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What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT) 
u  Techniques to improve SAT solving 
u  Circuit-based SAT algorithms 
u  SAT-based (hardware) verification 

l  Bounded model checking (BMC) 
l  Inductive proof 
l  SAT-based abstraction and refinement 
l  Interpolation-based method 
l  Property-directed reachability 
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What can/should be covered in this
 topic?	
u  SAT-based logic synthesis 

l  Redundancy addition and removal 
l  Functional dependency 
l  SAT-based re-synthesis techniques 
l  Engineering Change Order (ECO) 

u  From SAT to optimization problems 
l  Pseudo Boolean satisfiability/optimization problems 

u  General SAT-based model checking algorithms 
u  Quantified Boolean Formula (QBF) 
u  Bit-vector/Arithmetic solver 
u  Satisfiability Modulo Theories (SMT)	
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Introduction to Boolean Satisfiability (SAT) 

A fundamental problem in computer science 

u  Given a Boolean network F: Bn à B,  
where B = { 0, 1 }, and  
           n is the number of inputs I = { x1, x2,... , xn } 

u  Boolean Satisfiability 
è Finding an input assignment  

 
A: { x1 = a1, x2 = a2,... , xn = an | ai ∈ B }  
 
such that F = 1. 

u  Exponential complexity...? 
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Complexity of SAT solver 

u  Boolean Satisfiability (SAT) was the first proven 
NP-complete problem by Dr. S. Cook in 1971 
l  Given n variables, the number of decisions can be 

as many as 2n... 
l  If there is a non-deterministic machine, we can 

construct a polynomial-time algorithm that can 
guarantee to prove/disprove the SAT problem 

[Pitfall?] Unless there is a non-deterministic machine, 
we cannot construct a polynomial-time SAT 
algorithm 

è How can SAT be useable for million-gate designs? 
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Boolean Satisfiability Solvers

u  Boolean SAT solvers have been very successful recent 
years in the verification area 
l  More research / popular than BDDs 
l  Applications 

§  Equivalence checking, property checking, synthesis, etc 
l  Applicable even on million-gate designs 
l  For both combinational and sequential problems 
è However, SAT is intrinsically a 

“combinational” (propositional) solver 

u  There are many advanced Boolean SAT algorithms 
l  We will cover them gradually in the following lecture notes 

u  Many many SAT solvers 
l  glucose, precosat, miniSat, zChaff, BerkMin, Csat, Grasp, 

SATO,... etc. 
l  http://www.satcompetition.org/ 
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Types of Boolean Satisfiability Solvers 
1.  Conjunctive Normal Form (CNF) Based 

l  Boolean function is represented as a CNF (i.e. 
Product of Sum, POS format) 

l  e.g.  

l  To be satisfied, all the clauses should be ‘1’ 

2.  Circuit-Based 
l  Boolean function is represented as a circuit netlist 
l  SAT algorithm is directly operated on the netlist 

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’) 

Variables Literals Clauses 
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CNF vs. Circuit SAT 

u  Although CNF and circuit SAT solvers look quite 
different, their algorithms can be very similar 

u  CNF SAT 
l  Simpler data structure; easier to implement 

u  Circuit SAT 
l  Structural information; extensible to word-level 

è In the following slides, we will focus on the easier-
to-implement solver, CNF SAT, only. 
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CNF-Based SAT Algorithm 
1.  Davis, Putnam, 1960 

l  Explicit resolution based 
l  May explode in memory 

2.  Davis, Logemann, Loveland, (DLL) 1962 
l  Search based.  
l  Most successful, basis for almost all modern SAT solvers 
l  Learning and non-chronological backtracking, 1996 

3.  Stålmarcks algorithm, 1980s 
l  Proprietary algorithm. Patented. 
l  Commercial versions available 

4.  Stochastic Methods, 1992 
l  Unable to prove unsatisfiability, but may find solutions for a 

satisfying problem quickly. 
l  Local search and hill climbing 
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+ f 

Resolution 

a + b + g + h’ 

u Resolution of a pair of clauses with exactly ONE 
incompatible variable 
l  Two clauses are said to have distance 1 
l  C1∧ C2 à C3   or   C3 à C1∧ C2   ? 
l  Existential quantification? 

a + b + c’ + f g + h’ + c + f 

Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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(a + b) (a + b’) (a’ + c) (a’ + c’) 

Davis Putnam Algorithm 

(a + b + c) (b + c’ + f) (b’ + e) 

(a + c + e) (c’ + e + f) 

(a + e + f) 

(a’ + c) (a’ + c’) 

(c) (c’) 

( ) SAT 

Sol: {a=1, e=1, f=1} UNSAT 

(a) 

Potential memory explosion problem! 
Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 

 M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of 
ACM, Vol. 7, pp. 201-214, 1960 (360 citations in citeseer) 

u  Existential abstraction using resolution 
u  Iteratively select a variable for resolution till no more variables are 

left. 
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Boolean Satisfiability (SAT) Algorithm 
1.  Davis, Putnam, 1960 

l  Explicit resolution based 
l  May explode in memory 

2.  Davis, (Putnam), Logemann, Loveland, (D(P)LL) 1962 
l  Search based.  
l  Most successful, basis for almost all modern SAT solvers 
l  Learning and non-chronological backtracking, 1996 

3.  Stålmarcks algorithm, 1980s 
l  Proprietary algorithm. Patented. 
l  Commercial versions available 

4.  Stochastic Methods, 1992 
l  Unable to prove unsatisfiability, but may find solutions for a 

satisfying problem quickly. 
l  Local search and hill climbing 
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Basic DLL Procedure - DFS 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

b 
0 

c 
0 ⇐ Decision 

⇐ Decision 

⇐ Decision 

d=1 

c=0 

(a + c + d) 
a=0 

d=0 
(a + c + d’) 

Conflict! 

Implication Graph 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Basic DLL Procedure - DFS 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

b 
0 

c 
0 1 

1 

c 
0 1 

⇐ Backtrack 

1 

b 
0 1 ⇐ Forced Decision 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Basic DLL Procedure - DFS 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

b 
0 

c 
0 1 

1 

c 
0 1 

1 

b 
0 1 

a=1 

b=1 

c=1 
(a’ + b’ + c) (b’ + c’ + d) 

d=1 

⇐ SAT 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Potentially exponential 
complexity!! 

 
Did you see any unnecessary 

work? 
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SAT Improvements 

1.  Conflict-driven learning 
l  Once we encounter a conflict 

 è Figure out the cause(s) of this conflict 
      and prevent to see this conflict again!! 
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Conflict-Driven Learning 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

b 
0 

c 
0 

d=1 

c=0 

(a + c + d) 
a=0 

d=0 
(a + c + d’) 

Conflict! 

Implication Graph 

Conflict source 

(a + c) Learned clause 
Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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SAT Improvements 

2.  Non-chronological backtracking 
l  Since we get a learned clause from the 

conflict analysis… 
 è Instead of backtracking 1 decision at a 
time, backtrack to the “next-to-the-last” 
variable in the learned clause  
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Non-Chronological Backtracking 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

b 
0 

c 
0 

(a + c) Learned clause 

•  ‘a’ is the next-to-the-last 
variable in the learned clause 

•  Backtrack c = 0 && b = 0 

⇐ Backtrack 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Deduced Implication from Learned Clause 

(a + c + d) 

(a + c + d’) 

(a + c’ + d) 

(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

a 
0 

(a + c) 
c=1 (a + c) 

a=0 
d=1 

d=0 
Conflict! 

(a + c’ + d) 

(a + c’ + d’) 

Conflict source 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Deduced Implication from Learned Clause 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

(a + c) 
(a) Learned clause 

•  Since there is only one 
variable in the learned clause 

 à No one is the next-to-the-
last variable 

•  Backtrack all decisions 
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Deduced Implication from Learned Clause 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

(a + c) 
(a) 

a=1 

b 
0 ⇐ Decision 

c=1 

b=0 

(a’ + b + c) 

c=0 
(a’ + b + c’) 

Conflict! 

Conflict source 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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Deduced Implication from Learned Clause 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 

(a’ + b + c’) 

(a’ + b’ + c) 

(a + c) 
(a) (b) Learned clause 

a=1 

b=1 

c=1 
(a’ + b’ + c) 

d=1 
(b’ + c’ + d) 

⇐ SAT 

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers” 
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What does conflict learning tell us? 

a 

b 

a’ 

b’ 

b’ 

c c’ 

d d’ d’ 

Decision: a = 0 
Decision: b = 0 
Decision: c = 0 

conflict!! 
Learned: (a + c) 

Backtrack: c = 0, b = 0 
Implied: c = 1 

Decision: b = 0 
conflict!! 

Learned: (a) 
Implied: a = 1 

Decision: b = 0 
conflict!! 

Learned: (b) 
Implied: b = 1 

Implied: c = 1, d = 1 
SAT!! 
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A Closer Look at the Implication Graph 
(a conceptual implementation)
u  Implications are grouped into different decision levels 

l  Level 0: target imp; constants 
l  Level 1+: decisions 

u  Node (gate, value): implications 
u  Incoming edge(s) of a node: implication sources (reasons) 

l  The nodes with no incoming edges are called “root 
implication nodes” 

l  There should only be ONE root implication node for each 
decieion level >= 1 (which is the decision in that level) 

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0 

y, 0 g10, 0 g11, 0 0 

1 

for the example in p12. 
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Conflict Analysis 
u  When we encounter a decision conflict, we 

want to figure out the causes so that --- 
1.  Try to avoid the same conflict 
2.  Backtrack as many decisions as possible 

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0 

y, 0 g10, 0 g11, 0 0 

1 

d, 1 g2, 0 g5, 1 g6, 1 2 g6, 0 
!!Conflict!! 
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Conflict Analysis 

1.  Try to avoid the same conflict 
l  Starting from the conflict implications (g = 0) & (g = 1), 

backward trace their implication sources 
l  (An informal explanation) Any cut in the implication graph 

defines a set of conflict causes 
l  Add a constraint for the conflict causes to prevent the 

conflict from happening again 

a = 1 

b = 0 

c = 0 

a = 1 a1 = 0 a2 = 1 

b = 0 b1 = 0 b2 = 1 

c = 0 c1 = 0 c2 = 1 

a3 = 1 

b3 = 0 b4 = 1 

g = 1 c3 = 1 c4 = 0 g = 0 

Decision level 

1 

2 

3 

1 

2 

3 
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Conflict-Driven Learning 

u  Add a constraint to prevent the same conflict 
1.  b4 && c2 && c4’ = 0;             è (b4’ + c2’ + c4) 
2.  a && b’ && c’ = 0;                  è (a’ + b + c) 
3.  b4 && a2 && b1’ && c1’ = 0; è (b4’ + a2’ + b1 + c1) 

a = 1 

b = 0 

c = 0 

a = 1 a1 = 0 a2 = 1 

b = 0 b1 = 0 b2 = 1 

c = 0 c1 = 0 c2 = 1 

a3 = 1 

b3 = 0 b4 = 1 

g = 1 c3 = 1 c4 = 0 g = 0 

Decision level 

1 

2 

3 

1 

2 

3 
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Which constraint is the best to add? 

u  [Zhang, et al, ICCAD 2001] Experiment 
shows that “first-UIP” (1st-UIP) is the best 
l  UIP: Unique Implication Point 

§  In a cut that there is only one node in the last 
(where conflict happens) decision level  
(why UIP cut?) 

§ Starting from the conflict gate, the first 
encountered UIP is namely first UIP 

§  The cut with only decision nodes is called the 
last-UIP 

§  In the previous example, (2) is the last UIP, and 
(3) is the first UIP 
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Complexity to find 
the first UIP? 

conflictAnalysis(imp0Src, imp1Src) { 
   int nMarked = 0; 
   for_each_imp(imp, imp0Src) 
      checkImp(imp, nMarked,conflictSrc); 
   for_each_imp(imp, imp1Src) 
      checkImp(imp, nMarked, 

conflictSrc); 
   for_each_imp_rev(imp, lastDLevel) { 
      if (!imp.isMarked()) continue; 
      if (--numMarked == 0) {// UIP found!! 
         conflictSrc.push_back(imp); 
         break;  // ready to return 
      }  
      imp.unsetMark(); 
 

      for_each_imp_src(imp_src, imp) { 
         checkImp(imp_src, nMarked,  
                         conflictSrc); 
      } 
   } 
   for_each_imp(imp, conflictSrc) 
      imp.unsetMark(); 
   return conflictSrc; 
} 
 
checkImp(imp, nMarked, conflictSrc) { 
   if (imp.isMarked()) return; 
   imp.setMark(); 
   if (!imp.isLastDecisionLevel())  
      conflictSrc.push_back(imp); 
   else ++numMarked; 
} 
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Linear-Time Algorithm to Find First UIP 

u  Start from (g = 0), (g = 1)     // #Marks = 2 
u  Unmark (g = 1), mark (c2 = 1)    // #Marks = 2 
u  Unmark (g = 0), mark (c4 = 0), add (b4 = 1)  // #Marks = 2 
u  Unmark (c4 = 0), mark (c3 = 1), add (a2 = 1)  // #Marks = 2 
u  Unmark (c3 = 1), mark (c1 = 0)    // #Marks = 2 
u  Unmark (c2 = 1), add (b1 = 0)    // #Marks = 1 
u  Find first UIP: (c1=0), conflict sources: { (c1=0), (b1=0), (a1=0), (b4=1) } 

a = 1 

b = 0 

c = 0 

a = 1 a1 = 0 a2 = 1 

b = 0 b1 = 0 b2 = 1 

c = 0 c1 = 0 c2 = 1 

a3 = 1 

b3 = 0 b4 = 1 

g = 1 c3 = 1 c4 = 0 g = 0 

Decision level 

1 

2 

3 
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UIP for Non-chronological Backtracking 

u  Since in UIP cut there is only one node with the 
last decision level… 

u  And we add a constraint for the UIP cut  

Decision level 

0 

1 

2 

3 

4 

b, 1 a, 1 

c, 1 

d, 1 

Constraint 
(a && b && c && d) = 0 

(a && b && c) è d’ 

•  If we backtrack to the max
 decision level of { a, b, c } 
1.  { a, b, c } still have the

 original implications 
2.  d can be implied with the

 opposite value at the
 max level above  
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Conflict-Driven Learning 

a = 1 

b = 0 

c = 0 

a = 1 a1 = 0 a2 = 1 

b = 0 b1 = 0 b2 = 1 

c = 0 c1 = 0 c2 = 1 

a3 = 1 

b3 = 0 b4 = 1 

g = 1 c3 = 1 c4 = 0 g = 0 

Decision level 

1 

2 

3 

1st-UIP Cut Learned implication 
b1’ && a2 && b4 è c1 

c1 = 1 
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Conflict-Driven Non-Chronological
 Backtracking --- Algorithm

t 

a 

b 

c 

d 

proof target 
dLevel = 0

dLevel = 1

dLevel = 2

dLevel = 3

dLevel = 4

Conflict!!

Backtrack

t 

a 

b 

e 

Conflict!!

t Backtrack

f 

g 

t More 
decisions

New implication

New 
implication

How the SAT process 
terminates?
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Conflict-Driven Non-Chronological 
Backtracking --- Algorithm 
1.  When conflict occurs, check if the conflict level == 

0 (implication level for the SAT target) 
a)  If yes, return unsatisfiability (Why?) 
b)  Else, continue to 2 

2.  Find the 1st-UIP cut as the conflict causes 
3.  Backtrack to the max decision level of the nodes 

other than UIP in the cut 
4.  The UIP gate will be implied with the opposite 

value 
5.  Perform the new implication 
6.  If conflict, go to 1, else continue for the next 

decision 
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A closer look at binary decision tree 

In general, is non-chronological backtracking 
safe? 
l  May lead to SAT solution ealier 
l  But some portion of the decision 

 tree may not be covered 
§  Not a complete search anymore 
§  May also miss some bugs 

è Difficult to record which branches 
 haven’t been searched 

a 

b 

c 

d 

d 

1 

1 

1 

0 

1 0 

0 1 

X ? 

0 
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Conflict-Driven Non-Chronological 
Backtracking --- Completeness

u  But with conflict-driven learning, SAT search is still 
guaranteed to be complete 

u  SAT search is not a binary decision tree 
anymore… 
l  Becomes a decision stack 
l  Conflict 

à Learned clause (gate)  
 à Indicate where to backtrack 
 à Learned implication 

a 

b 

c 

d 

d 

c 

x 

y 

z 

1 

1 

1 1 

0 

0 

0 

0 

1 0 

0 1 a

b

c

d
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Conflict-Driven Non-Chronological 
Backtracking --- Completeness

u  Branch-and-bound algorithm for Constraint 
Satisfaction Problem (CSP) becomes a 
“constraint refinement process” 

è Search region is gradually narrowed down 

è At the end, either becomes empty, or finds 
the solution !!
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Implication graph, resolution, and learning 

(1): (c2’ + g) 
(2): (b4’ + c4 + g’) 
(3): (a2’ + c3’ + c4’) 
(4): (c1 + c3) 
(5): (b1 + c1 + c2) 

a = 1 

b = 0 

c = 0 

a = 1 a1 = 0 a2 = 1 

b = 0 b1 = 0 b2 = 1 

c = 0 c1 = 0 c2 = 1 

a3 = 1 

b3 = 0 b4 = 1 

g = 1 c3 = 1 c4 = 0 g = 0 

Decision level 

1 

2 

3 

3 1 2 4 5 

(b4’ + c2’ + c4) 
(a2’ + b4’ + c2’ + c3’) 

(a2’ + b4’ + c1 + c2’) 
(a2’ + b1 + b4’ + c1) 
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The validity of learned information and
 incremental SAT	
u  Note that, learned clause is a resolution of

 clauses that are involved in the implication
 process. 
l  As long as these clauses are still in the proof

 database, the learned information is always
 valid. 

u  Incremental SAT 
l  (For example) Proving two properties in a circuit

 --- the learned information obtained in proving
 one property can be reused in proving another. 

l  (Challenge) What if some of the clauses or
 variables are deleted?
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Resolution Graph 
u  A conflict is encountered 

l  A learned clause is 
generated 

u  More conflicts are 
resolved... 

u  A conflict is encountered 
in decision level 0 
l  Problem is proven 

UNSAT 

Original clause 

Temporary clause 

Learned clause 

NULL clause 

Proof core 
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Refutation / Proof Core of a SAT Problem 

u  Remember: Resolution-based SAT? 
l  A problem is proven UNSAT if the resolution steps end up in a 

NULL clause 
u  Refutation = a proof of the null clause 

l  Also called “proof core” or “UNSAT core” 
l  Record a DAG containing all resolution steps performed 

during conflict clause generation. 
l  When null clause is generated, we can extract a proof of the 

null clause as a resolution DAG. 

Original clauses 

Derived clauses 

Null clause 

Proof Core
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What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT) 
u  Techniques to improve SAT solving 
u  Circuit-based SAT algorithms 
u  SAT-based (hardware) verification 

l  Bounded model checking (BMC) 
l  Inductive proof 
l  SAT-based abstraction and refinement 
l  Interpolation-based method 
l  Property-directed reachability 
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What affect the SAT efficiency? 

1.  Decision order 

2.  Logic implication (Boolean Constraint 
Propagation, BCP) 

3.  Various learning techniques 

4.  Database simplification 
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Impact of Decision Ordering 

u  Decision ordering: the order of gates that 
the corresponding decisions are made 

1.  Order of gates 
2.  Decision values 
è Good and bad decisions 

 can lead to exponential  
 difference 
 (e.g. 210 vs. 250) 

 
u  (Think) Does the decision value matter? 

(i.e. should we decide on ‘1’ or ‘0’ first?) 

a 

b 

c 

d 

c 

d 

b 

c 

d 

1 

1 

1 

1 

0 

0 

0 
0 1 0 
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Static Decision Ordering 
u  Decision order and values are pre-computed in the 

beginning and remain unchanged 
1.  Topological 

l  Depth-first 
l  Breadth-first 
l  Guided by gate types 

2.  Probability-based 
l  Controllability / Observability 
l  Signal probability 
l  (Weighted) Random 

3.  Influence-based 
l  Literal count 
l  #fanins / #fanouts 
l  Influence of implications 
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Dynamic Decision Ordering 
u  Decision order and values are dynamically determined 

based on current implication values, justification frontier, etc. 
l  Use similar criteria as static method 
l  But can mix different rules dynamically 

u  Pros 
l  May lead to better decisions 
l  Avoid useless decisions 

u  Cons 
l  Overhead in computing dynamic ordering may be high 
l  Effectiveness sometimes is hard to predict 

 
è However, experiences show that the best is: 

1.  Has a good initial decision ordering 
2.  Adaptively adjust the decision order after a certain amount 

of backtracks 
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zChaff’s Variable State Independent 
Decaying Sum (VSIDS) Decision Heuristic 
(1) Each variable in each polarity has a counter, 

initialized to 0. 
(2) When a clause is added to the database, the 

counter associated with each literal in the clause is 
incremented. 

(3) The (unassigned) variable and polarity with the 
highest counter is chosen at each decision. 

(4) Ties are broken randomly by default, although this 
is configurable 

(5) Periodically, all the counters are divided by a 
constant. 

 Zhang, et al, DAC 2001 
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Berkmin – Decision Making Heuristics 
E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-

Solver”, Proc. DATE 2002, pp. 142-149. 

u  Identify the most recently learned clause which is 
unsatisfied 

u  Pick most active variable in this clause to branch on 
u  Variable activities 

l  updated during conflict analysis 
l  decay periodically 

u  If all learnt conflict clauses are satisfied, choose 
variable using a global heuristic 

u  Increased emphasis on “locality” of decisions 
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More decision heuristics... 

u  Variable Move-To-Front (VMTF) 
u  Clause Based Heuristic (CBH) 
u  Resolution Based Scoring (RBS) 
u  ... 

u  In general, there is no single decision 
heuristic that works for every case. 
è How to adaptively move to a good decision 

heuristic may be the winner... 



59 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

A closer look at binary decision tree 

Should the decision orderings on all branches 
be the same? 

a 

b 

c 

d 

c 

d 

b 

c 

d 

1 

1 

1 

1 

0 

0 

0 
0 1 0 
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1 0 

0 1 
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Remember when we talked about  
conflict-driven learning, 

we mentioned that 

by adding a learned clause 
we can do non-chronological backtracking, 
while still achieve complete proof 

 

How?? 
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The Constraint Refinement Process 

u  Search region is gradually narrowed down by the 
learned constraints  

u  Learned information is universally true 
l  Independent of the target implication, only 

related to the circuit function 
l  The proof efforts between different properties 

can be shared 
 è Incremental SAT 

u  Decision process can “restart” any time any 
where!! 
l  Can use different decision ordering to explore 

different area in the decision tree 
§  Previous efforts will not be wasted 
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What affect the SAT efficiency? 

1.  Decision order 

2.  Logic implication (Boolean Constraint 
Propagation, BCP) 

3.  Various learning techniques 

4.  Database simplification 
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BCP Checking for CNF-Based SAT 

u If a literal in a clause gets an implication ‘1’ 
è The clause is satisfied 

u If a literal in a clause gets an implication ‘0’ 
è Check: how many literals in the clause have 

unknown value? 
l  >= 2 : no operation 
l    = 1 : the remaining literal will be implied ‘1’ 
l    = 0 : the clause is evaluated to ‘0’ è a conflict !! 
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Complexity for BCP	

u  Initially all literals are ‘x’ 
u  A decision is made 

l  Which clauses are affected? 
l  Which of the above should produce new

 implications? Which of the above may lead
 to conflict? 

l  Which clauses are affected due to new
 implications? 

l  What happens if backtrack is needed? 
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A naïve/brute-force BCP approach	

u  a + b + c + d + e     // all literals are ‘x’ 
u  a + b + c + d + e     // a = 0; any new imp? 
u  a + b + c + d + e     // b = 0; any new imp? 
u  a + b + c + d + e     // c = 0; any new imp? 
u  a + b + c + d + e     // If conflict on other 

                                  clause, and b, c are 
                                  undone 

u  a + b + c + d + e     // c = 0; any new imp? 
u  a + b + c + d + e     // d = 0; any new imp?	
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How to improve the naïve/brute-force
 BCP approach?	
u  a + b + c + d + e     // all literals are ‘x’ 
u  a + b + c + d + e     // a = 0; any new imp? 
u  a + b + c + d + e     // b = 0; any new imp? 
è  Do we really need to check this, if we know

 there are more than two literals are ‘x’? 
è  How do we know there are at least two literals

 with value ‘x’?  
è  Do we need to check it, if we know there is a

 literal with value ‘1’? 
è  How do we know there is a literal with value

 ‘1’? 
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2-Watched-Literal Algorithm 
H. Zhang, SATO, CADE 97; M. Moskewicz et al, Chaff, DAC 2001 

u  For each clause, keep 2 pointers on 2 literals that have 
“non-0” values 
l  If any watched literal gets implication ‘0’ 

§  Scan in the clause for another literal with “non-0” value 
§  If found, update the watched literal pointer 

 Else, imply the other watched literal with value ‘1’ 

L1 + L2 + …+ L50 + L98 + L99 + L100 

x à0 x 
seach for ‘x’ 
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In the previous example…	

u  a + b +  + d +      // Let ‘c’ and ‘e’ are watched 
u  a + b +  + d +      // a = 0; NO action 
è  How do we know ‘a’ is NOT watched? 
è  Keep a “watching list” for each literal !! 
 
u  a + b +  + d +      // b = 0; NO action 
u  a + b + c +  +      // c = 0; UPDATE watches !! 
u  a + b + c +  +      // Backtrack, NO action !! 
u  a + b + c +  +      // c = 0; NO action !! 
u  a + b + c +  +      // d = 1; NO action !! 
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2-Watched-Literal Algorithm Example

Each clause stores:   Each literal stores:  
2 watched literal pointers   A list of watching clauses 
 

C1: ( a + b + c + d ) 
C2: ( a + d + e + f + g) 
C3: ( b + f ) 
C4: ( c + e + g + h + i ) 

a b c d e f g h i 

C1 

C2 

C1 

C3 

C4 C2 C4 C3 

c ß 0 
•  Update watched literal pointer for C4 (for example, to ‘g’) 
•  Erase c’s watching-clause list 
•  Add ‘C4’ to g’s watching-clause list 
[Note] Don’t need to check ‘C1’ 

C4 
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2-Watched-Literal Algorithm Example

Each clause:   Each literal:  
2 watched literal pointers   A list of watching clauses 
 

C1: ( a + b + c + d ) 
C2: ( a + d + e + f + g) 
C3: ( b + f ) 
C4: ( c + e + g + h + i ) 

a b c d e f g h i 

C1 

C2 

C1 

C3 

C2 C4 C3 

a ß 0 
•  Update watched literal pointer for C1 (only choice, to ‘d’) 
•  Update watched literal pointer for C2 (for example, to ‘e’) 
•  Erase a’s watching-clause list 
•  Add ‘C1’ to d’s and ‘C2’ to e’s watching-clause lists 

C4 

C1 C2 
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2-Watched-Literal Algorithm Example

Each clause:   Each literal:  
2 watched literal pointers   A list of watching clauses 
 

C1: ( a + b + c + d ) 
C2: ( a + d + e + f + g) 
C3: ( b + f ) 
C4: ( c + e + g + h + i ) 

a b c d e f g h i 

C1 

C3 

C2 C4 C3 

b ß 0 
•  No more unknown literal for C1 : d = 1  
•  No more unknown literal for C3 : f = 1  
[Note] No change on watched literals 

C4 

C1 C2 
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Caching Effect: Reducing from O(n) to 
almost O(C) 
u  The fact 

l  Most of the time, the decision orderings at different parts 
of the decision tree are quite similar during a proof (or 
even from proof to proof) 

è Literals in a clause get the implications 
  almost by the same order every time 

u  Watched literal 
 à point to the last implied literal 
è Don’t update watched literals  

  after backtrack. After backtracks, 
  no evaluations from the 
  other unwatched literals. 

a 
b 

c 
d 

a 
b 

k 
c 

d 

( L1 + L2 + L3 + L4 + L5 + L6 ) 
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Logic implication can be very 
efficient for CNF-based SAT by 

using “watch” scheme. 

Can this idea be applied to  
circuit-based SAT? 



74 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Generic Watch Scheme

u  It can be shown that the watch scheme can 
be applied to primitive gates (e.g. AND/OR) 
in a circuit SAT solver, and can be further 
extended to complex gates such as 
MUXes, Pseudo Boolean gates, etc. 

u  For more details, please refer to: 
l  "QuteSAT: A Robust Circuit-based SAT 

Solver for Complex Circuit Structure", 
DATE 2007. 
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Various Learning Techniques 

u  Other than conflict-driven learning, there 
are many other learning techniques that 
can help 
l  Derive more implications  

à may help find the conflict earlier 
l  Provide information for decision ordering 

1.  Static learning 
2.  By signal correlations 
3.  Recursive learning 
4.  Success-driven learning 
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Static Learning 

u  Learn by contrapositive 
(a à b   Ξ   !b à !a) 

u  e.g. 

a 

b 
a = 1 à b = 1 

Learned b = 0 à a = 0 

The question is: 
which gate to learn?? 

Ref: “SOCRATES: A Highly Efficient Automatic Test Pattern 
Generation System”, Schulz et.al, TCAD 1988 
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Learned by Signal Correlations

u  A proof-based approach 
l  Since learned information is universally true, we can 

create some internal interesting properties, and use 
these properties to derive some interesting learning 
 (by conflict analysis) 

 
u  e.g. By simulation, if we find a gate ‘g’ is very likely to stuck 

at some value ‘v’ 
è Witness “g = ¬v”  (should produce many conflicts) 

u  e.g. By simulation, if two signals respond almost the same 
è Witness “p != q” 

u  No matter the proof is finished or not 
l  We can always learn something 

Ref: Feng Lu, et. al, “A Circuit SAT Solver with Signal Correlation Guided Learning”, DATE 2003 
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Recursive Learning 

u  To justify f = 0 
l  (a = 0) or (b = 0) 
l  Let Sa and Sb be the set of implications 

 from (a = 0) and (b = 0), respectively 
l  Let S = Sa ∩ Sb 

 è (f = 0) implies S 
u  A recursive process 
u  Deep recursion could be 

 very expensive 
u  How to record the  

learned implicaiton? 

f = 0 

a = 0 b = 0 

Ref: “HANNIBAL: an efficient tool for logic verification based on 
recursive learning”, Wolfgang Kunz, ICCAD 1993 
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Conflict vs. Success-Driven Learning 
Motivation: Traditional SAT approach finds only 1 solution, can 

we find more (or all) the solutions? 
 
u  How to record the solutions? 

l  Hash table? (too expensive) 
u  Success-driven learning 

l  Similar to conflict learning 
l  When we find one solution, say (v1, v2, …, vn), add a 

blocking gate “v1 && v2 && … vn = 0” so that 
§  This solution won’t be repeated 
§  May lead to new implication 
§  Can continue the justification process for the next solution 

l  At the end, all the solutions are recorded as set of 
blocking gates (or clauses)
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Conflict vs. Success-Driven Learning 

u  However, the number of solutions in a SAT 
problem can be very huge!! 
è Some solutions may look alike --- 

 e.g. 1010011, 1100011, 0110011... 
                s1            s2            s3 
 

S1 S2 S3 

01
1 

11
00

 

11
00

 

11
00

 

Can we predict that the sub
-solutions under the sub-search tree

 are already covered? 
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Success-Driven Learning 
u  Ref: Shuo, et al. DATE 2003 
u  Assume 

l  ATPG-based technique (work on circuit) 
l  Decisions on PIs only à forward implications 

u  Search State Equivalence 
l  If two decisions have the same signature 
è The “sub-solutions” under  

   the sub-search space 
   are the same!! 

è No need to search 
u  Note: they also store 

 the solutions in a  
 “free BDD” 

PIs 
1xxx0xxx00xx111011 

implication 
frontier  

(a cutset) 

current  
decision 



82 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Although “learning” in general can lead to 
more implications and possibly lead to 
conflicts earlier (i.e. bound earlier) --- 

 
1.  It may slow down the implication process 
2.  It may affect the decision ordering, which 

may not necessarily reduce the #decisions 
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What can we do to make the learning useful? 

1.  Use learning to find better decision ordering 
l  zChaff uses learned information to refine the decision 

ordering 
l  BerkMin uses learned information to increase emphasis 

on “locality” of decisions 
2.  With conflict analysis, decision can restart any time 

l  Change to different decision ordering heuristic to 
explore different areas in the input space 

3.  Modify the learned information 
l  Remove least-used learned information 
l  Simplify or synthesize the learned information 
l  Any other idea? 
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What affect the SAT efficiency? 

1.  Decision order 

2.  Logic implication (Boolean Constraint 
Propagation, BCP) 

3.  Various learning techniques 

4.  Database simplification 
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Simplify SAT Database, why bother? 

1.  CNF proof instances generated from real-
life problems (e.g. assertions in a circuit) 
are usually quite redundant 
l  Better clausifier? 

2.  During SAT proof, the number of added 
learnt clauses will become much larger 
than the number of original clauses 
l  A few thousands vs. millions 

3.  Slimmer clause database usually implies 
better proof efficiency 
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Many SAT proof database simplification 
techniques... 
u  Especially for CNF... 

1.  Variable Elimination by Clause Distribution 
2.  Clause Subsumption 
3.  Self-Subsuming Resolution 
4.  Simplification by Definition of a Gate 
5.  Blocked Clause Elimination 
6.  Equivalent Literal, Pure Literal Elimination, etc 

u  Also, many techniques to generate “better” CNF instances 
(from circuit problems) 

1.  Tseitin Transformation 
2.  Plaisted-Greenbaum Encoding 
3.  Utilization of Logic Synthesis Techniques 

u  Note: in the following slides, (‘) for a literal/variable means 
negation; for clause/problem means another one.  
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Satisfiability Equivalent Problem 
u  A SAT proof instance P1 is a “satisfiability 

equivalent (SAT-EQ) problem” of another proof 
instance P2 iff: 
l  P1 is SAT implies P2 is SAT, and 
l  P1 is UNSAT implies P2 is UNSAT 
è Note that P1 is NOT necessarily logically equivalent 

to P2 
u  “Resolution” preserves the SAT-EQ 

l  Let ⊗ be the resolution operator,  
clauses c1 = (x + a1 +... + an), c2 = (x’ + b1 +...+ bm) 
and c = c1 ⊗ c2 is the resolvent of c1 and c2 

è c = (a1 +... + an + b1 +...+ bm) 
è c1 ∧ c2 implies c 
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Variable Elimination by Clause Distribution 

u  In a CNF proof instance S, let Sx and Sx’ be the 
sets of clauses in which x and x’ occurs, 
respectively. 
 è S = Sx ∪ Sx’ 

u  Resolution operation can be lifted to sets of clauses 
as: 
l  S’ = S1 ⊗ S2 = { C1 ⊗ C2 |  ∀C1 ∈ S1, ∀ C2 ∈ S2 } 
è x will be eliminated from S 
è S’ is SAT-EQ to S 
è Is S’ always simpler than S? 
è S’ may contain several trivial clauses. (A clause is 

called trivial if it contains a variable and its negation) 
è S’ also contains many subsumed clauses 
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Clause Subsumption 
u  A clause C1 is said to (syntactically) subsume another 

clause C2 if C1 ⊆ C2 
l  e.g. (a + b) subsumes (a + b + c) 
l  A subsumed clause is redundant in a SAT problem and can 

be removed from the proof 
u  [Remember] Variable eliminations by clause distribution 

usually lead to many subsumed clauses 
u  How to identify the subsumed clauses in a CNF? 

l  [Ref: Een SAT2005]  
1.  For each clause, a 64-bit signature is stored. 
2.  Each literal is hashed to 0...63. 
3.  The signature = bitwise_OR of the hashed literal indices 
4.  Occur_list: literal à clauses 
5.  Check subsumptions with the aid of the clause signatures 



90 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Self-Subsuming Resolution 

u  It’s often that one clause can “almost subsume” 
the other. For example: 
l  C1: (x’ + a), C2: (x + a + b) 
è C1 does not subsume C2 
l  But if we do C2’ = C2 ⊗ C1 = (a + b) 
è C2’ will subsume C2 
è We say “C2 is strengthened by self-subsumption 

using C1” 
 (i.e. Problem becomes: (x’ + a) (a + b) ) 

u  Self-subsumption is a powerful technique in 
simplifying CNF database 
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Simplification by Definition of a Gate 
u  There are usually many functionally dependent variables in 

a CNF. For example: 
l  ... (x + a’ + b’)(x’ + a)(x’ + b) ... 
è x is actually equal to “a∧b” 
è We call the equation “x = a∧b” the definition of x 
è Can we remove the variable x? 

u  [Fact] If x has a definition and is eliminated by clause 
distribution, many redundant resolvents are generated. 
l  [e.g.]      1        2             3                4         5            6 
              (x + c)(x + d’)(x + a’ + b’)   (x’ + a)(x’ + b)(x’ + e’ + f) 

 The resolvents are: 
§     1⊗4    1⊗5       2⊗4      2⊗5            3⊗6 

   (c + a) (c + b) (d’ + a) (d’ + b) (a’ + b’ + e’ + f)  è A 
§        3⊗4              3⊗5 

  (a’ + b’ + a) (a’ + b’ + b) è B 
§        1⊗6            2⊗6 

  (c + e’ + f) (d’ + e’ + f) è C 
è We will show in the next slide that A implies B ∪ C 
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Simplification by Definition of a Gate

u  Let a CNF S contains a definition of a variable x,  
that is, x = a ∧ b --- 
l  ... (x + a’ + b’)(x’ + a)(x’ + b) ... 

u  Let S = G ∪ R, 
       G = (x + a’ + b’)(x’ + a)(x’ + b)  
       R = S \ G 

u  Let Gx and Gx’ (Rx and Rx’) be the set of clauses of G (R) 
in which x and x’ occurs, respectively. 
l  S = (Gx ∪ Rx) ∪ (Gx’ ∪ Rx’) 
l  S’ = (Gx ∪ Rx) ⊗ (Gx’ ∪ Rx’) = S’’ ∪ G’ ∪ R’ 

 where --- 
 S’’ = (Rx ⊗ Gx’) ∪ (Gx ⊗ Rx’) 
 G’ = Gx ⊗ Gx’ 
 R’ = Rx ⊗ Rx’ 

è S’’ implies G’ ∪ R’ 
 That is, G’ and R’ are redundant and thus can be removed 
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Simplification by Definition of a Gate

u  In the previous example --- 
l  Example: 

 (x + c)(x + d’)(x + a’ + b’)   (x’ + a)(x’ + b)(x’ + e’ + f) 
  

Becomes... 
 

 ( (x + a’ + b’) ⊗ (x’ + e’ + f) )  
( {(x + c), (x + d’)} ⊗ { (x’ + a), (x’ + b) } ) 

 
è (a’ + b’ + e’ + f) (c + a) (c + b) (d’ + a) (d’ + b) 
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Blocked Clause Elimination (ref: Järvisalo TACAS 10)

u  Blocking literal 
l  A literal l in a clause C of a CNF F blocks C (w.r.t. 

F) if for every clause C’ ∈ F with l’ ∈ C’, the 
resolvent of (C ⊗ C’) on l is a tautology. 

u  Blocked clause 
l  A clause is blocked if it has a literal that blocks it 
 è Removal of a blocked clause reserves 
satisfiability 

u  Example: (a’ + b) (a + b’ + c’) (a’ + c) 
l  c blocks (a’ + c) because (a + b’ + c’) ⊗c (a’ + c) = 1 
è Problem becomes (a’ + b) (a + b’ + c’) 
l  b’ blocks (a + b’ + c’) è Problem becomes (a’ + b) 
è Problem is satisfiable!! 
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Equivalent Literal, Pure Literal Eliminations 

u  Equivalent Literal 
l  If both (a + b’) and (a’ + b) exist in CNF, a and b 

are equivalent è Replace b with a 
l  If (a + b’), (b + c’) and (c + a’) exist in CNF, a, b and 

c are equivalent è Pick one representative literal 

u  Pure Literal Eliminations 
l  If some variable exists only in one phase in all the 

clauses it appears (i.e. pure literal) --- 
è Assigning these literals to ‘1’ preserves satisfiability 
è Removal of these clauses preserves satisfiability 



96 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Transforming Circuit Problems for CNF SAT 

u  Although the CNF and circuit-based SAT 
can be equally efficient, however, there are 
much more existing CNF solvers than 
circuit SAT. 
l  It’s often a need to transform a circuit 

problem to CNF 
1.  Tseitin Transformation 
2.  Plaisted-Greenbaum Encoding 
3.  Utilization of Logic Synthesis Techniques 
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Tseitin Transformation

1.  Assign each gate with a variable 
2.  For each gate, generate CNF clauses for its input 

and output variables 
u  Example: 

a b c 

f 

x 
y 

z 

F: f (f  ↔ x ∧ y) (x ↔ a ∨ b) (y ↔ z’) (z ↔ b ∧ c) 
≡  f (f → x) (f → y) (f’ → x’ v y’) 
      (x’ → a’) (x’ → b’) (x → a v b) 
      (y → z’) (y’ → z) ... 
≡  f (f’ + x) (f’ + y) (f + x’ + y’) 
      (x + a’) (x + b’) (x’ + a + b) 
      (y’ + z’) (y + z) ... 

However, many redundant variables
/clauses are generated... 
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Plaisted-Greenbaum Encoding

u  Polarity-cared transformation 
l  A is satisfiable iff LA ∧ A+ 
l  ¬A is satisfiable iff L¬A ∧ A- 

a b c 

f 

x 
y 

z 

F: f ... 
≡  f (f → x ∧ y)... 
≡  f (f’ + x) (f’ + y) (x → a v b)... 
≡  f (f’ + x) (f’ + y) (x’ + a + b) (y → z’)... 
≡  f (f’ + x) (f’ + y) (x’ + a + b) (y → b’ v c’) 
≡  f (f’ + x) (f’ + y) (x’ + a + b) (y’ + b’ + c’) 
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Utilization of Logic Synthesis Techniques

u  How many are there n-input  
Boolean functions? 
l  e.g. 65536 for 4-input functions 
l  Are they all distinct? 

u  NPN-equivalent functions 
l  Two functions are called NPN-equivalent iff they 

are equivalent by negating parts of the inputs and 
outputs, and by permuting inputs 

l  e.g. (a ∧ b) and (b ∨ a’) are NPN-EQ  
u  How many are there distinct NPN-EQ n-input 

Boolean functions? 
l  Well, no general formula... 
l  1-input: 2;   2-input: 4;   3-input: 14;   4-input: 222;   

5-input: ?? 

n22
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Utilization of Logic Synthesis Techniques

u  How to utilize this NPN-EQ concept in 
generating CNF formula from circuit? 
l  For each NPN-EQ class, derive the “best” 

CNF representation 
l  Partition the circuit into clusters of n-input 

“macro cells”. That is, each macro cell has 
exactly n inputs and 1 output. 
§  e.g. 4-input 

l  Generate CNF by table lookup 
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What we have learned...

u  What is the Boolean Satisfiability (SAT) 
problem? 

u  Circuit SAT vs. CNF SAT 
u  Key factors for SAT efficiency 

l  Boolean constraint propagation (BCP) 
l  Decision ordering 
l  Various learning 
l  Database simplification 
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What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT) 
u  Techniques to improve SAT solving 
u  Circuit-based SAT algorithms 
u  SAT-based (hardware) verification 

l  Bounded model checking (BMC) 
l  Inductive proof 
l  SAT-based abstraction and refinement 
l  Interpolation-based method 
l  Property-directed reachability 
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Formal Verification Technologies 

Design Under 
Verification 

(DUV) 

Arithmetic /  
Logic Model 
(Constraints) 

Expected 
Behavior e.g. Always (req ! ack) 

Properties 

Check consistency 

req ∧ ¬ack 
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What is formal verification?

“The expression 'formal verification', as it appears in the 
literature, refers to a variety of (often quite different) 
methods used to prove that a model of a system has certain 
specified attributes. What distinguishes ‘formal’ verification 
from other undertakings also called 'verification' is that 
‘formal’ verification conveys a promise of mathematical 
certainty. The certainty is that if a model is formally 
verified to have a given attribute, then no behavior or 
execution of the model ever can be found to contradict 
this” 
Robert Kurshan, “Computer-Aided Verification of Coordinating Processes” 
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What is formal verification?

u  In general, formal verification can be applied to 
various disciplines --- 
l  Hardware design validation 
l  Software verification 
l  Protocol checking 
l  and more... 

u  The “models” checked by formal verification can be --- 
l  Continuous / discrete time 
l  Finite / infinite states 
l  Hardware / software 
l  Deterministic / non-deterministic,... etc 
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In this class, we will focus on  
 

“Hardware Verification”,  
 

where the design is usually modeled as a  
 

“Finite State Concurrent System”. 
 
 

“Model Checking”  
 

is the most widely studied and used technique. 
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Model Checking Problem 

u  Let M be the state transition graph obtained 
from the concurrent system. 

u  Let f be the specification expressed in 
temporal logic. 

u  Model Checking 
l  Find all states s of M such that M, s ⊧ f
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The Process of Model Checking 

1.  Modeling 
l  Convert a design into a formalism accepted by a 

model checking tool 
l  Parsing, compilation, abstraction, reduction, etc 

2.  Specification 
l  What are the properties the design must satisfy? 
l  e.g. Temporal logic 

3.  Verification 
l  Try to prove that the model is compliant with the 

specification 
l  If not, manual debugging is usually required 

“Model Checking”, E.M. Clarke, et al. 
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Remember --- 

u  Model checking is an automatic technique 
for verifying “finite state concurrent 
systems”. 

 
What can be the basic formalism for  

“finite state concurrent system” model? 
(HDL, circuit, FSM, ??) 
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(FYI) Kripke Structure 
--- a type of state transition graph 
u  Kripke structure M over a set of atomic propositions 

AP is a four tuple M = (S, S0, R, L), where 
1.  S is a finite set of states 
2.  S0 ⊆ S is the set of initial states 
3.  R ⊆ S × S is a transition relation that must be total, 

that is, for every state s ∈ S there is a state s’ ∈ S 
such that R(s, s’) 

4.  L: S → 2AP is a function that labels each state with the 
set of atomic propositions true in that state. 

u  Think --- 
l  What is the “state” for a concurrent system (e.g. 

hardware design)? 
l  How many states does a circuit have? 

“Model Checking”, E.M. Clarke, et al. 
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What? 
u  Kripke structure M over a set of atomic propositions AP is a 

four tuple M = (S, S0, R, L), where --- 
1.  S is a finite set of states 

§  e.g. A hardware circuit has finite set of states 
2.  S0 ⊆ S is the set of initial states 

§  Note: This item can be omitted if we don’t care about initial states 
3.  R ⊆ S × S is a transition relation that must be total, that is, for 

every state s ∈ S there is a state s’ ∈ S such that R(s, s’) 
§  i.e. The next state always exists à The system can keep on 

running 
4.  L: S → 2AP is a function that labels each state with the set of 

atomic propositions true in that state. 
§  i.e. For a given state, some atomic propositions are true in this 

state, while others are false 
§  On the other hand, for a given atomic proposition, what are the 

states on which this proposition is true? 
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Example of Kripke Structure 

a b 

b c c 

AP: {a, b, c} 

s1 s2 

s0 

S: {s0, s1, s2} 
S0: {s0} 
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u  It can be easily shown that a synchronous 
digital circuit can be converted to a kripke 
structure 

Circuit 

inputs (PIs) 

outputs (Pos) 

PIs POs 

seq elm
 

Combinational  
elements 

Properties 

labeled 
What are the states? Is this 
a STG or Kripke structure? 
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The Process of Model Checking 

1.  Modeling 
l  Convert a design into a formalism accepted by a 

model checking tool 
l  Parsing, compilation, abstraction, reduction, etc 

2.  Specification 
l  What are the properties the design must satisfy? 
l  e.g. Temporal logic 

3.  Verification 
l  Try to prove that the model is compliant with the 

specification 
l  If not, manual debugging is usually required 

“Model Checking”, E.M. Clarke, et al. 
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Property Specification 

u  Remember, the definition of Kripke Structure 
4.  L: S → 2AP is a function that labels each state with 

the set of atomic propositions true in that state. 
§  i.e. For a given state, some atomic propositions are 

true in this state, while others are false 
§  On the other hand, for a given atomic proposition, 

what are the states that this proposition is true? 
 
è What are the formula for the atomic proposition? 
è In terms of what? States, state variables, or? 
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Property Specification

a b 

b c c s1 s2 

s0 

What are the formulae to describe propositions a, b, and c? 

" ‘a’ is true iff state s = s0  
(this type of description does not work if number of states is large)  

" ‘a’ will never be true if ‘c’ is true for two consecutive states 

" There is an execution trace that ‘a’ can be true infinitely often 
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Property Specification

u  To describe the formula for a proposition, in 
addition to the states or state variables, we also 
need the “temporal expression”. 

u  We will first introduce “temporal logic” for the 
description of the proposition over the span of 
execution time 

l  Never? 
l  Two consecutive? 
l  Execution trace? 
l  infinitely often? 
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Kripke Structure vs. (Infinite) Computation Tree 

a b 

b c c s1 s2 

s0 a b 

b c c 

a b c c 

unwind 
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Describe Properties on Computation Tree  

u  There exists an execution path such that ‘b’ 
always holds 

u  For every execution path, c will eventually 
holds 

 
è “Path” and “Temporal” 

    operators/quantifiers 

a b 

b c c 

a b c c 
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Computation Tree Logic* (CTL*) 
u  Describe the properties for the propositions on the 

computation tree 

1.  Path quantifier 
l  A --- “for every path” 
l  E --- “there exists a path” 

2.  Temporal operator (State quantifier) 
l  Xp --- p holds next time 
l  Fp --- p holds sometime in the future 
l  Gp --- p holds globally in the future 
l  pUq --- p holds until q holds (exclusive)  
l  pRq --- p release q (inclusive) 

            q holds up to (and including) p holds 

ppp…ppp 
q 
xx….xx 

!p!p…!p p 
q q ... q q xx… 
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For example… 
p 

p 

p 

p 

p p 

AGp 

a 

b 

a 

c 

p c 

EFp 

a 

b 

p 

p 

p c 

AFp 

p 

p 

a 

c 

p c 

EGp 
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Recursive Definition 

u  In an infinite computation tree, any sub-tree 
is also an infinite computation tree 

u  Let Φ1, Φ2 be temporal formulae 
 è “Φ1 (Φ2)” means --- 
  “For any state s that satisfies 
   Φ1, the sub-tree that roots 
   at this state s should 
   satisfy the formula Φ2” 

s 
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More examples… 
u  AG(EF p) 

l  For any state in the computation tree, 
 its sub-tree should at least contain a state that satisfies p 

l  e.g. AG(EF Restart) ≡ ¬deadlock 
§  From any state it is possible to get to the Restart state 

u  AG(AF p) 
l  For any state in the computation tree, 

 its sub-tree should have a ”cut” that satisfies p 
l  e.g. AG(AF DeviceEnabled) 

§  From any state, any of its future computation path must see 
a DeviceEnabled 

§  DeviceEnabled holds infinitely often on every computation path 

Is AG(EF p) the same as AG(AF p)?? 
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No, a counter-example is… 

u  Satisfies AG(EF p), but not AG(AF p) 

!p p 

0 

0 

1 1 

!p 

!p p 

!p p !p p 

!p p !p p !p p !p p 
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Equivalent Formulae 

u  AG(p) ≡ ¬ EF(¬p) 

u  AF(p) ≡ ¬ EG(¬p) 

p 

p 

p 

p 

p p !p 

p 

p 

p 

!p 

!p 

!p 
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More Equivalent Formulae  

u  AX p ≡ ¬ EX(¬ p) 
u  EF p ≡ E(true U p) 
u  A(p U q) ≡ ¬( E(¬q U (¬p ∧ ¬q)) ∨ EG ¬q ) 

u  A(p R q) ≡ ¬ E(¬p U ¬q) 
u  E(p R q) ≡ ¬ A(¬p U ¬ q) 

!q!q…!q!q !q 
!pxx….xxx 

!q!q…!q!
q................ 

or ppp…ppp 
q 
xxx….xxx 
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Atomic Operators for CTL* 

u  It can be shown that all CTL* formulae can 
be expressed by ∨, ¬, X, U, and E 
l  p ∧ q ≡ ¬(¬p ∨ ¬q) 
l  p R q ≡ ¬(¬p U ¬q) 
l  F p ≡ True U p 
l  G p ≡ ¬ F ¬p 
l  A p ≡ ¬ E ¬p 

q q… q q  q 
 pxx….xxx 

q q… q q................ 
or p R q 



128 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

CTL (Computation Tree Logic) 
u  A restricted subset of CTL* that permits only branching-

time operators. Each of the state quantifiers G, F, X and U 
must be immediately preceded by a path quantifier A or E 

u  10 basic operators (path + state quantifiers) 
l  AX, AF, AG, AU, AR 
l  EX, EF, EG, EU, ER 

u  Formula 
[(CTL formula)] := <Path_quantifier> <state quantifier> [(CTL formula)] 
e.g. AG(p à EF q)  ….. OK 
e.g. AGF p              ….. Not OK, no A/E between GF 
e.g. AG(p à E q)    ….. Not OK, missing state quantifier 
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LTL (Linear Temporal Logic) 
u  A restricted subset of CTL* that consists of the form “A f” 

where f is a path formula. The quantifiers in f must be state 
quantifiers G, F, X and U, followed by atomic proposition 
è f is the path formula that holds for ALL the paths in the 

computation tree 

u  Formula 
[(LTL formula)] := A <state quantifiers>... <atomic proposition> 
e.g. AGF(p)  .... OK (p occurs infinitely often) 
e.g. AFG(p)  .... OK 
e.g. AGAF(p)  .... Not OK; CTL, not LTL 
e.g. EGF(p)  .... Not OK; not start with A 
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CTL*, CTL, LTL, .... ^*^#(*^(*#^$%!^*#!@# 
 

 Many early model checking tools adopted these 
languages for property specification. 

 
But many people thought that they were not easy to 

learn. 
 
Therefore, in late 90’s, several companies were 

extending HDLs or programming languages (e.g. 
C++) and making them into different “easier-to-
learn” or say “programmable” property 
specification languages. 
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Standardization of Property Specification 
Language (PSL) 
u  Background 

l  Different companies were using different property 
specification languages (Intel, IBM, Motorola,...) 

l  Making verification tool support very difficult 
u  Accellera (http://www.accellera.org/home) 

l  Formed in 2000, to drive development and use of 
standards required by systems, semiconductor and design 
tools companies 

l  4 major contenders for PSL 
§  IBM sugar; Intel ForSpec; Verisity “e”; Motorola CBV 

l  After long debates and voting, Accellera chose IBM sugar 
as the standard 
(http://www.eetimes.com/story/OEG20020425S0018) 

l  However, Intel ForSpec was later combined with Synopsys 
Vera and then called OpenVera. It lastly became a part of 
the SystemVerilog standard 
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Learning New PSL 
u  Sugar PSL 1.1 LRM 

l  131 pages 
l  8 chapters 

u  SystemVerilog 3.1 LRM 
l  586 pages 
l  31 chapters 

è Temporal language.... 
è Formal semantics...... 
è Still a big burden for most of the (design) 

engineers!! 



133 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Think: 
What’s the goal of hardware verification? 
u  The goal: to fix as many bugs as possible 

l  Bottom line: a do-or-die game (bug à recall) 
l  Limitation: impossible to “know” how many bugs to fix 
l  The fact: simulation is still the mainstream 

u  Formal method: to prove ONE property at a time 
l  Bigger problem 1: “Have I written a correct property?” 
l  Bigger problem 2: “Have I written enough properties?” 
l  Bigger problem 3: “What if proof aborts?” 
l  Dilemma: 

 è Complex property (but may be wrongly written)     or 
     Simple property (yet enough to detect bugs)? 
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Do we write a property to express 
the completeness of the 

specification, 
 
or 
 

we write a property to guide the 
model checker for bug hunting? 



135 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

The Fact 

u  More than 90% of properties written for hardware 
verification are simply “safety (invariance) ” 
properties 
l  e.g. assert_never(readEn && writeEn); 
l  e.g. assert_next(req, ack); 
 è Easier to write 
 è Higher proof completion percentage 
 è Enough to detect bugs 
 How to quickly prove all of them is the key issue  
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Safety Property (Invariance) 
u  Something GOOD should always hold;  

Something BAD should never happen 
u  Without lost of generality, an assertion property on a circuit 

can be transformed into an “assert_always 
(atomic_proposition)” property with some extra gates 
l  e.g. assert_never(p) ≡ assert_always(¬p); 
l  e.g. assert property  
           ( @(posedge clk) req |-> ##[1:2] ack) 

req 

ack 

clk 

clk 

p 

" assert_always (p) 

DUV 
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Proving “assert_always(p)” 

u  In later slides, we will mostly focus on how to 
prove the property “assert_always(p)”, instead of 
proving a complex temporal logic formula 

u  assert_always(p) ≡ AG (p) ≡ ¬ EF (¬p) 

u  Either  
“proving p is true for all states on the state 
 transition graph”    or  
 “finding a trace that can disprove p” 
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“Mathematical Certainty” in Formal Verification 

u  Space exhaustiveness 
l  Verify all input combinations of the system  

u  Time exhaustiveness 
l  Verify system behavior from initial state to 

time infinity 

t0 t1 t2 t3 t4 t5 infinity 

initial state 

all input 
combinations 
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Set of Reachable States 
t0 t1 t2 t3 t4 t5 t6 t7 t8 
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Boolean State Space

Boolean space of n state variables (2n) 

!(P2) 

!(P1) 

unreachable states 

reachable states 

" AG (p1) ≡ false;      AG (p2) ≡ true 
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Formal Verification Engines for AG 

u  Our later discussion of formal verification 
engines on AG property will either be 

1.  How to compute the set of reachable states 

2.  How to generate a trace to (¬p) 

3.  How to prove that there is no trace to (¬p) 
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Think.... BDD vs. SAT 

u  (FYI) For Binary Decision Diagram (BDD), 
we compute the set of reachable states by 
iteratively applying transition relationship 
(TR) on current set of states (recorded as 
BDDs) 

u  However, SAT is a propositional constraint 
solver. How to “record” the set of states? 
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Using Blocking Clauses for Sequential SAT 

PIs POs 

seq elm
 


Combinational  

elements 

a 
b 

> 0 
0 
1 
0 

1 
1 
0 

1 
1 
0 

Suppose we are solving the property 
“a > b” 

1.  Use SAT to get a solution on the 
registers (for !p) 
 e.g. (c0, c1, c2) = (1,1, 0) 

2.  Add a “blocking clause”  
 (c0’ + c1’ + c2) to the original CNF 
 è Won’t get the same state 
again!! 

3.  Repeat 2 for another solution in 
the same timeframe..., or 

4.  Apply the solution  
 “(c0, c1, c2) = (1, 1, 0)”  
 to the previous state as  
 “(p2, p1, p0) = (1, 1, 0)” and 
continue to the search in the 
previous timeframe (for p) 

c0 
c1 
c2 

p0 
p1 
p2 

1 

(c0’ + c1’ + c2) 
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A closer look on the above algorithm... 

PIs POs 

seq elm
 


Combinational  

elements 

a 
b 

> 0 
0 
1 
0 

1 
1 
0 

•  There are several calls to SAT 
•  Call SAT(p == 0) 
•  Put the current state value 

(e.g. 110) to the previous 
state variables and call 
SAT(p0p1p2 = 110) 

•  Can the proof efforts/results 
among different SAT calls be 
shared? 
•  Yes, by “assumpProve()” 
•  Also an “incremental SAT” 

approach 

c0 
c1 
c2 

p0 
p1 
p2 

(c0’ + c1’ + c2) 
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Using Blocking Clauses for Sequential SAT

u  The above process needs to continue until --- 
1.  The initial state is reached 
2.  No new state can be found (i.e. all in blocking 

clauses) 
è BFS or DFS (in terms of timeframe traversal)? 

u  However, in the above approach, we are solving 
one state (cube) at a time. 

 
 Comparing to BDD, which finds all the reachable 
state in one timeframe at once. 

 
 SAT seems inefficient... 
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The bottomline is--- 

u  SAT is a satisfiabilty solver (i.e. to answer 
“satisfiability”; to find ONE solution) 

è It is NOT natural for it to enumerate ALL 
the solutions 

è It is NOT a structure for data storage (e.g. 
hash, BDD) 

u  SAT solves only propositional constraints 
è No temporal logic 
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Iterative Timeframe Expansion Model 

u  There’s another way of using SAT for 
sequential property checking 

Comb. 
ckt 

PO 

FF 

PI 

!P 

Comb. 
ckt 

Comb. 
ckt 

Comb. 
ckt 

PI 

FF 

PO 

PI PI 

PO PO 

!P P P 

FF 

Init S
tates 

Iterative Timeframe Expansion Model 
è Seq SAT becomes a 
combinational problem 
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In other words...

Comb. 
ckt 

PI 

FF 

PO 

!P 

Init 
S

tates 

Comb. 
ckt 

Comb. 
ckt 

PI 

FF 

PO 

PI 

PO 

!P P 

FF 

Init 
S

tates 

Comb. 
ckt 

Comb. 
ckt 

Comb. 
ckt 

PI 

FF 

PO 

PI PI 

PO PO 

!P P P 

FF 

Init 
S

tates 

UNSAT

SAT

Cex @ t0

SAT

Cex @ t1

UNSAT
SAT

Cex @ t2 UNSAT

continued for t3



149 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Bounded Model Checking (BMC) Algorithm 
u  Let ‘C’ be the set of constraints on the combinational circuit 

 è For an iterative model that unfolds the circuit for n times,  
let ‘Ci’ correspond to the i-th iteration of the circuit constraint  
(0 <= i <= n - 1) 

u  Let ‘I0’ be the initial state value 
u  Let ‘P’ be the property to prove 

u  BMC(P) { 
    let k = 1; 
  loop: 
    if (SAT(I0∧C0∧...∧Ck-1∧!Pk-1)) 
       return “Find a counter-example @ (K-1)”; 
    k = k + 1; 
    goto loop; 
 } 

C0 C1 C2 

PI 

PO 

!P2 

I0 

PI PI 

PO PO 
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How far should we go? 

u  What’s the limit of K? 
 (How many iterations do we need before 
concluding the property is always true?) 
 è Impossible to know in the above BMC 
algorithm 
 è A loose upper bound is 2N (N is the 
number of registers) 
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Application of BMC 
u  BMC is particularly useful when BDD encounters 

the memory explosion problem 

u  If the property is false, BMC can find a counter-
example with the shortest length 

u  However, BMC cannot conclude that a property is 
true... 

è It can only conclude that the property holds up to 
certain number of timeframes 

è NOTE: BMC timeframe is different from the 
number of cycles in a simulation trace!!! 

 
 (BMC is best used in “bug-finding”) 
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Extension of BMC for Unbounded Proof 

u  BMC, combined with various techniques, can be 
extended to unbounded model checking 

1.  K-step Induction 
2.  Simple-path constraint 
3.  Counter-example-based abstraction 
4.  Proof-based abstraction 
5.  Image computation by SAT 
6.  Over-approximated image computation using 

interpolation  
etc... 



153 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

K-induction 

u  Induction: 
SSS2000 

P(s0) 
∀i: P(si) ⇒ P(si+1) 

∀i: P(si)  
•  k-step induction: 

P(s0..k-1) 
∀i: P(si..i+k-1) ⇒ P(si+k) 

∀i: P(si)  
 * Some of the following slides in this lecture note are adopted

 and modified from Dr. Ken McMillan’s CAV03 tutorial 
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K-induction with a SAT solver 

u  Let: 
    Uk = C0 ∧ C1 ∧ ... ∧ Ck 

u  Two formulas to check: 
l  Base case: 

I0  ∧  Uk-1  ⇒  P0...Pk-1 

l  Induction step: 
Uk  ∧  P0...Pk-1  ⇒  Pk 

u  If both are valid, then P always holds. 
u  If not, increase k and try again. 

C0 C1 C2 

PI 

PO 

!P2 

I0 

PI PI 

PO PO 
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Induction SAT 
for (k = 0 to infinity) 
   S = Uk ∧ Fk   // Fk = P0 ∧... ∧ Pk-1 ∧ !Pk 
   T = I0  ∧ S 
   // induciton step 
   if (SAT(S) == false) 
      return NO_SOLUTION;  // i.e. P is true 
   // normal proof: base case for next k 
   if (SAT(T) == true) 
      return HAS_SOLUTION; // i.e. CEX is found 
   if (effort exceeds limit) 
      return ABORT; 
endfor 
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Induction SAT

u  In other words, let 
   S(k) = Uk ∧ Fk   // induction step 
  T(k) = I0  ∧ S  // BMC step  

u   Induction SAT... 
 if (S(0) == UNSAT)   return UNSAT; 
 if (T(0) == SAT)        return SAT; 
 if (S(1) == UNSAT)   return UNSAT; 
 if (T(1) == SAT)        return SAT; 
 ... 
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In other words...

Comb. 
ckt 

PI 

FF 

PO 

!P 

xxxxx 

SAT

Comb. 
ckt 

Comb. 
ckt 

PI 

FF 

PO 

PI 

PO 

!P P 

FF 

xxxxx 

SAT

UNSAT

Comb. 
ckt 

PI 

FF 

PO 

!P 

Init 
S

tates 

SAT

Cex @ t0

Comb. 
ckt 

Comb. 
ckt 

PI 

FF 

PO 

PI 

PO 

!P P 

FF 

Init 
S

tates 
Cex @ t1

UNSAT

continued for t3

SAT

Proven!!

UNSAT

UNSAT

Proven!!
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Does “Induction SAT” guarantee convergence? 
 
i.e. Will we either (given enough time/memory) 

  1. conclude no solution in induction step 
  or 2. find a counter-example in normal proof 
  with a finite number k ??? 
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Simple path assumption 

u  Unfortunately, k-induction is not complete. 
l  Some properties are not k-inductive for any k. 

u  Simple path restriction: 
l  There is a path to ¬P iff there is a simple path 

to ¬P (path with no repeated states). 

P P ¬P 

reachable
 states from I 

unreachable
 from I, but can

 reach ¬P 
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Induction over simple paths 

u  Let simple(s0..k) be defined as: 
l  ∀i,j in 0..k : (i ≠ j) ⇒ si ≠ sj 

u  k-induction over simple paths: 

P(s0..k-1) 
∀i: simple(s0..k) ∧ P(si..i+k-1) ⇒ P(si+k) 

∀i: P(si)  


Must hold for k large enough, since a simple path cannot be 
unboundedly long.  Length of longest simple path is called 
recurrence diameter. 
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...with a SAT solver 

u  For simple path restriction, let: 
    Sk = ∀t=0..k, t'=t+1..k:  ¬ (∀v in V : vt = vt‘) 
(where V is the set of state variables). 

u  Two formulas to check: 
l  Base case: 

I0  ∧  Uk-1  ⇒  P0...Pk-1 

l  Induction step: 
Sk  ∧  Uk  ∧  P0...Pk-1  ⇒  Pk 

u  If both are valid, then P always holds. 
u  If not, increase k and try again. 
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Is the recurrence diameter the 
same as the diameter (the 

distance from initial state to any 
state, i.e. depth of fixed point)?? 
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Recurrence Diameter vs. Diameter 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

!p
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Termination 

u  Termination condition: 
k is the length of the longest simple path of the form 

 P*  ¬P 
u  This can be exponentially longer than the diameter. 

l  example:  
§  loadable mod 2N counter where P is (count ≠ 2N-1) 
§  diameter = 1 
§  longest simple path =  2N 

u  Nice special cases: 
l  P is a tautology (k=0) 
l  P is inductive invariant (k=1) 
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Limitations of simple path constraint 

u  Although simple path constraint can make 
the induction-based SAT a complete 
algorithm for sequential proof, it has the 
limitation in reality that the circuitry for the 
simple path constraint can grow too big 
(O(n2)) 
l  Not really applicable in real cases 

u  What if we limit the simple path constraint 
to “no repeat states within k timeframes”, 
where k is a small enough number? 
l  Is the algorithm still complete? 
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What can/should be covered in this
 topic?	
u  SAT-based logic synthesis 

l  Redundancy addition and removal 
l  Functional dependency 
l  SAT-based re-synthesis techniques 
l  Engineering Change Order (ECO) 

u  From SAT to optimization problems 
l  Pseudo Boolean satisfiability/optimization problems 

u  General SAT-based model checking algorithms 
u  Quantified Boolean Formula (QBF) 
u  Bit-vector/Arithmetic solver 
u  Satisfiability Modulo Theories (SMT)	
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Applications of Logic Implication 

u  We have learned that logic implication can 
be very efficient for both CNF and circuit-
based SAT solvers 

u  Logic implication is actually also a powerful 
approach in exploring signal correlations in 
the circuit 

u  Any application? 
Redundancy addition and removal 
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Redundancy Addition and Removal (RAR) 

u  Redundancy to a circuit 
l  When removing or adding some signal/gate to a 

circuit, the circuit functionality remains unchanged 
u  Motivations 

l  Removing redundancy in a circuit can gradually 
lead to smaller area, timing, power, etc 

l  When (deliberately) adding some redundancy to a 
circuit, we may cause other part of the circuit 
become redundant 
§  Incremental circuit restructuring (rewiring) 
§  Can be used for incremental optimization (e.g. timing, 

area, etc) 
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Redundancy in a Combinational Circuit 

u  Redundancy in a combinational circuit 
 = Single stuck-at fault untestable 

PIs POs 

1 s-a- 
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Background: Single Stuck-at Fault Untestable

u  Sufficient untestable condition 
è The mandatory assignment  
     (MA) of the stuck-at fault has  
     conflict 

 
u  Mandatory assignment of a fault 

l  Denoted as MA(w) or MA(g), where ‘w’ or ‘g’ is the fault 
location (wire or gate) 

l  Implications of 
1.  Fault sensitization @ fault site 
2.  Fault propagation @ the side inputs of the dominators 

u  Dominators of a fault 
l  The gates where all the paths from the fault site to the POs 

must intersect 

s-a-0 

0 
1 

1 

1 
0 
0 
1 

0
0
1
1
0
1

0 
1 
0 

Faulty circuit 

1 
1 

1 

1 
0 
0 
1 

0 
0 
0 
1 
0 
1 

0 
1 
0 

Good circuit 

X
s-a-1 

gd PO 
1 

1 
1 

0 
0 
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Mandatory Assignment Example 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X 

s-a-0 

1 

1 

(1) Fault sensitization: g2 = 1 

1 
1 

0 0 



172 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Mandatory Assignment Example 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X 

s-a-0 

1 
0 

0 

1 

1 
1 

1 

1 

(2) Fault propagation: d = 0, g3 = 1, g4 = 0, f = 1 

1 
1 

1 

0 

0 
0 

1/0 
1/0 

1/0 

1/0 

1/0 
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1.  How do we know a wire in a combinational circuit 
is redundant? 
è Its corresponding stuck-at fault is untestable 

 (s-a-1 for AND inputs; s-a-0 for OR inputs), or 
è MA of the fault has conflict 
 

2.  If a wire is NOT redundant, can we add an extra 
wire to make this wire redundant? 
è Yes, but the extra wire itself must be redundant 
è Add a redundant wire to make the originally 

irredundant wire become redundant 
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Target: remove g6 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X 
s-a-1 

0 
0 

0 

0 
0 

0 

0 

1 1 
1 

1 

1 

g6 is testable and thus NOT redundant 

0 

1 

x

0/1 

0/1 

0/1 
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How to add an extra wire to make the s-a-1 
fault @ g6 untestable? 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X 
s-a-1 

0 
0 

0 

0
0 

0 

0 

1 1 
1 

1 

1 

Adding a wire (or with inverter) from any implied gate to a dominator  

1 

0 

0 

1 

x

0/1 

0/1 

0/1 

1 

1 0 
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But remember, 
the added wire must be redundant!!  
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RAMBO: Redundancy Addition and removal 
for Multi-level Boolean Optimization 
[Cheng et.al. TCAD 1995] 
1.  Given a target wire, perform its mandatory assignments (MA) 

for its corresponding s-a fault 

2.  For each gate gm in the set of MA, 
For each dominator gd, test the fault on the added wire (gm à gd) 

a.  If value(gm) = 0 and gd is an AND è direct connection 
b.  If value(gm) = 1 and gd is an AND è add an inverter 
c.  If value(gm) = 0 and gd is an OR è add an inverter 
d.  If value(gm) = 1 and gd is an OR è direct connection 

3.  If the fault on the added wire in 2.a ~ 2.d is untestable, 
è the added wire is redundant and can be an alternative wire 
to remove the target wire 



178 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Is (!g1 ! g8) redundant? 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-0 

0 

0 

0 

0 
0 

0 

0 

1 

1 

0 

0 

No, (!g1 ! g8) is NOT redundant 

1/0 

1/0 

X 
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Is (g5 ! g9) redundant? 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-1 

1 

0 

1 

0 0 

0 

0 

1 

1 

1 

Yes, (g5 ! g9) is redundant 
1 

0 
1 

X 

We can remove g6 and then g7 
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RAMBO Algorithm Complexity 

u  Need to perform (M * D) redundancy tests 
l  M: number of gates in MA 
l  D: number of dominators 
è Could be a BIG number 
 

u  “Perturb and Simplify”  (Chang, et. al. TCAD 1996) 

l  Propose several rules to filter out 
impossible candidates 
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In short, given a target wire, it is easy to add a 
wire to its dominator to make this wire 
redundant. 

 
The problem is, need to make sure the added 

wire is redundant. This may require a large 
number of fault tests. 

 
So, can we deliberately add something to a 

circuit, and guarantee that it is redundant? 
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How do we add “something” to a circuit and 
guarantee it is redundant? 
u   Add a wire 

u  Add a gate 
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Creating a Redundant Wire 

u  e.g. Add to the input of an AND gate gd 
1.  Test the output s-a-0 fault of this AND gate 
2.  Perform MA of this fault 

3.  For each gate gs in the MA, there is a 
corresponding redundant wire (or with inverter) 
to gd 

gs 

X 
s-a-0 

1 

1 

1 
1 

Why?? 

gd 
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A Two-Way Redundancy Addition and 
Removal (2-Way RAR) Algorithm 
1.  Given a target wire on gt, perform MA(gt) 

l  Adding a wire from a gate gs in MA(gt) to any of its dominator gd 
can make this target wire redundant 

l  e.g. value(gs) = 0 à AND gate gd 

X 
s-a-1 

1 
1 

1 

gs 
0 

gd 

gt 
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2-Way RAR Algorithm 

1.  Given a target wire on gt, perform MA(gt) 
l  Adding a wire from a gate gs in MA(gt) to any of its dominator gd 

can make this target wire redundant 
l  e.g. value(gs) = 0 à AND gate gd 

2.  Given a destination gate gd(dominator of the target wire gt), 
perform MA(gd) 

l  Any wire from a gate gs in MA(gd) to this gate gd can be 
redundant 

l  e.g. value(gs) = 1 à AND gate gd 
 
 
 
 
 
  

X 
s-a-0 

1 

gs 
1 

gd 

gt 

1 
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RAR Example (wt: g6 ! g7) 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X 
s-a-1 

0 
0 

0 

0
0 

0 

0 

1 1 
1 

1 

1. MA of wt : g6 ! g7 s-a-1 
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RAR Example (wt: g6 ! g7) 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0 
1 

1 

1 

2. Try MA of gd : g9 s-a-0 

1 

1 

1

difference alternative wire 

1 
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2-Way RAR Algorithm 

1.  Given a target wire on gt, perform MA(gt) 
2.  Given a destination gate gd(dominator of 

the target wire gt), perform MA(gd) 
3.  Perform intersection on (1) & (2) 
4.  Any contradiction on a gate gs, implies an 

alternative wire (gs à gd) for the target wire 
on gt 
l  Can be generalized for adding a gate or 

adding a sub-circuit 
 

[ref: Huang ISPD 1998] 
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Creating a Redundant Gate (1)

u  Refresh “add a redundant wire”: 
e.g. Add to the input of an AND gate gd 
1.  Test the output s-a-0 fault of this  

AND gate 
2.  Perform MA of this fault 
3.  For each gate gs in the MA, there is a corresponding 

redundant wire (or with inverter) to gd 

u  How about adding a redundant gate? 
 è Test the output s-a-1 fault of an AND gate? 

  

gs 

X 
s-a-0 1 

1 
1 

1 

gd 

gs 

X 
s-a-1 

1 0 

gd 0 



190 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Creating a Redundant Gate (2)

gs1 
1 

X 
s-a-0 1 

1 
1 

gd 

gs2 
1 

gs 

X 
s-a-0 1 

1 
1 

gd 

gs1 

gs2 

How? 
Can it be a Boolean network? 
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2-Way RAR Algorithm

u  Pros 
l  No need to perform (M*D) redundancy test as in 

RAMBO 
l  Potential orders of speed-up 

u  Cons 
l  Only connect to dominators? 

 (Can we connect to fanins of dominators?) 
l  Still need to try for each dominator 
l  MA on target wire may NOT intersect with MA on 

dominators 
 è Or just find some trivial alternative wires (e.g. 
DeMorgan Law) 

è Methods to deriving more MAs (e.g. Recursive learning) are 
often used (but could be expensive) 

è How can we increase the number of MAs? 
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A closer look at the previous 
example 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0 
1 

1 

1 

1 

1 

1

difference alternative wire 

1 

g9,1 g8,1 

f,1 

g6,1 

b,1 
g5,1 

level-1 recursive learning 

level-2 recursive 
learning 
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SAT-Controlled RAR (SatRAR) [Huang, ASPDAC 2009] 

u  Problems with previous RAR techniques 
l  RAMBO: too many redundancy tests 
l  2-Way RAR: expensive implication technique 

needed 
u  SAT-controlled RAR 

l  NOT just take the advantage of the advancements 
from the modern SAT solvers (covered later) 
§  Efficient BCP, conflict-driven learning, etc 

l  A seamless integration of SAT and RAR algorithms 
l  Extensions for general RAR 

§  Alternative wire, gate, sub-circuit identification 
l  Options to “control” the RAR optimization quality 
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Single Wire Replacement Theorem in 
SatRAR 

u  Let MA(wt) and MA(gd) be the mandatory 
assignments for the fault tests of the target wire wt 
and its dominator gd, respectively.  

u  Let <gs, v> belong to MA(wt) but not MA(gd), and 
gs be not in the fanout cone of gd.  

u  If we make a decision <gs, v> on top of MA(gd) 
and encounter a conflict, then  
(i) MA(gd) ⇒ <gs, ¬v>  
(ii) (gs! gd) or (gs!◦ gd) must be a valid alternative 

wire for wt 
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Single Wire Replacement in SatRAR 

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0 
1 

1 

1 

MA(wt = g6) =  
{ (g6, 0), (g2, 0), (d, 0), (g1, 0), 
  (g4, 0), (g5, 0), (g3, 1), (a, 1), 
  (b, 1), (f, 1) } 

0 

0 

0 

0 

1 

1 

1 1 
1 

1 

1 
1 

wt 

decision valid alternative wire 
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A closer look... 

MA
(wt) 

a MA
(gd) 

a 

wt 

gd 

MA(wt) ! (g5 = 0) MA(gd) ! (g5 = 1) 

a 

conflict g5 = 0 

g5 = 0 
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SRAR-Wire vs. 2-Way RAR 

u  Similarity 
l  Based on the conflicting implications between 

MA(wt) and MA(gd) 
u  Difference 

l  SAT decision (conflict-driven leanring) vs. 
Recursive learning 

e

f

d

b

c

0

a
w  Recursive learning: 
f = 0 ⇒ d = 0 or e = 0 
        ⇒ { a=0, b=0 } or { b=0, c=0 } 
        ⇒ b = 0 (Cannot be

 recorded) •  Conflict-driven learning: 
     f = 0; decision b = 1 results in 
conflict 
" f = 0 ⇒ b = 0 (Recorded!!) 
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SRAR-Wire vs. Original RAMBO (FYI) 
u  Similarity (looks like...) 

l  For each assignment gs in { MA(wt) - MA(gd) }... vs.  
 For each assignment gs in MA(wt)...   

u  Difference 
l  Incremental SAT vs. Independent redundancy tests 

u  Incremental SAT in SatRAR 
l  MA(gs) is performed on top of MA(gd) 

§  Sharing of different MA(gdi) 
l  Conflict-driven learning 

§  Learning & RAR at the same time 
l  Implication filter 

§  Reduce #decisions 
l  More importantly, can be extended for alternative gate/

sub-circuit replacements 
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Single Gate Replacement Theorem in 
SatRAR 

u  Let MA(wt) and MA(gd) be the mandatory 
assignments for the fault tests of the target wire wt 
and its dominator gd, respectively.  

u  Let both <gs, u> and <gt, v> belong to MA(wt), 
and be not in the fanout cone of gd.  

u  Suppose we make the decision <gs, u> after 
MA(gd) and result in an implication <gt, ¬v>.  

u  Let a gate gn = AND(<gs, u>, <gt, v>). Then  
(i) MA(gd) ⇒ ¬ gn, 
(ii) gn or ¬ gn, when connected to gd, must be a valid 

alternative gate for wt  
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Single Gate Replacement in SatRAR 

c 

g1 b 
d 

g4 

g3 a 
b 

g7 
d

f 

g
9 

o2 
0 g2 e 

¬c 

1 

g6 
g8 

gd s-a-0 
1 1 

1 

1 

1 
0 

0 

1 
1 1 

1 

0 

0 

* MA(g6) = { (g6, 0), (g2, 0), (d, 0), (g1, 
0), (g4, 0), (g3, 1), (a, 1), (b, 1),  (f, 1) } 

MA(g9=
1)  

g1 = 0  
g2 = 

1  

MA(g6) ! (g1, 0) ∧ (g2, 0) 

MA(g9) ! (g1, 1) ∨ (g2, 1) 

wt 

decision 
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Single Gate Replacement in SatRAR 

MA(g6) ! (g1, 0) ∧ (g2, 0) 

c 

g1 b 
d 

g4 

g3 a 
b 

g7 
d

f 

g
9 

o2 
0 g2 e 

¬c 

1 

g6 
g8 

gd s-a-0 
1 1 

1 

1 

1 
0 

0 

1 
1 1 

1 

0 

0 
MA(g9) ! (g1, 1) ∨ (g2, 1) 

wt 

gn alternative gate 

Let gn = ¬ ((g1, 0) ∧ (g2, 0)) 
          = (g1, 1) ∨ (g2, 1) 
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Alternative Sub-circuit by SatRAR 

MA
(wt) 

a MA
(gd) 

a 

wt 

gd 

a 
b

¬c ¬b c 

MA(wt) ! a ∧ (b ∨ c) MA(gd) ! ¬ (a ∧ (b ∨ c)) 

c

¬b 
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What can/should be covered in this
 topic?	
u  SAT-based logic synthesis 

l  Redundancy addition and removal 
l  Functional dependency 
l  SAT-based re-synthesis techniques 
l  Engineering Change Order (ECO) 

u  From SAT to optimization problems 
l  Pseudo Boolean satisfiability/optimization problems 

u  General SAT-based model checking algorithms 
u  Quantified Boolean Formula (QBF) 
u  Bit-vector/Arithmetic solver 
u  Satisfiability Modulo Theories (SMT)	
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Optimization problems? Finding all solutions 
of a SAT instance?  
u  It seems that with learning techniques (e.g. blocking 

clauses, success-driven learning), we can find all 
the solutions of a SAT problem 

u  With a (target) cost function, can SAT be used for 
optimization problems? 
l  minimize(or maximize)   f(x); 

 subject to                  X = { x | gi(x)  ≥ bi,   i = 1...m }; 
 where 
§  x = (x1,..., xn)  are optimization (or decision) variables, 
§  f(x) is the objective function, and 
§  gi(x) and bi form the constraints for the valid values of x. 

è Find an assignment A ∈ X such that f(A) is min(Max) 
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A Brute Force Approach 
SatOpt(C, F) { 
  Let bestCost = INT_MAX; 
  while (SAT(C) has a solution A) { 
    if (F(A) < bestCost) { 
      bestScore = F(A); 
      bestAssign = A; 
    } 
    // adding blocking clause 
    C # C ∧ ¬A; 
  } 
} 
 
" Number of solutions for SAT(C) may be huge!! 
" Any better approach? 
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A Better Approach 
SatOpt(C, F) { 
  Let bestCost = INT_MAX; 
  while (SAT(C) has a solution A) { 
    if (F(A) < bestCost) { 
      bestScore = F(A); 
      bestAssign = A; 
    } 
    // adding new constraint 
    C # C ∧ (F < bestScore); 
  } 
} 
 
" Excluding all “F ≥ bestScore” solutions at a time 
" But how to transform the inequality “F < bestScore” to CNF ? 
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Using SAT to solve optimization problems 

u  In the following, we will learn --- 
1.  Pseudo Boolean (PB) optimization 

problems 
2.  How to transform a PB optimization into a 

SAT problem 
3.  SAT vs. PB learning 
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Using SAT as a Pseudo-Boolean Constraint 
Solver 
u  A Pseudo Boolean (PB) constraint is an inequality 

on a linear combination of Boolean variables 
l  PB: c0x0 + c1x1 + ... + cn-1xn-1 ≥ k 

 where ci is an integer, xi∈ {0, 1} 
l  A PB constraint is said to be satisfied if the 

LHS of the PB is greater or equal to k 
l  Many problems are more naturally expressed 

in PB format!! 
u  PB SAT/OPT problem 

l  Given a set of PB constraints 
l  Given a target function of the form: 

a0x0 + a1x1 + ... + an-1xn-1  
è Find an assignment that satisfies all the PB 

constraints and minimizes the target function 
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Normalization of PB Constraints 

u  Normal form for PB constraints? 
l  Usually many syntactically different, yet 

semantically equivalent, constraints 
§  e.g. 4x + 3y - 3z ≥ -1 and y + ¬z + x ≥ 1 
§ Difficult to prove their equivalence 

l  No known good method to canonicalize the PB 
constraints 

u  But, try to apply some normalization steps --- 
l  Simplifies the implementation by giving fewer 

cases to handle 
l  May reduce some constraints and make the 

subsequent translation more efficient. 
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Normalization Steps in miniSat+ 

1.  ≤ constraints are changed into ≥ constraints 
by negating all constants. 

2.   Negative coefficients are eliminated by 
changing x into ¬x and updating the RHS. 

3.   Multiple occurrences of the same variable 
are merged into one term x or ¬x : 

4.   The coefficients are sorted in ascending 
order: ai ≤ aj if i < j. 

5.   Trivially satisfied constraints, such as “x + y 
≥ 0” are removed 
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Normalization Steps in miniSat+ 

6.  Trivially unsatisfied constraints (“x + y ≥ 3”) 
will abort the parsing and report 
Unsatisfiable. 

7.   Coefficients greater than the RHS are 
trimmed to (replaced with) the RHS. 

8.   The coefficients of the LHS are divided by 
their greatest common divisor (“gcd”). 

9.  The RHS is replaced by “RHS/gcd”, 
rounded upwards 
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Normalization Example

u   4x + 3y - 3z ≥ -1 
è 4x + 3y + 3¬z ≥ 2 (positive coefficients) 
è 3y + 3¬z + 4x ≥ 2 (sorting) 
è 2y + 2¬z + 2x ≥ 2 (trimming) 
è y + ¬z + x ≥ 1       (gcd) 
(note: ¬z = 1 - z) 
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More Preprocessing on PB Constraints 

u  Trivial constraint propagation 
l  e.g.  

 “3x + y + z ≥ 4” è x must be “TRUE”  (why?) 
 

u  Constraint splitting 
l  e.g. 

4x1 + 4x2 + 4x3 + 4x4 + 2y1 + y2 + y3 ≥ 4 
è x1 + x2 + x3 + x4 + ¬z ≥ 1   (clause part) 

  2y1 + y2 + y3 + 4z ≥ 4          (PB part) 
  ,where z is a new variable not present in any PB 
 (what does z mean?) 
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Optimization Procedure 
Given a set of PB constraints and a target function --- 
1.  First run the solver on the set of constraints 

( without considering the objective function ) to 
get an initial solution F(x0) = k. 
l  How? DPLL? LP relaxation? (Covered later) 

2.  Then add the PB constraint F(x) < k and run 
again 

3.  Run until no more solution in 2 is possible 

è What’s the difference between this and the SAT 
brute-force approach shown earlier? 

è Solve as a PB problem, or as a SAT problem? 
è How to use SAT to solve PB constraints? 
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Using SAT to solve optimization problems 

u  In the following, we will learn --- 
1.  Pseudo Boolean (PB) optimization 

problems 
2.  How to transform a PB optimization into a 

SAT problem 
3.  SAT vs. PB learning 
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Translating PB Constraints to CNF 
u  Converting PB constraints into circuit netlist first!! 

 How? (e.g. miniSat+) 
1.  BDD 
2.  Adder network 
3.  Sorter network 

u  Basic step: the Tseitin transformation 
l  ITE(s, t, f ) 

§  (~s+~t+ x)(~s+ t+~x) (s+~f+ x) (s+ f+~x) (~t+~f+ x) (t+ f+~x) 
l  FA_sum( a, b, c ): as XOR( a, b, c ) 
l  FA_carry( a, b, c ): as a + b + c ≥ 2 
l  HA_sum: as XOR 
l  HA_carry: as AND 
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Translation of PB-constraint ( BDD ) 

u  Variable order: 
l  Largest coefficient to the smallest. 

u  Once the BDD is built, it can simply be 
treated as a circuit of ITEs and translated to 
clauses by the Tseitin transformation. 
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1. BDD Translation of  
a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8 
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Translation of PB-constraint ( BDD ) 

u  Transform every BDD node by a 
ITE gate, with worst case 
exponential. 

u  But for cardinality linear  
 PBCs, linear size BDDs 
 is constructed, so it is  
 very efficient.  
 eg. BDD for a+b+c+d+e+f ≧3 
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2. Adder Translation of  
2a + 13b + 2c + 11d + 13e + 6f + 7g + 15h ≥ 12 

" Generate a binary sum and then compare with the RHS (12) 



221 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

Translation of PB-constraint ( Adder ) 

u  For each bit (bucket), 
an adder network is 
established. 
 eg.  
Adder circuit for x0+…+x5 
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3. Sorter Translation of 
 a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8 

" Base of 3 representation (above example) 
" A comparison network with RHS is then constructed 

(LHS ≥ 9) ∨ ((LHS ≥ 6) ∧ (LHS % 3 ≥ 2)) 
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Translation of PB-constraint ( Sorter ) 

u  Basic operator 

u  Odd-even merge sorter 

Sort 
(f ≤ g) 

a 
b 

f 
g How? 
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SAT-based approach issue: arc-consistency 

u  Whenever the original constraint C(X) get 
an implication, the translation Φ(X, T) will 
get the same implication. 
l  X: original variables 
l  T: introduced variables 

u  Then we say that the translation is arc-
consistency 
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e.g. Adder network has no arc-consistency 

u  x0 + x1 + x2 + x3 + x4 + 
x5 ≥ 4 

u  x0 = 0 and x3 = 0 
 è All other variables = 1 
 è Cannot be derived 
from the adder network 
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Arc Consistency and Complexity Analysis 

u  BDD 
l  Arc-consistency 
l  #clauses: worst case exponential, but linear 

when the PBC is cardinality. 
u  Adder 

l  Not arc-consistency 
l  Weaker implicativity 
l  O(n) clause size complexity 

u  Sorter 
l  Not arc-consistency 
l  Stronger implicativity 
l  O(n log2n) clause size complexity 
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We have seen how to translate a 
PBC problem into a SAT one. 

èThere may be some overhead 
and drawbacks... 

 
How about solving PBC on PB 

data structure? 
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PBC solver 

u  Traditionally, PB (or in general ILP) constraint 
satisfaction/optimization problem can be solved by 
linear programming relaxation... 
è Common approach for ILP problems 
è Cutting plane / branch and cut / lift and cut... etc 

integr
al

 point 

linear
 inequality 

non-integral
 optimal
 solution 

cutting plane 
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Valid Inequality 

u  Given a integer program: 
max{ cx: x ∈ X }, where X = { x: Ax ≤ b, x ∈ Z+ } 
è An inequality πx ≤ π0 is called a “valid 

inequality” if πx ≤ π0 for all x ∈ X. 

integral
 point 

linear
 inequality 

which ones are
 valid inequalities? 
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Chvátal-Gomory procedure

u  Chvátal-Gomory procedure to construct a 
valid inequality 
Given X = { x: Ax ≤ b, x ∈ Z+ } 
1.  Let u be a row vector with  

 nonnegative coefficients 
è uAx ≤ ub is a valid inequlity 
(i.e. linear combination) 

2.  The inequality ⎣uAx⎦ ≤ ⎣ub⎦  
 is also valid 
(also called: lifting) 
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Chvátal-Gomory procedure example

u  Ax ≤ b --- 
 7x1 - 2x2 ≤ 14 
           x2 ≤ 3 
 2x1 - 2x2 ≤ 3 

1.  Multiply u = ( 2/7, 37/63, 0) 
è uAx = 2x1 + 1/63 x2 ≤ 121/21 = ub 

2.  Applying “floor” function on the inequality 
è 2x1 + 0x2 ≤ 5 
è x1 ≤ 5/2 
è x1 ≤ 2 
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Cutting Plane Algorithms

1.  Using LP relaxation to find an optimal solution 
l  e.g. Simplex 
l  If the solution is integral, done. 

2.  Using cutting plane algorithms to find a (set 
of ) valid inequality(ies) 

3.  Adding the valid inequalities to the constraints 
l  Perhaps with some simplification (e.g. 

removing redundant inequlities) 
4.  Repeat 1 
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Cutting Plane Algorithms

u  There are many other types of cuts 
l  0-1 Knapsack, odd hole, lift and project,... 
è More to be covered in “Discrete 

Optimization” class 

u  How efficient are these algorithms for PB 
problem? (i.e. 0-1 ILP problem) 
l  How many iterations? 
l  DPLL (Branch-and-bound) for PB problem? 
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FYI: Branch-and-Cut for ILP problems 

maximize     f: 12x + 7y 
subject to    g1: 2x – 3y ≤ 6 

      g2: 7x + 4y ≤ 28 
      g3: -x + y ≤ 2 
      g4: -2x – y ≤ 2 

where x, y ∈ Z 

x 

y 

g1 

g2 

g3 g4 

f = k 
C 

p1 
p2 
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FYI: Branch-and-Cut for ILP problems

But PB is 0-1 ILP. Any better algorithm? 

x = 108/29 
y = 14/29 x ≤ 3 

x = 3 
y = 7/4 y ≥ 2 

x = 20/7 
y = 2 x ≤ 2 

x = 2 
y = 7/2 y ≤ 3 

x = 2 
y = 3 f = 45 

x = 3 
y = 1 f = 43 

infeasible 

infeasible 
infeasible 

Branch-and-bound 

However, #decisions can be exponential...  
Branch-and-cut = branch-and-bound + cutting plane 
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Compare: DPLL and new SAT algorithms 

u  What make the modern DPLL-based SAT 
solvers efficient --- 

1.  Efficient BCP 

2.  Conflict-driven learning with non-
chronological backtracking 

3.  Clause/Circuit reduction/simplification 

Can PB solvers have the counterparts? 
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Let’s summarize the types of PB solvers 
first... 
1.  Pure SAT-based method 

l  Converting PB constraints to CNF 
l  e.g. miniSat+ 

2.  ILP-based 
l  Cutting plane, branch and cut, etc. 
l  e.g. CPLEX 

3.  Hybrid method (SAT + ILP) 
l  e.g.  
1.  Donald Chai and Andreas Kuehlmann, “A Fast 

Pseudo-Boolean Constraint Solver”, TCAD 2005 
2.  Hossein M. Sheini and Karem A. Sakallah, 

“Pueblo: A Hybrid Pseudo-Boolean SAT Solver”, 
JSAT 2006 
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Hybrid PB Solver Algorithm 

While (MakeDecision() != done) { 
   while (PBCP() == conflict) { 
      CNF_Learning(); 
      PB_Learning(); 
      if (learning.conflict()) 
         return UNSAT; 
   } 
} 
return SAT; 
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Pseudo Boolean Constraint Propagation 
(PBCP)  

u  Let the PB constraint be normalized so that: 
l  a1x1 + a2x2 + ... + anxn ≥ k, where ai, k ∈ Z+, xi ∈ B 
l  Let α = Σ(xi != 0)ai ......... coefficients of non-zero terms 

u  Let s denote the slack of a constraint that 
l  s = α -  k 
l  If s < 0 è UNSAT 

u  To make sure no conflict 
l  α ≥ k, i.e. s ≥ 0 

u  An indirect implication is generated if --- 
l  s = (α-k) < amax, where amax = max unassigned literal 
è xi|amax = 1 
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Pseudo Boolean Constraint Propagation 
(PBCP)
u  Example:  

 6x1 + 5x2 + 5x3 + 3x4 + 2x5 + 2x6 + x7 ≥ 12 
l  s = 24 - 12 > 0 

u  Assign: x3 = 0, x4 = 0 
l  α = 16 ≥ 12  è no conflict 

u  However --- 
l  s = (16 - 12) < 6, where amax = a1 = 6 
è Indirect implication x1 = 1 

u  Then --- 
l  s = (16 - 12) < 5, where amax = a2 = 5 

è Indirect implication x2 = 1 
è Multiple implications are inferred 
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Watch Scheme for PBCP 
u  Can we do “watch” for PBCP? 
u  Dynamic watch 

l  Let Lw be a set of watch literals such that 
l  Every literal in Lw is non-negative (1 or x) 
l  Σ(xi ∈ Lw)ai = αw ≥ k + amax 
è However, since αw will change along with 

implications, Lw needs to be updated and thus 
the number of watch literals will also change 

u  All watch 
l  Watch all literals 

u  Static watch (ref: QuteSat) 
l  A conservative but more efficient than all and 

dynamic watches 
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Conflict-Driven Learning

u  How to perform conflict-driven learning for PB? 
l  Learn a clause or an inequality? 

u  The bottom line is, any learned constraint must 
exhibit the following properties: 

1.  The learned constraint must remain in conflict 
under the current partial assignment. 
l  This ensures that we backtrack from the conflict 

2.  After backtracking from the conflict, there must 
exist some decision level at which the constraint 
will generate one or more implications for the 
respective partial assignments 
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Problematic Conflict Driven Learning 
u  3x1 + 2x2 + x7 + 2x8 ≥ 3   (a) 

 3x1 + x3 + x5 + x9 ≥ 3   (b) 
 x2 + x3 + x6 ≥ 2    (c) 

u  Assume 
l  x8 ß 1 @ some previous decision level 
l  x6 ß 0 @ current decision level 

u  Implication graph 

u   Deriving learned constraint 
  (d) 2x2 + x7 + 2x8 + x3 + x5 + x9 ≥ 3    (a)+(b)  // remove x1 
  (e) x2 + x7 + 2x8 + x5 + x9 + x6 ≥ 3      (d)+(c)  // remove x3 
  (f)  x3 + x7 + 2x8 + x5 + x9 + 2x6 ≥ 4    (e)+(c)  // remove x2 
è Does not conflict with (x8 = 1, x6 = 0) 

x8 = 1 

x6 = 0 x2 = 0 x3 = 0 x1 = 0 x1 = 1 c 

c 

b 

a 
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A closer look... 

u  Deriving learned constraint 
  (a) 3x1 + 2x2 + x7 + 2x8 ≥ 3 
  (b) 3x1 + x3 + x5 + x9 ≥ 3 

slack  (c) x2 + x3 + x6 ≥ 2 
   0 (d) 2x2 + x7 + 2x8 + x3 + x5 + x9 ≥ 3  // (a)+(b) 
   0 (e) x2 + x7 + 2x8 + x5 + x9 + x6 ≥ 3  // (d)+(c) 
   0  (f)  x3 + x7 + 2x8 + x5 + x9 + 2x6 ≥ 4  // (e)+(c) 

è Remember, if slack ≥ 0, no conflict!! 

è Over satisfied!! 

è Need to “weaken” the PB constraint!! 
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Weakening the PB constraints 

  (a) 3x1 + 2x2 + x7 + 2x8 ≥ 3 
  (b) 3x1 + x3 + x5 + x9 ≥ 3 
  è Removing non-0 literal  // (b) + “x9 ≥ 0” 
  è 3x1 + x3 + x5 ≥ 2 
  è Saturating x1 
  (b’) 2x1 + x3 + x5 ≥ 2 

slack  (c) x2 + x3 + x6 ≥ 2 
  -1 (d) 4x2 + 2x7 + 4x8 + 3x3 + 3x5 ≥ 6   // 2(a)+3(b’) 
  -1 (e) x2 + 2x7 + 4x8 + 3x5 + 3x6 ≥ 6     // (d)+3(c) 
  -1 (f)  x3 + 2x7 + 4x8 + 3x5 + 4x6 ≥ 7     // (e)+(c) 

 è Maintain conflict with (x8 = 1, x6 = 0)!!
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Conflict-Driven Learning 

1.  CNF learning 
l  In the previous 

 example, we can learn a CNF clause (x8 + x6) by 
traversing on the implication graph 
 è Does not depend on the resolutions on the PB 
constraints 

l  Similar to SAT by --- 
§  Record the implication sources in PBCP 
§  Backtrack to the UIP and learn a clause 

2.  PB learning 
l  By applying resolutions and weakening on the PB 

constraints 

x8 = 1 

x6 = 0 x2 = 0 x3 = 0 x1 = 0 x1 = 1 
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Learning CNF and PB constraints simultaneously 

source: “Pueblo”, JSAT 2006 
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Summary on PB Solver 

u  Many applications can be modeled as PB (0-1 
ILP) problems 
l  Logic optimization, verification, routing, operational 

research (OR), etc. 
u  Great attention on research these years 

l  e.g. PB Evaluation: 
 http://www.cril.univ-artois.fr/PB09/ 

u  To be combined with word-level arithmetic, first-
order logic, theorem proving,... techniques 
l  SMT: Satisfiability Modulo Theory 
l  e.g. SMT Competition: 

 http://www.csl.sri.com/users/demoura/smt-comp/  
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Summary of SAT and Its Applications	

u  Remember: SAT is to answer the satisfiability
 problem of a proposition. Don’t use it (directly)
 to compute all the solutions, nor to represent
 a Boolean formula (e.g. the set of reachability) 

u  The spirits of SAT solving are: 
l  Local/greedy search 
l  Conflict earlier, the better 
l  Learn from the past 
l  Lazy evaluation 
l  Simplify from learned model 
l  Profiling-based is the trend. Big data? (Haha)



250 FLOLAC 2015      SAT and Its Applications          Prof. Chung-Yang (Ric) Huang 

To contact me…	

u  Any question? Please feel free to contact
 me… 
l  Office: EE-II 444 
l  E-mail: cyhuang@ntu.edu.tw 
l  Tel: 02-3366-3644 
l  Easiest ways to find me… 

 ric2k1 on almost major media  
    (PTT, P2, Skype FB, Line, WeChat…)


