambda \bar{y}$ satisfies rows 5 and 6.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}) \leq \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

• Hence $\bar{v}_2 = \bar{v}_1 + \lambda \bar{y} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

э

Iteration i = 2 I

•
$$\bar{v}_2 = \begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1&0&-1&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1 \end{bmatrix} \begin{bmatrix} 2\\2\\3\\4 \end{bmatrix}$, $\bar{b}_2 = \begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix}$.
• Obtain $\bar{u}_2 = \begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix}$ by solving $A_2^T \bar{u}_2 = \bar{c} = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$.
• Row 2 is an offending constraint.
• Obtain $\bar{y} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ by solving $A_2 \bar{y} = -e_2$.

(日) (周) (三) (三)

3

• $A\bar{y} = [0 -1 0 0 1 0 1]^T$.

• Find the maximal $\lambda = 1$ so that $\bar{v}_2 + \lambda \bar{y}$ satisfies rows 5 and 7.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}) \leq \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
• Hence $\bar{v}_3 = \bar{v}_2 + \lambda \bar{y} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.

3

- ∢ ∃ ▶

•
$$\bar{v}_3 = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$$
, $A_3 = \begin{bmatrix} 1 & 0 & -1 & 0\\1 & 1 & 0 & 0\\0 & 0 & -1 & 0\\0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 6\\5\\3\\4 \end{bmatrix}$, $\bar{b}_3 = \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix}$
• Obtain $\bar{u}_3 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$ by solving $A_3^T \bar{u}_3 = \bar{c} = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$.

• $\bar{u}_3 \geq \bar{0}$, \bar{v}_3 attains the optimum $\bar{c}^T \bar{v}_3 = 3$ of M_0 .

- Recall that G is $T_{\mathbb{Q}}$ -satisfiable iff the optimum of M_0 is $v_G = \overline{1}^T \overline{g}_2 = 4$.
- Hence the formula F is not $T_{\mathbb{Q}}$ -satisfiable.