
Quantifier Elimination for Presburger Arithmetic

Yu-Fang Chen

based on the slides of Isil Dillig

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Quantifier Elimination

A theory T admits quantifier elimination if for every quantified
formula, there exists an equivalent quantifier-free formula.

A quantifier elimination procedure is an algorithm that
computes an equivalent, quantifier-free formula for any
quantified formula

Quantifier elimination algorithm for a theory T allows deciding
satisfiability of any quantified T-formula. Why?

Because we can use quantifier elimination algorithm to obtain
equivalent quantifier-free formula and use decision procedure
for quantifier-free fragment

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Quantifier Elimination

A theory T admits quantifier elimination if for every quantified
formula, there exists an equivalent quantifier-free formula.

A quantifier elimination procedure is an algorithm that
computes an equivalent, quantifier-free formula for any
quantified formula

Quantifier elimination algorithm for a theory T allows deciding
satisfiability of any quantified T-formula. Why?

Because we can use quantifier elimination algorithm to obtain
equivalent quantifier-free formula and use decision procedure
for quantifier-free fragment

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

A Simplification

For developing a quantifier elimination (QE) algorithm,
sufficient to consider formulas of the form ∃x .F where F is
quantifier free

Why is this the case?

Given arbitrary formula G , first look at innermost quantified
formula

This innermost formula is either of the form ∀x .F or ∃x .F
If it is of the form ∃x .F , apply QE algorithm

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

A Simplification

For developing a quantifier elimination (QE) algorithm,
sufficient to consider formulas of the form ∃x .F where F is
quantifier free

Why is this the case?

Given arbitrary formula G , first look at innermost quantified
formula

This innermost formula is either of the form ∀x .F or ∃x .F
If it is of the form ∃x .F , apply QE algorithm

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

A Simplification,cont

If innermost quantified formula is of the form ∀x .F , equivalent
to ¬(∃x .¬F)

In this case, apply QE algorithm to ∃x .¬F to obtain quantifier
free formula F ′

Since F ′ is equivalent to ∃x .¬F , ∀x .F equivalent to ¬F ′

Thus, result of eliminating quantifier from ∀x .F is ¬F ′

In either case, formula contains one less quantifier

Repeat this process, removing innermost quantifier at each
step

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Suppose we have a procedure for eliminating quantifier from
formula ∃x .F where F is quantifier-free

Let us see how to use it to eliminate quantifiers from formula

∃x .∀y .∃z .F1[x , y , z]

Start with innermost quantified formula ∃z .F1[x , y , z]

Suppose QE elimination procedure returns F2[x , y]

Now, the formula is ∃x .∀y .F2[x , y]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example, cont

Current formula: ∃x .∀y .F2[x , y]

Continue with innermost quantified formula ∀y .F2[x , y]

Rewrite it as ¬∃y .¬F2[x , y]

Apply QE algorithm to ∃y .¬F2[x , y]

Suppose result is F3; now formula is ∃x .¬F3[x]

Now, apply QE procedure one last time to obtain
quantifier-free formula

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Summary

As example illustrates, sufficient to have quantifier elimination
procedure for ∃x .F
Because this also allows us to eliminate universal quantifiers

Thus, our QE procedure will only deal with existential
quantifiers

Furthermore, only talk about quantifier elimination in linear
integer arithmetic

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Theory of Integers

Earlier we talked about theory of integers TZ with signature:

ΣZ : {...,−2,−1, 0, 1, 2, ...,+,−,=, <}

In this theory, we can write formulas such as: ∃x .2x = y

What does this formula imply about y?

y is even

Similarly, ∃w .3w = z expresses z is evenly divisible by 3

Unfortunately, without additional divisibility predicate, we
cannot write equivalent quantifier-free formula!

Thus, this formulation of theory of integers does not admit
quantifier elimination

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Theory of Integers

Earlier we talked about theory of integers TZ with signature:

ΣZ : {...,−2,−1, 0, 1, 2, ...,+,−,=, <}

In this theory, we can write formulas such as: ∃x .2x = y

What does this formula imply about y? y is even

Similarly, ∃w .3w = z expresses z is evenly divisible by 3

Unfortunately, without additional divisibility predicate, we
cannot write equivalent quantifier-free formula!

Thus, this formulation of theory of integers does not admit
quantifier elimination

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Theory of Integers

Earlier we talked about theory of integers TZ with signature:

ΣZ : {...,−2,−1, 0, 1, 2, ...,+,−,=, <}

In this theory, we can write formulas such as: ∃x .2x = y

What does this formula imply about y? y is even

Similarly, ∃w .3w = z expresses z is evenly divisible by 3

Unfortunately, without additional divisibility predicate, we
cannot write equivalent quantifier-free formula!

Thus, this formulation of theory of integers does not admit
quantifier elimination

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable?

Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x? No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z? No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable? Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x? No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z? No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable? Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x?

No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z? No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable? Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x? No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z? No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable? Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x? No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z?

No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Augmented Theory of Integers

To admit quantifier elimination, we will add an additional
divisibility predicates k |· to TZ (k positive integer)

Intended interpretation: k |x is true if k evenly divides x

According to this interpretation, is x > 1 ∧ y > 1 ∧ 2|x + y
satisfiable? Yes, e.g., x = 2, y = 2

What about ¬(2|x) ∧ 4|x? No

We will write T̂Z to denote T with additional divisibility
predicate and additional axiom:

∀.x .k |x ↔ ∃y .x = ky

Is x |y well-formed formula in T̂Z? No!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Quantifier Elimination for T̂Z

Fortunately, T̂Z admits quantifier elimination Z

Which quantifier-free formula is equivalent to ∃x .3x = y?

3|y
The quantifier elimination method for T̂Z was given by
Cooper in 1972 in a paper called Theorem Proving in
Arithmetic without Multiplication

Thus, known as Cooper’s method

Rest of lecture: Learn about Cooper’s method

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Quantifier Elimination for T̂Z

Fortunately, T̂Z admits quantifier elimination Z

Which quantifier-free formula is equivalent to ∃x .3x = y? 3|y

The quantifier elimination method for T̂Z was given by
Cooper in 1972 in a paper called Theorem Proving in
Arithmetic without Multiplication

Thus, known as Cooper’s method

Rest of lecture: Learn about Cooper’s method

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Quantifier Elimination for T̂Z

Fortunately, T̂Z admits quantifier elimination Z

Which quantifier-free formula is equivalent to ∃x .3x = y? 3|y
The quantifier elimination method for T̂Z was given by
Cooper in 1972 in a paper called Theorem Proving in
Arithmetic without Multiplication

Thus, known as Cooper’s method

Rest of lecture: Learn about Cooper’s method

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Overview of Cooper’s Method

Given T̂Z−formula ∃x .F [x], where F is quantifier-free,

Cooper’s method constructs quantifier-free T̂Z-formula that is
equivalent to ∃x .F [x].

Cooper’s method has five main steps:
1 Put F [x] into NNF
2 Normalize literals: s < t,k |t, or ¬(k |t)
3 Isolate terms containing x on one side: hx < t, s < hx
4 Ensure x has same coefficient d everywhere and replace dx

with new variable x ′

5 Replace F [x ′] with a disjunction of F [j]’s for finitiely many j

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 1: Put Formula in Negation Normal Form

A formula is in negation normal form (NNF) if the negation
operator (¬) is only applied to variables and predicates

Recursively apply the following rules (left to right):

¬(∀x .G)⇔ ∃x .¬G
¬(∃x .G)⇔ ∀x .¬G
¬¬G ⇔ G
¬(G1 ∧ G2)⇔ (¬G1) ∨ (¬G2)
¬(G1 ∨ G2)⇔ (¬G1) ∧ (¬G2)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

¬∀x .∃y .x > y ⇔
∃x .¬∃y .x > y ⇔
∃x .∀y .¬(x > y)

Try it!

Convert ¬∀x .(x > z ∨ ∃y .x > y) to NNF

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 2: Normalize Literals: s < t,k |t, or ¬(k |t)

Normalize literals so that every literal is of the form s < t, k |t,
or ¬(k |t)

To do this, we need to rewrite s = t, ¬(s = t), and ¬(s < t)
as a boolean combination of literals of the form s ′ < t ′

Rewrite rules:
1 s = t ⇔s < t + 1 ∧ t < s + 1
2 ¬(s = t)⇔s < t ∨ t < s + 1
3 ¬(s < t)⇔t < s + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Let us normalize literals in the following formula:

¬(x < y) ∧ ¬(x = y + 3)

¬(x < y)⇔y < x + 1

¬(x = y + 3)⇔x < y + 3 ∨ y + 3 < x

Normalized formula after step 2:

y < x + 1 ∧ (x < y + 3 ∨ y + 3 < x)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 3: Collect Terms Containing x on One Side

After step 3, literals should be of one of the following forms:

hx < t, t < hx , k |hx + t,¬(k |hx + t)

where t is a term not containing x and h,k are positive

Example: Let us apply this transformation to the formula:

x + x + y < z + 3z + 2y − 4x

Result: 6x < 4z + y

Example: 5|(−7x + t)

After applying transformation,we get: 5|(7x − t)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Ensure x Has the Same Coefficient Everywhere

After previous step, formula is of the form ∃x .F3[x]

Compute least common multiple (lcm) of x ’s coefficients:

d = lcm{h : h is coefficient of x in F3[x]}

Now, multiply literals in F3[x] by constants so that x ’s
coefficient is d everywhere:

hx < t ⇔ dx < h′t where d = hh′

t < hx ⇔ h′t < dx where d = hh′

k |(hx + t)⇔ h′k |(dx + h′t) where d = hh′

¬(k|(hx + t))⇔ ¬(h′k |(dx + h′t) where d = hh′

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Consider the formula

2x < y ∨ (2z < 3x ∧ 3|(4x + 1))

What is the lcm of x ’s coefficients in this formula? 12

Rewrite each literal so that x has coefficient 12:
2x < y ⇔ 12x < 6y

2z < 3x ⇔ 8z < 12x
3|(4x + 1) ⇔ 9|(12x + 3)

New formula after transformation:

12x < 6y ∨ (8z < 12x ∧ 9|(12x + 3))

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4b: Replace dx with New Variable x ′

After Step 4a, variable x has the same coefficient d
everywhere

Now, we replace dx with a new variable x ′

Since x ′ is implicitly equal to dx , what can we say about x ′?

x ′ must be divisible by d

Thus, we also add the constraint d |x ′

Example: Consider previous formula after Step 4a:

12x < 6y ∨ (8z < 12x ∧ 9|(12x + 3))

What is the resulting formula after this step?

(x ′ < 6y ∨ (8z < x ′ ∧ 9|(x ′ + 3)))∧(12|x ′)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4b: Replace dx with New Variable x ′

After Step 4a, variable x has the same coefficient d
everywhere

Now, we replace dx with a new variable x ′

Since x ′ is implicitly equal to dx , what can we say about x ′?
x ′ must be divisible by d

Thus, we also add the constraint d |x ′

Example: Consider previous formula after Step 4a:

12x < 6y ∨ (8z < 12x ∧ 9|(12x + 3))

What is the resulting formula after this step?

(x ′ < 6y ∨ (8z < x ′ ∧ 9|(x ′ + 3)))∧(12|x ′)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4b: Replace dx with New Variable x ′

After Step 4a, variable x has the same coefficient d
everywhere

Now, we replace dx with a new variable x ′

Since x ′ is implicitly equal to dx , what can we say about x ′?
x ′ must be divisible by d

Thus, we also add the constraint d |x ′

Example: Consider previous formula after Step 4a:

12x < 6y ∨ (8z < 12x ∧ 9|(12x + 3))

What is the resulting formula after this step?

(x ′ < 6y ∨ (8z < x ′ ∧ 9|(x ′ + 3)))∧(12|x ′)

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Formula after Step 4b

After this step, formula is of the form ∃x ′.F4[x ′]

Furthermore ∃x ′.F4[x ′] is equivalent to ∃x .F [x]

In addition, each literal in ∃x ′.F4[x ′] is one of the following:
1 x ′ < a
2 b < x ′

3 h|(x ′ + c)
4 ¬(k|(x ′ + d))

Here, a, b, c, d do not contain x and h, k are positive

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5: Intuition

Most involved part of Cooper’s method

Recall: We want to eliminate x ′ from the formula ∃x ′.F4[x ′]

There are two possibilities:
1 Either infinitely many small numbers n satisfying F4[n]
2 Or there exists a least integer n that satisfies F4[n]

Step 5 of Cooper’s method is a case analysis on these two
possibilities

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a: Left Infinite Projection

We want to eliminate x ′ from ∃x ′.F4[x ′] under the assumption
there are infinitely many small numbers n satisfying F4[n]

Thus, define left infinite projection F−∞[x ′] for formula F4[x ′]

F−∞[x ′] corresponds to projection of F that is only satisfied
by very small values of x ′

Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity

To compute left infinite projection:
1 Replace literals x ′ < a by

>
2 Replace literals b < x ′ by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a: Left Infinite Projection

We want to eliminate x ′ from ∃x ′.F4[x ′] under the assumption
there are infinitely many small numbers n satisfying F4[n]

Thus, define left infinite projection F−∞[x ′] for formula F4[x ′]

F−∞[x ′] corresponds to projection of F that is only satisfied
by very small values of x ′

Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity

To compute left infinite projection:
1 Replace literals x ′ < a by >
2 Replace literals b < x ′ by

⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a: Left Infinite Projection

We want to eliminate x ′ from ∃x ′.F4[x ′] under the assumption
there are infinitely many small numbers n satisfying F4[n]

Thus, define left infinite projection F−∞[x ′] for formula F4[x ′]

F−∞[x ′] corresponds to projection of F that is only satisfied
by very small values of x ′

Called left infinite projection because very small numbers
correspond to left part of number line approaching infinity

To compute left infinite projection:
1 Replace literals x ′ < a by >
2 Replace literals b < x ′ by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

In F−∞[x ′], no literals of the form x ′ < a and b < x ′ because
for very small numbers they evaluate to true or false

But we still have divisibility predicates of the form

h|(x ′ + c) and ¬(k|x ′ + d)

Unfortunately, can’t just replace these with > or ⊥. Why?

Because for an arbitrary very small number, these divisibility
predicates need not hold

Thus, want to figure out if there exists a very small number
satisfying divisibility predicates

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

In F−∞[x ′], no literals of the form x ′ < a and b < x ′ because
for very small numbers they evaluate to true or false

But we still have divisibility predicates of the form

h|(x ′ + c) and ¬(k|x ′ + d)

Unfortunately, can’t just replace these with > or ⊥. Why?

Because for an arbitrary very small number, these divisibility
predicates need not hold

Thus, want to figure out if there exists a very small number
satisfying divisibility predicates

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

Good news: If there exists a very small number satisfying
divisibility constraints, there must also exist a number in a
finite precomputable range [1, δ] satisfying these predicates

This is known as peridocity property of divisibility predicates

Periodicity property: Suppose m|δ, then, m|n iff m|(n + λδ)
for all integers λ

In other words, divisibility by m cannot distinguish between
numbers n and n + λδ

Thus, if some very small number satisfies divisibility
constraints in F−∞, there must exist a number n ∈ [1, δ]

But what is this δ?

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

Consider two literals of the form k|x ′ and m|x ′

We want to find the smallest number δ such that both k |δ
and m|δ
What number has this property?

lcm(k, m)

Thus, δ should be the least common multiple of the LHS of
divisibility constraints

Specifically:

δ = lcm

(
h of literals h|(x ′ + c)
k of literals ¬(k|(x ′ + d))

)
Thus, to determine if there exists a very small number n
satisfying F−∞, sufficient to numbers in the range [0, δ]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

Consider two literals of the form k|x ′ and m|x ′

We want to find the smallest number δ such that both k |δ
and m|δ
What number has this property? lcm(k, m)

Thus, δ should be the least common multiple of the LHS of
divisibility constraints

Specifically:

δ = lcm

(
h of literals h|(x ′ + c)
k of literals ¬(k|(x ′ + d))

)
Thus, to determine if there exists a very small number n
satisfying F−∞, sufficient to numbers in the range [0, δ]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, cont

Consider two literals of the form k|x ′ and m|x ′

We want to find the smallest number δ such that both k |δ
and m|δ
What number has this property? lcm(k, m)

Thus, δ should be the least common multiple of the LHS of
divisibility constraints

Specifically:

δ = lcm

(
h of literals h|(x ′ + c)
k of literals ¬(k|(x ′ + d))

)
Thus, to determine if there exists a very small number n
satisfying F−∞, sufficient to numbers in the range [0, δ]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5a, Summary

Assume infinitely many small numbers satisfy ∃x ′.F4[x ′]

First compute left infinite projection F−∞ of F4

Cooper’s result: ∃x ′.F4 is satisfiable iff there exists n in the
range [1, δ] satisfying F−∞, i.e.,:

δ∨
j=1

F−∞[j]

Under the assumption there are infinitely many small numbers
satisfying ∃x .F [x], we have the equivalence:

∃x .F [x]⇔
δ∨

j=1

F−∞[j]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b: Exists a Least Satisfying Number

Now, let’s consider case with a least number satisfying F4[x ′]

Recall: All the inequality literals are either x ′ < a or b < x ′

If there is a least number satisfying F4[x ′], one of these
inequality literals must be responsible for it

Can a literal x ′ < a be responsible for this least number?

No
because x ′ < a satisfied no matter how small x ′ is

Thus,if there is least value of x’, it is due to some b < x ′

Thus, disregarding divisibility constraints, least number
satisfying F4[x ′] must be one of these b’s!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b: Exists a Least Satisfying Number

Now, let’s consider case with a least number satisfying F4[x ′]

Recall: All the inequality literals are either x ′ < a or b < x ′

If there is a least number satisfying F4[x ′], one of these
inequality literals must be responsible for it

Can a literal x ′ < a be responsible for this least number? No
because x ′ < a satisfied no matter how small x ′ is

Thus,if there is least value of x’, it is due to some b < x ′

Thus, disregarding divisibility constraints, least number
satisfying F4[x ′] must be one of these b’s!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b: Exists a Least Satisfying Number

Now, let’s consider case with a least number satisfying F4[x ′]

Recall: All the inequality literals are either x ′ < a or b < x ′

If there is a least number satisfying F4[x ′], one of these
inequality literals must be responsible for it

Can a literal x ′ < a be responsible for this least number? No
because x ′ < a satisfied no matter how small x ′ is

Thus,if there is least value of x’, it is due to some b < x ′

Thus, disregarding divisibility constraints, least number
satisfying F4[x ′] must be one of these b’s!

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b, cont

Now, let’s take the divisibility constraints into account

Because of the divisibility constraints, least number satisfying
F4[x ′] might not be exactly b

It might be greater than b to satisfy divisibility constraints

But it can’t be greater than b + δ (δ same as before). Why?

Because of periodicity, if there is no number in the range
[b, b + λ], there can’t be number greater than b + λ satisfying
divisibility constraints

Thus, assuming some literal b < x ′ is limiting factor,
∃x ′.F4[x ′] has solution iff:

δ∨
j=1

F4[b + j]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b, cont

Now, let’s take the divisibility constraints into account

Because of the divisibility constraints, least number satisfying
F4[x ′] might not be exactly b

It might be greater than b to satisfy divisibility constraints

But it can’t be greater than b + δ (δ same as before). Why?

Because of periodicity, if there is no number in the range
[b, b + λ], there can’t be number greater than b + λ satisfying
divisibility constraints

Thus, assuming some literal b < x ′ is limiting factor,
∃x ′.F4[x ′] has solution iff:

δ∨
j=1

F4[b + j]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5b, cont

Not done yet because we don’t know which literal of the form
b < x ′ is the most constraining literal

Suppose we have n literals b1 < x ′, b2 < x ′, . . . , bn < x ′

We need to take into the possibility that any of them could be
most constraining

Thus, assuming there is a least number satisfying F4[x],
∃x .F [x] equivalent to:

n∨
i=1

δ∨
j=1

F4[bi + j]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 5, summary

Now, let’s combine the two case analysis

Assuming F [x] satisfied by infinitely many small x , we have:

∃x .F [x]⇔
δ∨

j=1

F−∞[j]

Assuming there is least x satisfying F [x], we have:

∃x .F [x]⇔
n∨

i=1

δ∨
j=1

F4[bi + j]

Combining these two, we get the final result of step 5:

∃x .F [x]⇔
δ∨

j=1

F−∞[j] ∨
n∨

i=1

δ∨
j=1

F4[bi + j]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Use Cooper’s method to eliminate quantifier from:

∃x .− y < 3x − 2y + 1 ∧ 2x − 6 < z ∧ 2|(x + 1)

Step 1: Already in NNF

Step 2: Already normalized

Step 3: Collect x-terms on one side:

∃x .y − 1 < 3x ∧ 2x < z + 6 ∧ 2|(x + 1)

Step 4a: Make coefficients of x equal everywhere

What is lcm of x ’s coefficients?

6

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Use Cooper’s method to eliminate quantifier from:

∃x .− y < 3x − 2y + 1 ∧ 2x − 6 < z ∧ 2|(x + 1)

Step 1: Already in NNF

Step 2: Already normalized

Step 3: Collect x-terms on one side:

∃x .y − 1 < 3x ∧ 2x < z + 6 ∧ 2|(x + 1)

Step 4a: Make coefficients of x equal everywhere

What is lcm of x ’s coefficients? 6

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example,cont

∃x .y − 1 < 3x ∧ 2x < z + 6 ∧ 2|(x + 1)

Multiply literals so that x has coefficient 6 everywhere:

∃x .2y − 2 < 6x ∧ 6x < 3z + 18 ∧ 12|(6x + 6)

Step 4b: Replace 6x with x ′; add divisibility constraint 6|x ′

Formula after step 4:

∃x ′.2y − 2 < x ′ ∧ x ′ < 3z + 18 ∧ 12|(x ′ + 6) ∧ 6|x ′

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example, cont

∃x ′.2y − 2 < x ′ ∧ x ′ < 3z + 18 ∧ 12|(x ′ + 6) ∧ 6|x ′

Step 5a: Assume there are infinitely many small numbers
satisfying formula

Construct left infinite projection:

F−∞ : ⊥ ∧> ∧ 12|(x ′ + 6) ∧ 6|x ′

This simplifies to ⊥
Step 5b: Assume there is least number satisfying formula

Which inequalities could be responsible for least n?

2y − 2 < x ′

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example, cont

∃x ′.2y − 2 < x ′ ∧ x ′ < 3z + 18 ∧ 12|(x ′ + 6) ∧ 6|x ′

Step 5a: Assume there are infinitely many small numbers
satisfying formula

Construct left infinite projection:

F−∞ : ⊥ ∧> ∧ 12|(x ′ + 6) ∧ 6|x ′

This simplifies to ⊥
Step 5b: Assume there is least number satisfying formula

Which inequalities could be responsible for least n?
2y − 2 < x ′

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example, cont

∃x ′.2y − 2 < x ′ ∧ x ′ < 3z + 18 ∧ 12|(x ′ + 6) ∧ 6|x ′

Thus, if there is solution, must lie in range [2y − 2, 2y − 2 + δ]

What is δ here?

12

Now putting everything together, we get:

12∨
j=1

.0 < j ∧ 2y + j < 3z + 20 ∧ 12|(2y + j + 4) ∧ 6|2y − 2 + j

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example, cont

∃x ′.2y − 2 < x ′ ∧ x ′ < 3z + 18 ∧ 12|(x ′ + 6) ∧ 6|x ′

Thus, if there is solution, must lie in range [2y − 2, 2y − 2 + δ]

What is δ here? 12

Now putting everything together, we get:

12∨
j=1

.0 < j ∧ 2y + j < 3z + 20 ∧ 12|(2y + j + 4) ∧ 6|2y − 2 + j

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2

Apply Cooper’s method to ∃x .2x = y (already in NNF)

Step 2: Normalize literals:

∃x .y < 2x + 1 ∧ 2x < y + 1

Step 3: Collect x on one side:

∃x .y − 1 < 2x ∧ 2x < y + 1

Step 4a: x ’s coefficients already same everywhere

Step 4b: Replace 2x with x ′; add divisibility constraint: 2|x ′

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Step 5a: Compute left infinite projection: ⊥
Step 5b: Assume there is a least n satisfying formula

Which literal could be responsible?

y − 1 < x ′

In what range must this least n be? [y − 1, y − 1 + 2]

Thus, x ′ must be one of y − 1, y , y + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Step 5a: Compute left infinite projection: ⊥
Step 5b: Assume there is a least n satisfying formula

Which literal could be responsible? y − 1 < x ′

In what range must this least n be? [y − 1, y − 1 + 2]

Thus, x ′ must be one of y − 1, y , y + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Step 5a: Compute left infinite projection: ⊥
Step 5b: Assume there is a least n satisfying formula

Which literal could be responsible? y − 1 < x ′

In what range must this least n be?

[y − 1, y − 1 + 2]

Thus, x ′ must be one of y − 1, y , y + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Step 5a: Compute left infinite projection: ⊥
Step 5b: Assume there is a least n satisfying formula

Which literal could be responsible? y − 1 < x ′

In what range must this least n be? [y − 1, y − 1 + 2]

Thus, x ′ must be one of y − 1, y , y + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

Step 5a: Compute left infinite projection: ⊥
Step 5b: Assume there is a least n satisfying formula

Which literal could be responsible? y − 1 < x ′

In what range must this least n be? [y − 1, y − 1 + 2]

Thus, x ′ must be one of y − 1, y , y + 1

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get:

⊥
Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥

Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get:

2|y
Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get: 2|y

Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get:

⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get: ⊥

Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to:

2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example 2,cont

∃x ′.y − 1 < x ′ ∧ x ′ < y + 1 ∧ 2|x ′

x ′ must be one of y − 1, y , y + 1

Plug in y − 1 for x ′, we get: ⊥
Plug in y for x ′, we get: 2|y
Plug in y + 1 for x ′, we get: ⊥
Thus, formula equivalent to: 2|y

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

An Alternative Construction

To produce equivalent formula, we performed a case analysis:
1 Either there are infinitely many very small numbers satisfying it
2 Or there exists a least number satisfying it

But we could have also performed the case analysis this way:
1 Either there are infinitely many very large numbers satisfying it
2 Or there exists a greatest number satisfying it

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with

⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥

2 Replace b < x ′ with >
For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with

>
For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible?

x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie?

[a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Alternative Case Analysis

Let’s see what happens using this alternative case analysis

For the first case, we construct F+∞ instead of F−∞
1 Replace x ′ < a with ⊥
2 Replace b < x ′ with >

For the second case (i.e., greatest number), which literals
must be responsible? x ′ < a

If literal x ′ < a is responsible for greatest satisfying number,
in which range must this greatest number lie? [a− δ, a]

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

An Optimization

Using this alternative construction, we obtain the equivalence:

∃x .F [x]⇔
δ∨

j=1

F +−∞[j] ∨
k∨

i=1

δ∨
j=1

F4[ai − j]

This immediately gives a way to optimize Cooper’s method

Observe: If there are n terms of the form b < x ′, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x ′ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < x ′,
advantageous to use F+∞

If there are more x ′ < a terms, better to use F−∞.

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

An Optimization

Using this alternative construction, we obtain the equivalence:

∃x .F [x]⇔
δ∨

j=1

F +−∞[j] ∨
k∨

i=1

δ∨
j=1

F4[ai − j]

This immediately gives a way to optimize Cooper’s method

Observe: If there are n terms of the form b < x ′, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x ′ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < x ′,
advantageous to use

F+∞

If there are more x ′ < a terms, better to use F−∞.

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

An Optimization

Using this alternative construction, we obtain the equivalence:

∃x .F [x]⇔
δ∨

j=1

F +−∞[j] ∨
k∨

i=1

δ∨
j=1

F4[ai − j]

This immediately gives a way to optimize Cooper’s method

Observe: If there are n terms of the form b < x ′, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x ′ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < x ′,
advantageous to use F+∞

If there are more x ′ < a terms, better to use F−∞.

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

An Optimization

Using this alternative construction, we obtain the equivalence:

∃x .F [x]⇔
δ∨

j=1

F +−∞[j] ∨
k∨

i=1

δ∨
j=1

F4[ai − j]

This immediately gives a way to optimize Cooper’s method

Observe: If there are n terms of the form b < x ′, we get n
disjuncts using left infinite projection

Observe: If there are k terms of the form x ′ < a, we get k
disjuncts using right infinite projection

Thus, if there are more terms of the form b < x ′,
advantageous to use F+∞

If there are more x ′ < a terms, better to use F−∞.

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Consider the formula:

∃x .(x < 13 ∨ 15 < x) ∧ x < y

Which projection is better?

left infinite

There are two terms of the form x < a forming upper bound
on x : construction using F+∞ has 2 disjuncts

There is one term of the form b < x forming lower bound:
construction using F−∞ has one disjunct

Thus, left infinite projection yields smaller formula

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Consider the formula:

∃x .(x < 13 ∨ 15 < x) ∧ x < y

Which projection is better? left infinite

There are two terms of the form x < a forming upper bound
on x : construction using F+∞ has 2 disjuncts

There is one term of the form b < x forming lower bound:
construction using F−∞ has one disjunct

Thus, left infinite projection yields smaller formula

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Example

Consider the formula:

∃x .(x < 13 ∨ 15 < x) ∧ x < y

Which projection is better? left infinite

There are two terms of the form x < a forming upper bound
on x : construction using F+∞ has 2 disjuncts

There is one term of the form b < x forming lower bound:
construction using F−∞ has one disjunct

Thus, left infinite projection yields smaller formula

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Theory of Rationals

Now we discuss theory of rationals TQ with signature:

ΣQ : {...,−2,−1, 0, 1, 2, ...,+,−,=, <}

Quantifier elimination for TQ is simpler than T̂Z

The algorithm is called Ferrante and Rackoff’s method

The idea is very similar to Cooper’s method

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Ferrante and Rackoff’s method

Ferrante and Rackoff’s method has four main steps:
1 Put F [x] into NNF
2 Normalize literals:

¬(s < t) ⇔ t < s ∨ t = s
¬(s = t) ⇔ t < s ∨ t > s

3 Isolate terms containing x on one side: hx < t, s < hx and
replace literals cx � t with x � t/c , for � ∈ {>,=, <}.

4 Replace F [x] with a disjunction of F [j]’s for finitiely many j

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Formula after Step 3

After step 3, formula is of the form ∃x .F3[x]

Furthermore ∃x .F3[x] is equivalent to ∃x .F [x]

In addition, each literal in ∃x .F3[x] is one of the following:

A x < a
B b < x
C x = c

Here, a, b, c do not contain x

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by

>
2 Replace literals b < x by ⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by ⊥
2 Replace literals b < x by >
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by

⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by ⊥
2 Replace literals b < x by >
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by ⊥
3 Replace literals c = x by

⊥
To compute right infinite projection F+∞:

1 Replace literals x < a by ⊥
2 Replace literals b < x by >
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by ⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by

⊥
2 Replace literals b < x by >
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by ⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by ⊥
2 Replace literals b < x by

>
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by ⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by ⊥
2 Replace literals b < x by >
3 Replace literals c = x by

⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4a: Left and Right Infinite Projection

To compute left infinite projection F−∞:
1 Replace literals x < a by >
2 Replace literals b < x by ⊥
3 Replace literals c = x by ⊥

To compute right infinite projection F+∞:
1 Replace literals x < a by ⊥
2 Replace literals b < x by >
3 Replace literals c = x by ⊥

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

Step 4b: Remove Quantifiers

Let S be the set of a, b, c terms for the A,B,C atoms in F3

The final result:

∃x .F [x]⇔ F+∞ ∨ F+∞ ∨
∨

s,t∈S
F3[

s + t

2
]

Intuition: for any TQ-interpretation, |S | − 1 pairs s, t ∈ S are
adjacent; s+t

2 is indistinguishable with any other point in the
interval (s, t).

Yu-Fang Chen Quantifier Elimination for Presburger Arithmetic

