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Quantifier-Free Fragment of Tg

@ Let Tg denote the theory of rationals.
@ We consider only linear constraints in this lecture.
» That is, propositions are of the form

n
E aiXj = b
i=1

where a;, b € Q and =€ {<, <}.

o The quantifier-free fragment of Tg considers formulae of the form:

G :Vx1,x0, ..., Xn.F[x1,x2, ..., Xp]
where x1, X2, ..., x, are rational variables, F has no quantifiers with
free variables x1, x2, ..., Xp.

@ We want to decide if G holds, equivalently, F is Tg-valid.
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Validity and Unsatisfiability

@ Observe that
G VX1, %2, ..., Xn.F[x1,x2, ..., Xp]

and
=G 3xg, X0, Xn o F X1, X2, 00 X

are equivalent.
e Fis Tg-valid iff =F is Tg-unsatisfiable.
@ We thus only consider Tg-satisfiability in this lecture.

» Note that both validity and satisfiability are needed if there are
quantifier alternations such as Vx3y or IxVy.
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Conjunctive Quantifier-Free Tg-Formulae

@ Recall that any propositional logic formula can be transformed to
disjunctive normal form (DNF).

@ To further simplify the problem, we only consider conjunctive
quantifier-free formulae:

n
E alej ~1 bl
Jj=1

n
AN E azjXj ~ b,
Jj=1

n
A E aAmjXj ~m bm
j=1

where ajj, bj € Tg and =je {<,<}for1<i<mand1<j<n
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Linear Algebra

@ It is too tedious to write conjunctive quantifier-free Tg-formulae.

@ We will review and use notations from linear algebra.
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Vector and Matrix

T

@ An n-vector is a column 3 € Q". The transpose a' is a row of the

same ordered elements:

ai
an
a= ) and éT:[al ap -+ an)
dn
@ Similarly, we use X for a variable n-vector with variables xq, x2, ..., x,.
e An m x n-matrix A € Q™*" and its transpose AT € Q"™ are defined
similarly:
ail a2 - adn a1 a1 - ami
dp1 a2 -+ ap T a2 axz - am2
A= ) and A’ =
dml ad4m2 - 3dmn din d2n " Admn
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Row and Column Vectors of Matrix

o Let Ac Q™*" be an m X n-matrix.

a11 a2 - dln

an1 axp az2n
A =

dml am2 - amn

@ A row 3; of A is the row vector

3 = [a1 a2 - ain]

@ A column 3; of A is the column vector
aij

5= | T =lay ey o awm T
amj
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Vector-Vector Multiplication

o Let 3,b € Q%" be vectors.

@ Define
by
_r b n
ab :[31 ay - a,,] i :Za,-b,-.
. i=1
bn
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Matrix-Vector Multiplication

o Let Ac Q™" and x € Q1.

@ Define
-, -
> alix
a1 a2 -+ an X1 i1
_ dp1 d22 -+ a2p X2 Z a;jXi
Ax = . . = | i=1
adml dm2 - Aamn Xn n
> amiXi
L i=1 i
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Matrix-Matrix Multiplication

o Let Ac Q™*" and B € Q"%

@ Define

AB =

where

aii
ari

amil

(ah]

@1

Cm1

a2
a2

am2

C12

€22

Cm2

dln
azn

C1e
Coy

Cme

n
Cik = ) _ ajjbj
=1

forl<i<mand1l<k</
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Useful Notations

@ 0 is a column vector of 0's.
@ 1is a column vector of 1's.

» Hence 07x =0and 17x =Y x; whenx =[x x2 -+ X, ]
iz

@ Define the identity matrix

» Hence IA= Al = A for any A € Q"*".

@ Finally, define the unit vector
e = [0 - 1 -~ 0]

where all elements are 0 except the i-th position.
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Linear Equations

o Consider the conjunctive quantifier-free linear Tg-formula:

doap=b \D g =br \ - N> amx = bm
j=1 j=1 =1

o Define Ae Q™" x € Q™! and b e Q™*! as follows.

di1 412 -+ din
an1 axp - azn
A —
dml adm2 - dmn
< T
X =[x x - xp]
P T
b = [ by by --- b ]

@ Then Ax = b describes the same quantifier-free formula.
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Solving Linear Equations |

e AX = b can be solved by elementary row operations:

» Swap two rows.
» Multiply a row by a nonzero scalar.
» Add one row to another.

@ It sounds a bit scary but it really is high school mathematics.
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Solving Linear Equations Il

@ Let's solve

3X1 + X 4+ 2X3 = 6

X1 + x3 =1

2X1 —+ 2X2 + x3 = 2

with high school mathematics (but new notation):
3126 31 2|6 [0 1 —1(3]
1 0 11 > 10 11 > 10 1)1
2 2 1|2 02 -10 02 —1]0
10 11 10 1 1 1 0 0 7
01 -1]3 — 01 -1] 3 — 01 0|-3
02 -110 00 1]|-6 | 0 0 1] -6 |

@ Thatis, [ x1 x x3]|=[7 -3 —-6].
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Linear Inequality

e Let A€ Q™" X a variable n-vector, and b an m-vector.

@ The linear inequality B
G: Ax<bh

represents
m
G: /\ aj1x1 + ajpxo + -+ + ajnxn < b;
i=1

@ The set of n-dimensional points described by a linear inequality is
called a polyhedron.

Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic June 23, 2015 16 / 57



Convexity of Polyhedron

@ Aset S C R"is convex if for every vi,mn € S,
AV + (L= X)) € S for A € [0,1].

Theorem
Any polyhedron is convex.

Proof.
Let Ax < b defines a polyhedron P, and 1,7 € P. Then

Av; < b and A < b.
Let A € [0,1]. We have AA\iy < Ab and A(1 — A)v2 < (1 — A)b. Hence
A + (1= A)) = AAs + A(L— N)ta < Ab+ (1 — A\)b = b. O
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Vertex and Adjacent Vertices

o Let Ae Q™" X a variable n-vector, and b an m-vector.

o Consider the linear inequality Ax < b.

@ An n-vector v is a vertex of Ax < b if there is an n x n-submatrix Ag
of A and corresponding n-subvector by of b such that Agv = by.

» The rows in Ay and by are called the defining constraints of v.

@ Two vertices are adjacent if their defining constraints differ by only
one constraint.

Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic June 23, 2015 18 / 57



Linear Program

@ Let Ae Qm*" X a variable n-vector, ¢ an n-vector, and b an
m-vector.

@ The linear program (or linear optimization problem)

max c¢'x
subject to
Ax < b
is solved by an n-vector v* which satisfies Av* < b with the maximal
value ¢7v*.

» ¢'X is the objective function.

» Ax < b is the constraints.
e If Ax < b is unsatisfiable, the maximum is —oo by convention.
@ If the maximum is unbounded, we say the maximum is co by

convention.
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Example |

o Consider
X
max [1 1 -1 —-1] Y
Z1
23
subject to
-1 0 0 07 0]
0 -1 0 0 0
0 0 -1 0 x 0
0 0 0 -1 Y 1<lo
1 1 0 of|*™ 3
1 0 -1 0 22 2
0 1 0 -1 | 2

@ x+ y — z1 — z is the objective function.
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Example Il

@[2 1 0 0]7 isa vertex because of rows 3, 4, 5, 6.

-1 0

N WO O

= = O O

o= O O

o O
|

o =

OO =N

-1 0

@ Also,[0 0 0 0]7 isa vertex. (why?)
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Duality Theorem

Theorem

Let A e QM=n, b an m-vector, and € an n-vector. If Ax < b is satisfiable,
then

max{c’x: Ax < b} =min{y"b:y>0andyTA=¢cT}.

@ X ia a variable n-vector and y is a variable m-vector.

@ Observe that the right hand side is a system of equality.
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Tq Satisfiability |

e In Tgp, two inequalities (< and <) are allowed.
@ Linear programming only allows <.

o Consider
m
F: N aitxi + aipxo + -+ - + ajpxp < bj
i=1
¢
A /\ aj1xX1 + ajpxo + -+ ajnxp < ,Bj
j=1
and
m
F': A ainxa + ajpxe + -+ + ainXn < b
i=1
¢
AN apxa +apxa 4+ ajnXn + Xnt1 < B
j=1
AN Xn+1 > 0

o Fis Tg-satisfiable iff F’ is Tg-satisfiable.
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T Satisfiability Il

@ To solve F’, consider

max Xp41
subject to

m
aiixy + appxo + -+ + ajinXp < b;
i=1

4
A ajix1 + ajpxe + -+ + ajnXp + Xpp1 < Bj
Jj=1

o F'is Tg-satisfiable iff the optimum is positive.

o If F does not have any strict inequality, consider

max 1
subject to

m
aj1x1 + appXxo + -+ + ajinXp < b;
=1

=
e F is Tg-satisfiable iff the optimum is 1 by convention.
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The Simplex Method

o Consider the generic linear program:

M: max c¢'x
subject to

G:Ax<b

@ The simplex method solves the linear program M by
@ find an initial vertex ¥, with Ay < b.
@ at iteration 7,

@ if Vi maximizes the objective function among its adjacent vertices,
return v;.
@ otherwise, set Viy1 to an adjacent vertex with a greater objective value.

@ Note that the simplex method returns a vertex v* with a local
optimum.

@ By the convexity of polyhedra, v* also attains the global optimum.
(why?)
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Finding Initial Vertex |

e Given G : Ax < b, we construct another linear program My to find an
initial vertex in G.

o We first reformulate G as follows.

> Replace a variable x with x; — x_ where x; and x_ are non-negative.
» Divide Ax < b into two by the signs of b; to obtain

D;x < g1 and Dyx > & where g > 0,5 > 0.

@ Hence we assume G has following form:

G: x >0
Dix < g1
Dyx > g
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Finding Initial Vertex Il

@ Define _
Mo . max ].T(Dz)_( — 2)
subject to
x >0
z >0
Dix < g1
Dx—z < @

@ Observe that x =0,z = 0 is a vertex in M.
> ch_):(_)ggl and DQ(_)—(_):(_)SEQ
@ Moreove, My has the optimum 17z iff G is Tg-satisfiable.
» Suppose the optimum 173, is attained by X*,z*. Then
Dox* —z* = g». Thus Dox™ = g +z" > g». We have D;x* < gy and
Dox* > g». G is satisfied by x*.
» Conversely, suppose x* satisfies G. Then Dix* < gy, Dox* > g», and
x* > 0. Take z* = DoX* — g&. Then z* > 0 and DoX* — z* < g.
Furthermore, 17 (Dyx* — z*) = 17 &, is the optimum.
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Finding Initial Vertex Il

@ We can rearrange My as a linear program.

M()Z max 1T[D2—I]|:

NI X1
—

subject to

|
-
ol ol

o O
NN
| |
| — |
NI XI
—_
INA
ng‘m

e 0 is an initial vertex in Mp.

@ We just need to traverse adjacent vertices in My to find the optimum
of Mo.
@ If the optimum is Ing, we also find an initial vertex vy in M.
» Then we traverse adjacent vertices in M to find the optimum of M.

@ Otherwise, G is not satisfiable. M has optimum —oo.
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Example |

o Consider F:x+y>1Ax—y>—1.
@ F is equivalent to the following constraints:

o (4G

@ Reformulate G and obtain

X4 X4
G: | |>0[-111 -1]||<[
Y+ Y+
y- y-
X+
X_
1 -1 1 -1 > 1
[ Moy, |z
y—
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Example Il

@ Hence the linear program M is:

Mo: max [1 -1 1 —1][xx x y+ y_ 1" -1z
subject to

[x¢ x ypr yo z]T >0

Xt
[-1 1 1 —-1] yjr < [1]
y—
X+
[1 -1 1 1] =] < 0
y—

e Fis Tg-satisfiable iff My has optimum 17z =1.
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Example Il

@ My can be rearranged in the generic form:

X4
X_
Mo: max [1 -1 1 —-1 —1]| yq
y_
zZ
subject to
-1 0 0 0 0 ] [0 7]
0O -1 0 0 O X4 0
0o 0o -1 0 O X_ 0
0O 0 0 -1 0 yv+ | <] 0
o 0 0 0 -1 y— 0
-1 1 1 -1 0 z 1
| 1 -1 1 -1 -1 | | 1
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Vertex Traversal

@ Assume that we have a vertex v; in the following linear program:

M: max ¢'x
subject to
Ax < b

o We find the vertex v* maximizing ¢’ X iteratively.
o At iteration /

» A vertex v; in M is known.
» Check if v; attains the maximum.

* |f the maximum is found, return v;.
* Otherwise,find an adjacent vertex Vi;1 with greater objective value.

Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic June 23, 2015 32 /57



Checking Maximum

Let v; be a vertex of Ax < b.
Hence there is an n x n-submatrix A; of A such that A;v; = b;.

» Recall that A;v; = b; is the defining constraints of v;.
» There can be several such A;. If so, choose a non-singular submatrix.

Using high school mathematics, find u; such that A;u; = G;.

Define & by extending missing dimensions of &; with 0's.

Hence we obtain an m-vector & with a’ A==¢'.
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0

If 7 >0, ¥; indeed attains the maximum.
This can be shown by applying Duality Theorem.
Recall that 77 A=¢7 and A;v; = b;.

Let R be the row indices of A; in A.

Consider every row in Av; and b.
» For j € R, AiV; = bj and the j-term of 4" AV; = the j-term of i b.
» Forj' ¢ R, ujp =0 and the j’-term of G" AV; = the j’-term of &' b.

Hence we have " Av; = u'b.

]
o Sinccu>0and u"A=c", u"b>min{y"b:y>0,yTA=2c"}.
@ By duality, min{y"b:y>0,yTA=¢"} = max{c'x: Ax < b}
@ Therefore,
c'vi=u"Avi=1u"b > min{y’h:y>0,yTA=2c"}
= max{ec"x: Ax < b}.
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Example |

o Consider the vertex v =[ 0 0]7 in

max [ -1 1]x

subject to
-1 0 0
-1 |x<]o0
2 1 2

ofy=[1 —1]7 isa solution to

-1 01"_ [-1
o -1 “T| 1
o Henceo=[1 -1 0]".
o Note that & # 0.
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Example Il

@ Recall the example F: x+y >1Ax—y > —1.
o1 =[0 0 0 0 0] isa vertex with defining constraints

1 0 0 0 071[x 0
0 -1 0 0 0 X_ 0
0 0 -1 0 0|y . |=]0
0 0 0 -1 0]y 0
0O 0 0 0 -1 z 0
ey =[-1 1 —1 1 1]7 isa solution to
-1 0 0 0 07 [xt 1
0 -1 0 0 O X_ -1
0 0 -1 0 0 v | =1 1
0 0 0 -1 0 v 1
0O 0 0 0 -1 z -1

o Henceo=[-1 1 -1 1 1 0 0]72»0
Bow-Yaw Wang (Academia Sinica) Quantifier-Free Linear Arithmetic



e When & # 0, ¥; is not the optimal point.

@ We want to find a direction y toward an adjacent vertex.

o If 1 # 0, there must be a defining constraint corresponding to some
u, < 0.

@ We move away from the corresponding defining constraint while
preserving other defining constraints.
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Finding the Direction y

Suppose T # 0.
Let k be the minimal index of & such that u, < 0.

Let k' be the index of @; corresponding to k.

Using high school mathematics, find y by solving
A,‘)_/ = — €.

Observe
» 3,y = 0 for every row 3, of A; with index other than k’.

* Hence y preserves other defining constraints.
» 3y = —1 for the k' row 3, of A;.
* Hence y moves away from the offending constraint.
Consider v; + Ay for A > 0.
» 3,(V; + A\y) = by for every row 3, of A; with index other than k'.

@ All defining constraints but k” are still satisfied!
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Example |

@ Recall iy =[0 0]Tanda=[1 —1 0] in the following
example:
max [ -1 1]x
subject to

-1 0 0
0 -1 (x| 0
2 1 2

@ The offending defining constraint is row k/ = 2.

@ Hence we find ¥ by solving

I Y

ey=[0 1]7.
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Example Il

X2

<

m=[00]" e=[-11]" y=[0 1]T
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@Recaly=[0 0 0 0 O0]Tandiy=[-1 1 -1 1 1]7in

max [1 -1 1 -1 —1][x4 x- y; y- Z}T

subject to

H = O OO O+—

0 0 0 O
-1 0 0 0
0 -1 0 O
0 0 -1 0
0 0 0 -1
1 1 -1 0
-1 1 -1 -1

0

Xt 0

X_ 0

y+ | <0

y- 0

z 1
- 1 -

@ An offending defining constraint is row k' = 1.

@ We find ¥ by solving —1y = —e;.
ey=[1 000 0]".
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Obtaining v;,; from v; and y

Remember y is a “good” direction to move.

Hence we try to find vi11 = v; + A;y with some \; > 0.

There are two requirements for vj,1:

» All constraints must still be satisfied.
> V41 is a vertex.

Therefore, we want to find the greatest A; > 0 such that
A(V,' + )\,)_/) <b.
When we find such a Aj, set Viy1 = V; + Ajy.

There are two cases to consider:
> Ay £ 0, then \; exists.
» Ay <0, A; can be arbitrarily large (why?).
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@ This is straightforward.

@ Using high school mathematics to find another vertex.

@ Consider the objective value

c

T

Vit1

ET(VI + AJ’)

cTvi+ NuT Ay
e+ T (—ek)
TV + Ni(—w)

¢y

@ Moving from the vertex v; to the vertex V1 always improves the

objective value.
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Example |

@ Recalvy =[0 0]Tandy=[0 1]7in

max [ -1 1]x

subject to
-1 0 0
0 -1 |x< |0
2 1 2

@ Choose A1 such that

-1 0 0
0 -1 ({8}“1[?])5 0
2 1 2
@ Recall that row 2 is the offending constraint.

@ We now find a vertex defined by row 0 and 3.
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Example Il

@ That is, solving

[2 1]([0 0]+ [0 1]7)=2

A= 2.
Hence o =1 + iy =[0 0]7+2[0 1]"=[0 2]".

Recall that row 1 is satisfied for any A;.

(]

@ Since the defining constraints of ¥, are row 0 and 3, we have

-1 0 - 0
A—[ 5 1]andbg—[2].
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Example Il

@ Let us find Ty by solving A2TU2 =

121 [-1
01]"7| 1
e By high school mathematics, i, =[ 3 1 ] and hence

o=[3 0 1]

e Since 1 > 0, we have found the optimum

T =[-1 1][2}:2
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<0

@ In this case, the optimum is unbounded.
@ Recall Av; < b, we have
A(V; + \y) = AV; + My < b.
@ That is, ¥; + Ay satisfies all constraints for any A > 0.
@ Moreover, the objective value
cT(wi+Ny) = evi+aeTy
= v+ XiT Ay
= ¢+ A0 (—e)
= E‘TV,' — )\Uk.
@ Since ug < 0, the objective value can be arbitrarily large as A — oo.
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Example |

@ Recall y =[0 0 0 0 O]"andy=[1 0 0 0 0]"in

(-1 0 0 0 © 0

0O -1 0 0 O X4 0

0O 0 -1 0 O X_ 0

0O 0 0 -1 0 y+ | < |0

0O 0 0 0 -1 y— 0

-1 1 1 -1 0 z 1
1 -1 1 -1 -1 | | 1]

@ We try to find ¥» defined by row 7 since

(-1 0 0 0 0] [ —1 7

0 -1 0 0 O 1 0

0O 0 -1 0 O 0 0

0 0 0 -1 o0 0| = 0

0 0 0 0 -1 0 0

-1 1 1 -1 0 0 -1
1 -1 1 -1 -1 | 1
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Example Il

@ Hence we find A\; =1 by solving
[1 -1 1 -1 —1](% +M[1 000 0]")=1

o Thusvo=¥+Ny=[1 0 0 0 0]".

@ The defining constraints for v; are rows 7,2,3,4,5.

@ Hence
1 -1 1 -1 -1 1
0 -1 0 0 O 0
Ab=10 0 -1 0 0| andbr=1]0
0 0 0 -1 0 0
0 0 0 0 -1 0
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Example Il

e Using high school mathematics, we now find @i, by solving Al i, = ¢:

1 0 0 0 O 1
-1 -1 0 0 O -1
1 0 -1 0 0 |h= 1
-1 0 0 -1 0 -1
-1 0 0 0 -1 -1

e Wehaveip=[1 0 0 0 0]".

@ Since T» > 0 and hence & > 0, the optimum is

c™m=[1 -11 -1 -1][1 000 0] =1
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Complete Example

o Consider the Tg-formula:
F:x>0ANy>0Ax>2Ay>2Ax+y <3

@ Equivalently, consider the linear program:

M: max 1
subject to
-1 0 0
0 -1 0
G:| -1 o0 [X]g -2
o —1|LtY -2
1 1 3
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Complete Example — Constructing M

@ Since G has constraints x > 0 and y > 0, we do not need

Xpy X3 Y+, Y—.
@ Moreover,
_ D> &2
X X
< >
SRIMEOEIFNINEH
@ Hence
My: max [1 1 -1 -1][x v zn =]
subject to
M —1 0 0 07 [0
0 -1 0 O 0
X
0 0 -1 0 0
0 0 0 -1 Zy <o
1 1 0 0 Zl 3
1 0 -1 0 2 2
. 0o 1 0 -1 | 2 |
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lteration i =1 |

0 -1 0 0 0] 1 0
_ 0 0 -1 0 0] 2 < 0
eu=log M= o 0 1 o] 3 BT o0
0 0 0 0 —-1] 4 0
-1 1
_— -1 : T_ - 1
e Obtain 7 = 1 by solving A{ iy = ¢ = 1
1 -1
@ Row 1 is an offending constraint.
1
— 0 . _
@ Obtain y = 0 by solving A1y = —ey.
0
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Iteration /i =1 Il

e Ay=[-1 000 1 1 0]".

@ Find the maximal A = 2 so that v; + Ay satisfies rows 5 and 6.

o ooo
+
>
cocowr
N—"
IN
| —
N W
| S

@ Hence i, =1y + A\y =

oo oOoON
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lteration / = 2 |

2 1 0 -1 0 6 2
_ 0 0O -1 0 0] 2 < 0
=l =g o 1 o] 3270
0 0 0 0 —-1] 4 0
1 1
_— -1 : T_ - 1
@ Obtain op = 0 by solving A, i, =€ = 1
1 -1
@ Row 2 is an offending constraint.
0
@ Obtain y = (1) by solving Ay = —eo.
0
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lteration / = 2 |l

e Ay=[0 -1 0 0 1 0 1]".

@ Find the maximal A = 1 so that v» + Ay satisfies rows 5 and 7.

2 0
110 O 0 1 3
<
[o 10 —1]( o | "M o )—[2]

0 0
2
_ _ _ 1
@ Hence i3 = + Ay = 0
0
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Iteration / = 3 |

2 1 0 -1 0 6 2
_ 1 11 0 0 5 - 3
*u=lo M= lo0 1 o330
0 00 0 —1 4 0
0 1
i 1 : - 1
@ Obtain 3 = 1 by solving A; i3 = ¢ = 1
1 -1

e i3 > 0, 3 attains the optimum €73 = 3 of M.
@ Recall that G is Tg-satisfiable iff the optimum of My is
ve =1"g =4.

@ Hence the formula F is not Tg-satisfiable.
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