
Boolean Satisfiability
and Its Applications

FLOLAC 2015
Chung-Yang (Ric) Huang/NTU

2015.07.08/09

2 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT)
u  Techniques to improve SAT solving
u  Circuit-based SAT algorithms
u  SAT-based (hardware) verification

l  Bounded model checking (BMC)
l  Inductive proof
l  SAT-based abstraction and refinement
l  Interpolation-based method
l  Property-directed reachability

3 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  SAT-based logic synthesis

l  Redundancy addition and removal
l  Functional dependency
l  SAT-based re-synthesis techniques
l  Engineering Change Order (ECO)

u  From SAT to optimization problems
l  Pseudo Boolean satisfiability/optimization problems

u  General SAT-based model checking algorithms
u  Quantified Boolean Formula (QBF)
u  Bit-vector/Arithmetic solver
u  Satisfiability Modulo Theories (SMT)	

4 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT)
u  Techniques to improve SAT solving
u  Circuit-based SAT algorithms
u  SAT-based (hardware) verification

l  Bounded model checking (BMC)
l  Inductive proof
l  SAT-based abstraction and refinement
l  Interpolation-based method
l  Property-directed reachability

5 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  SAT-based logic synthesis

l  Redundancy addition and removal
l  Functional dependency
l  SAT-based re-synthesis techniques
l  Engineering Change Order (ECO)

u  From SAT to optimization problems
l  Pseudo Boolean satisfiability/optimization problems

u  General SAT-based model checking algorithms
u  Quantified Boolean Formula (QBF)
u  Bit-vector/Arithmetic solver
u  Satisfiability Modulo Theories (SMT)	

6 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Introduction to Boolean Satisfiability (SAT)

A fundamental problem in computer science

u  Given a Boolean network F: Bn à B,
where B = { 0, 1 }, and
 n is the number of inputs I = { x1, x2,... , xn }

u  Boolean Satisfiability
è Finding an input assignment

A: { x1 = a1, x2 = a2,... , xn = an | ai ∈ B }

such that F = 1.

u  Exponential complexity...?

7 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Complexity of SAT solver

u  Boolean Satisfiability (SAT) was the first proven
NP-complete problem by Dr. S. Cook in 1971
l  Given n variables, the number of decisions can be

as many as 2n...
l  If there is a non-deterministic machine, we can

construct a polynomial-time algorithm that can
guarantee to prove/disprove the SAT problem

[Pitfall?] Unless there is a non-deterministic machine,
we cannot construct a polynomial-time SAT
algorithm

è How can SAT be useable for million-gate designs?

8 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Boolean Satisfiability Solvers

u  Boolean SAT solvers have been very successful recent
years in the verification area
l  More research / popular than BDDs
l  Applications

§  Equivalence checking, property checking, synthesis, etc
l  Applicable even on million-gate designs
l  For both combinational and sequential problems
è However, SAT is intrinsically a

“combinational” (propositional) solver

u  There are many advanced Boolean SAT algorithms
l  We will cover them gradually in the following lecture notes

u  Many many SAT solvers
l  glucose, precosat, miniSat, zChaff, BerkMin, Csat, Grasp,

SATO,... etc.
l  http://www.satcompetition.org/

9 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Types of Boolean Satisfiability Solvers
1.  Conjunctive Normal Form (CNF) Based

l  Boolean function is represented as a CNF (i.e.
Product of Sum, POS format)

l  e.g.

l  To be satisfied, all the clauses should be ‘1’

2.  Circuit-Based
l  Boolean function is represented as a circuit netlist
l  SAT algorithm is directly operated on the netlist

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables Literals Clauses

10 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

CNF vs. Circuit SAT

u  Although CNF and circuit SAT solvers look quite
different, their algorithms can be very similar

u  CNF SAT
l  Simpler data structure; easier to implement

u  Circuit SAT
l  Structural information; extensible to word-level

è In the following slides, we will focus on the easier-
to-implement solver, CNF SAT, only.

11 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

CNF-Based SAT Algorithm
1.  Davis, Putnam, 1960

l  Explicit resolution based
l  May explode in memory

2.  Davis, Logemann, Loveland, (DLL) 1962
l  Search based.
l  Most successful, basis for almost all modern SAT solvers
l  Learning and non-chronological backtracking, 1996

3.  Stålmarcks algorithm, 1980s
l  Proprietary algorithm. Patented.
l  Commercial versions available

4.  Stochastic Methods, 1992
l  Unable to prove unsatisfiability, but may find solutions for a

satisfying problem quickly.
l  Local search and hill climbing

12 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

+ f

Resolution

a + b + g + h’

u Resolution of a pair of clauses with exactly ONE
incompatible variable
l  Two clauses are said to have distance 1
l  C1∧ C2 à C3 or C3 à C1∧ C2 ?
l  Existential quantification?

a + b + c’ + f g + h’ + c + f

Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

13 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

(a + b) (a + b’) (a’ + c) (a’ + c’)

Davis Putnam Algorithm

(a + b + c) (b + c’ + f) (b’ + e)

(a + c + e) (c’ + e + f)

(a + e + f)

(a’ + c) (a’ + c’)

(c) (c’)

() SAT

Sol: {a=1, e=1, f=1} UNSAT

(a)

Potential memory explosion problem!
Souce: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

 M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960 (360 citations in citeseer)

u  Existential abstraction using resolution
u  Iteratively select a variable for resolution till no more variables are

left.

14 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Boolean Satisfiability (SAT) Algorithm
1.  Davis, Putnam, 1960

l  Explicit resolution based
l  May explode in memory

2.  Davis, (Putnam), Logemann, Loveland, (D(P)LL) 1962
l  Search based.
l  Most successful, basis for almost all modern SAT solvers
l  Learning and non-chronological backtracking, 1996

3.  Stålmarcks algorithm, 1980s
l  Proprietary algorithm. Patented.
l  Commercial versions available

4.  Stochastic Methods, 1992
l  Unable to prove unsatisfiability, but may find solutions for a

satisfying problem quickly.
l  Local search and hill climbing

15 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 ⇐ Decision

⇐ Decision

⇐ Decision

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

16 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1 ⇐ Forced Decision

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

17 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

Implication Graph

1

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

18 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

⇐ Backtrack
1 ⇐ Forced Decision

c
0 ⇐ Decision

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

19 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

Implication Graph

1 ⇐ Forced Decision

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

20 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

⇐ Backtrack
1 ⇐ Forced Decision

b
0 ⇐ Decision

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!

Implication Graph

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

21 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

⇐ Backtrack

1

b
0 1 ⇐ Forced Decision

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

22 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Basic DLL Procedure - DFS

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0 1

1

c
0 1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

23 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Potentially exponential
complexity!!

Did you see any unnecessary

work?

24 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SAT Improvements

1.  Conflict-driven learning
l  Once we encounter a conflict

 è Figure out the cause(s) of this conflict
 and prevent to see this conflict again!!

25 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Learning

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!

Implication Graph

Conflict source

(a + c) Learned clause
Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

26 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SAT Improvements

2.  Non-chronological backtracking
l  Since we get a learned clause from the

conflict analysis…
 è Instead of backtracking 1 decision at a
time, backtrack to the “next-to-the-last”
variable in the learned clause

27 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Non-Chronological Backtracking

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

b
0

c
0

(a + c) Learned clause

•  ‘a’ is the next-to-the-last
variable in the learned clause

•  Backtrack c = 0 && b = 0

⇐ Backtrack

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

28 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Deduced Implication from Learned Clause

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

a
0

(a + c)
c=1 (a + c)

a=0
d=1

d=0
Conflict!

(a + c’ + d)

(a + c’ + d’)

Conflict source

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

29 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a) Learned clause

•  Since there is only one
variable in the learned clause

 à No one is the next-to-the-
last variable

•  Backtrack all decisions

30 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a)

a=1

b
0 ⇐ Decision

c=1

b=0

(a’ + b + c)

c=0
(a’ + b + c’)

Conflict!

Conflict source

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

31 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Deduced Implication from Learned Clause

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

(a + c)
(a) (b) Learned clause

a=1

b=1

c=1
(a’ + b’ + c)

d=1
(b’ + c’ + d)

⇐ SAT

Modified from: Prof. Sharad Malik, “The Quest for Efficient Boolean Satisfiability Solvers”

32 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What does conflict learning tell us?

a

b

a’

b’

b’

c c’

d d’ d’

Decision: a = 0
Decision: b = 0
Decision: c = 0

conflict!!
Learned: (a + c)

Backtrack: c = 0, b = 0
Implied: c = 1

Decision: b = 0
conflict!!

Learned: (a)
Implied: a = 1

Decision: b = 0
conflict!!

Learned: (b)
Implied: b = 1

Implied: c = 1, d = 1
SAT!!

33 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A Closer Look at the Implication Graph
(a conceptual implementation)
u  Implications are grouped into different decision levels

l  Level 0: target imp; constants
l  Level 1+: decisions

u  Node (gate, value): implications
u  Incoming edge(s) of a node: implication sources (reasons)

l  The nodes with no incoming edges are called “root
implication nodes”

l  There should only be ONE root implication node for each
decieion level >= 1 (which is the decision in that level)

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0

y, 0 g10, 0 g11, 0 0

1

for the example in p12.

34 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict Analysis
u  When we encounter a decision conflict, we

want to figure out the causes so that ---
1.  Try to avoid the same conflict
2.  Backtrack as many decisions as possible

g7, 0 a, 1 g3, 0 g4, 1 g1, 1 g8, 1 g9, 0

y, 0 g10, 0 g11, 0 0

1

d, 1 g2, 0 g5, 1 g6, 1 2 g6, 0
!!Conflict!!

35 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict Analysis

1.  Try to avoid the same conflict
l  Starting from the conflict implications (g = 0) & (g = 1),

backward trace their implication sources
l  (An informal explanation) Any cut in the implication graph

defines a set of conflict causes
l  Add a constraint for the conflict causes to prevent the

conflict from happening again

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1 c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1

2

3

36 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Learning

u  Add a constraint to prevent the same conflict
1.  b4 && c2 && c4’ = 0; è (b4’ + c2’ + c4)
2.  a && b’ && c’ = 0; è (a’ + b + c)
3.  b4 && a2 && b1’ && c1’ = 0; è (b4’ + a2’ + b1 + c1)

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1 c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1

2

3

37 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Which constraint is the best to add?

u  [Zhang, et al, ICCAD 2001] Experiment
shows that “first-UIP” (1st-UIP) is the best
l  UIP: Unique Implication Point

§  In a cut that there is only one node in the last
(where conflict happens) decision level
(why UIP cut?)

§ Starting from the conflict gate, the first
encountered UIP is namely first UIP

§  The cut with only decision nodes is called the
last-UIP

§  In the previous example, (2) is the last UIP, and
(3) is the first UIP

38 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Complexity to find
the first UIP?

conflictAnalysis(imp0Src, imp1Src) {
 int nMarked = 0;
 for_each_imp(imp, imp0Src)
 checkImp(imp, nMarked,conflictSrc);
 for_each_imp(imp, imp1Src)
 checkImp(imp, nMarked,

conflictSrc);
 for_each_imp_rev(imp, lastDLevel) {
 if (!imp.isMarked()) continue;
 if (--numMarked == 0) {// UIP found!!
 conflictSrc.push_back(imp);
 break; // ready to return
 }
 imp.unsetMark();

 for_each_imp_src(imp_src, imp) {
 checkImp(imp_src, nMarked,
 conflictSrc);
 }
 }
 for_each_imp(imp, conflictSrc)
 imp.unsetMark();
 return conflictSrc;
}

checkImp(imp, nMarked, conflictSrc) {
 if (imp.isMarked()) return;
 imp.setMark();
 if (!imp.isLastDecisionLevel())
 conflictSrc.push_back(imp);
 else ++numMarked;
}

39 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Linear-Time Algorithm to Find First UIP

u  Start from (g = 0), (g = 1) // #Marks = 2
u  Unmark (g = 1), mark (c2 = 1) // #Marks = 2
u  Unmark (g = 0), mark (c4 = 0), add (b4 = 1) // #Marks = 2
u  Unmark (c4 = 0), mark (c3 = 1), add (a2 = 1) // #Marks = 2
u  Unmark (c3 = 1), mark (c1 = 0) // #Marks = 2
u  Unmark (c2 = 1), add (b1 = 0) // #Marks = 1
u  Find first UIP: (c1=0), conflict sources: { (c1=0), (b1=0), (a1=0), (b4=1) }

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1 c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

40 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

UIP for Non-chronological Backtracking

u  Since in UIP cut there is only one node with the
last decision level…

u  And we add a constraint for the UIP cut

Decision level

0

1

2

3

4

b, 1 a, 1

c, 1

d, 1

Constraint
(a && b && c && d) = 0

(a && b && c) è d’

•  If we backtrack to the max
 decision level of { a, b, c }
1.  { a, b, c } still have the

 original implications
2.  d can be implied with the

 opposite value at the
 max level above

41 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Learning

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1 c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

1st-UIP Cut Learned implication
b1’ && a2 && b4 è c1

c1 = 1

42 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Non-Chronological
 Backtracking --- Algorithm

t

a

b

c

d

proof target
dLevel = 0

dLevel = 1

dLevel = 2

dLevel = 3

dLevel = 4

Conflict!!

Backtrack

t

a

b

e

Conflict!!

t Backtrack

f

g

t More
decisions

New implication

New
implication

How the SAT process
terminates?

43 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Non-Chronological
Backtracking --- Algorithm
1.  When conflict occurs, check if the conflict level ==

0 (implication level for the SAT target)
a)  If yes, return unsatisfiability (Why?)
b)  Else, continue to 2

2.  Find the 1st-UIP cut as the conflict causes
3.  Backtrack to the max decision level of the nodes

other than UIP in the cut
4.  The UIP gate will be implied with the opposite

value
5.  Perform the new implication
6.  If conflict, go to 1, else continue for the next

decision

44 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look at binary decision tree

In general, is non-chronological backtracking
safe?
l  May lead to SAT solution ealier
l  But some portion of the decision

 tree may not be covered
§  Not a complete search anymore
§  May also miss some bugs

è Difficult to record which branches
 haven’t been searched

a

b

c

d

d

1

1

1

0

1 0

0 1

X ?

0

45 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Non-Chronological
Backtracking --- Completeness

u  But with conflict-driven learning, SAT search is still
guaranteed to be complete

u  SAT search is not a binary decision tree
anymore…
l  Becomes a decision stack
l  Conflict

à Learned clause (gate)
 à Indicate where to backtrack
 à Learned implication

a

b

c

d

d

c

x

y

z

1

1

1 1

0

0

0

0

1 0

0 1 a

b

c

d

46 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Non-Chronological
Backtracking --- Completeness

u  Branch-and-bound algorithm for Constraint
Satisfaction Problem (CSP) becomes a
“constraint refinement process”

è Search region is gradually narrowed down

è At the end, either becomes empty, or finds
the solution !!

47 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Implication graph, resolution, and learning

(1): (c2’ + g)
(2): (b4’ + c4 + g’)
(3): (a2’ + c3’ + c4’)
(4): (c1 + c3)
(5): (b1 + c1 + c2)

a = 1

b = 0

c = 0

a = 1 a1 = 0 a2 = 1

b = 0 b1 = 0 b2 = 1

c = 0 c1 = 0 c2 = 1

a3 = 1

b3 = 0 b4 = 1

g = 1 c3 = 1 c4 = 0 g = 0

Decision level

1

2

3

3 1 2 4 5

(b4’ + c2’ + c4)
(a2’ + b4’ + c2’ + c3’)

(a2’ + b4’ + c1 + c2’)
(a2’ + b1 + b4’ + c1)

48 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The validity of learned information and
 incremental SAT	
u  Note that, learned clause is a resolution of

 clauses that are involved in the implication
 process.
l  As long as these clauses are still in the proof

 database, the learned information is always
 valid.

u  Incremental SAT
l  (For example) Proving two properties in a circuit

 --- the learned information obtained in proving
 one property can be reused in proving another.

l  (Challenge) What if some of the clauses or
 variables are deleted?

49 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Resolution Graph
u  A conflict is encountered

l  A learned clause is
generated

u  More conflicts are
resolved...

u  A conflict is encountered
in decision level 0
l  Problem is proven

UNSAT

Original clause

Temporary clause

Learned clause

NULL clause

Proof core

50 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Refutation / Proof Core of a SAT Problem

u  Remember: Resolution-based SAT?
l  A problem is proven UNSAT if the resolution steps end up in a

NULL clause
u  Refutation = a proof of the null clause

l  Also called “proof core” or “UNSAT core”
l  Record a DAG containing all resolution steps performed

during conflict clause generation.
l  When null clause is generated, we can extract a proof of the

null clause as a resolution DAG.

Original clauses

Derived clauses

Null clause

Proof Core

51 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT)
u  Techniques to improve SAT solving
u  Circuit-based SAT algorithms
u  SAT-based (hardware) verification

l  Bounded model checking (BMC)
l  Inductive proof
l  SAT-based abstraction and refinement
l  Interpolation-based method
l  Property-directed reachability

52 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What affect the SAT efficiency?

1.  Decision order

2.  Logic implication (Boolean Constraint
Propagation, BCP)

3.  Various learning techniques

4.  Database simplification

53 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Impact of Decision Ordering

u  Decision ordering: the order of gates that
the corresponding decisions are made

1.  Order of gates
2.  Decision values
è Good and bad decisions

 can lead to exponential
 difference
 (e.g. 210 vs. 250)

u  (Think) Does the decision value matter?

(i.e. should we decide on ‘1’ or ‘0’ first?)

a

b

c

d

c

d

b

c

d

1

1

1

1

0

0

0
0 1 0

54 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Static Decision Ordering
u  Decision order and values are pre-computed in the

beginning and remain unchanged
1.  Topological

l  Depth-first
l  Breadth-first
l  Guided by gate types

2.  Probability-based
l  Controllability / Observability
l  Signal probability
l  (Weighted) Random

3.  Influence-based
l  Literal count
l  #fanins / #fanouts
l  Influence of implications

55 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Dynamic Decision Ordering
u  Decision order and values are dynamically determined

based on current implication values, justification frontier, etc.
l  Use similar criteria as static method
l  But can mix different rules dynamically

u  Pros
l  May lead to better decisions
l  Avoid useless decisions

u  Cons
l  Overhead in computing dynamic ordering may be high
l  Effectiveness sometimes is hard to predict

è However, experiences show that the best is:

1.  Has a good initial decision ordering
2.  Adaptively adjust the decision order after a certain amount

of backtracks

56 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

zChaff’s Variable State Independent
Decaying Sum (VSIDS) Decision Heuristic
(1) Each variable in each polarity has a counter,

initialized to 0.
(2) When a clause is added to the database, the

counter associated with each literal in the clause is
incremented.

(3) The (unassigned) variable and polarity with the
highest counter is chosen at each decision.

(4) Ties are broken randomly by default, although this
is configurable

(5) Periodically, all the counters are divided by a
constant.

 Zhang, et al, DAC 2001

57 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Berkmin – Decision Making Heuristics
E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-

Solver”, Proc. DATE 2002, pp. 142-149.

u  Identify the most recently learned clause which is
unsatisfied

u  Pick most active variable in this clause to branch on
u  Variable activities

l  updated during conflict analysis
l  decay periodically

u  If all learnt conflict clauses are satisfied, choose
variable using a global heuristic

u  Increased emphasis on “locality” of decisions

58 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

More decision heuristics...

u  Variable Move-To-Front (VMTF)
u  Clause Based Heuristic (CBH)
u  Resolution Based Scoring (RBS)
u  ...

u  In general, there is no single decision
heuristic that works for every case.
è How to adaptively move to a good decision

heuristic may be the winner...

59 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look at binary decision tree

Should the decision orderings on all branches
be the same?

a

b

c

d

c

d

b

c

d

1

1

1

1

0

0

0
0 1 0

a

b

c

d

d

c

x

y

z

1

1

1 1

0

0

0

0

1 0

0 1

60 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Remember when we talked about
conflict-driven learning,

we mentioned that

by adding a learned clause
we can do non-chronological backtracking,
while still achieve complete proof

How??

61 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The Constraint Refinement Process

u  Search region is gradually narrowed down by the
learned constraints

u  Learned information is universally true
l  Independent of the target implication, only

related to the circuit function
l  The proof efforts between different properties

can be shared
 è Incremental SAT

u  Decision process can “restart” any time any
where!!
l  Can use different decision ordering to explore

different area in the decision tree
§  Previous efforts will not be wasted

62 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What affect the SAT efficiency?

1.  Decision order

2.  Logic implication (Boolean Constraint
Propagation, BCP)

3.  Various learning techniques

4.  Database simplification

63 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

BCP Checking for CNF-Based SAT

u If a literal in a clause gets an implication ‘1’
è The clause is satisfied

u If a literal in a clause gets an implication ‘0’
è Check: how many literals in the clause have

unknown value?
l  >= 2 : no operation
l  = 1 : the remaining literal will be implied ‘1’
l  = 0 : the clause is evaluated to ‘0’ è a conflict !!

64 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Complexity for BCP	

u  Initially all literals are ‘x’
u  A decision is made

l  Which clauses are affected?
l  Which of the above should produce new

 implications? Which of the above may lead
 to conflict?

l  Which clauses are affected due to new
 implications?

l  What happens if backtrack is needed?

65 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A naïve/brute-force BCP approach	

u  a + b + c + d + e // all literals are ‘x’
u  a + b + c + d + e // a = 0; any new imp?
u  a + b + c + d + e // b = 0; any new imp?
u  a + b + c + d + e // c = 0; any new imp?
u  a + b + c + d + e // If conflict on other

 clause, and b, c are
 undone

u  a + b + c + d + e // c = 0; any new imp?
u  a + b + c + d + e // d = 0; any new imp?	

66 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

How to improve the naïve/brute-force
 BCP approach?	
u  a + b + c + d + e // all literals are ‘x’
u  a + b + c + d + e // a = 0; any new imp?
u  a + b + c + d + e // b = 0; any new imp?
è  Do we really need to check this, if we know

 there are more than two literals are ‘x’?
è  How do we know there are at least two literals

 with value ‘x’?
è  Do we need to check it, if we know there is a

 literal with value ‘1’?
è  How do we know there is a literal with value

 ‘1’?

67 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Watched-Literal Algorithm
H. Zhang, SATO, CADE 97; M. Moskewicz et al, Chaff, DAC 2001

u  For each clause, keep 2 pointers on 2 literals that have
“non-0” values
l  If any watched literal gets implication ‘0’

§  Scan in the clause for another literal with “non-0” value
§  If found, update the watched literal pointer

 Else, imply the other watched literal with value ‘1’

L1 + L2 + …+ L50 + L98 + L99 + L100

x à0 x
seach for ‘x’

68 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

In the previous example…	

u  a + b + + d + // Let ‘c’ and ‘e’ are watched
u  a + b + + d + // a = 0; NO action
è  How do we know ‘a’ is NOT watched?
è  Keep a “watching list” for each literal !!

u  a + b + + d + // b = 0; NO action
u  a + b + c + + // c = 0; UPDATE watches !!
u  a + b + c + + // Backtrack, NO action !!
u  a + b + c + + // c = 0; NO action !!
u  a + b + c + + // d = 1; NO action !!

69 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Watched-Literal Algorithm Example

Each clause stores: Each literal stores:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C2

C1

C3

C4 C2 C4 C3

c ß 0
•  Update watched literal pointer for C4 (for example, to ‘g’)
•  Erase c’s watching-clause list
•  Add ‘C4’ to g’s watching-clause list
[Note] Don’t need to check ‘C1’

C4

70 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Watched-Literal Algorithm Example

Each clause: Each literal:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C2

C1

C3

C2 C4 C3

a ß 0
•  Update watched literal pointer for C1 (only choice, to ‘d’)
•  Update watched literal pointer for C2 (for example, to ‘e’)
•  Erase a’s watching-clause list
•  Add ‘C1’ to d’s and ‘C2’ to e’s watching-clause lists

C4

C1 C2

71 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Watched-Literal Algorithm Example

Each clause: Each literal:
2 watched literal pointers A list of watching clauses

C1: (a + b + c + d)
C2: (a + d + e + f + g)
C3: (b + f)
C4: (c + e + g + h + i)

a b c d e f g h i

C1

C3

C2 C4 C3

b ß 0
•  No more unknown literal for C1 : d = 1
•  No more unknown literal for C3 : f = 1
[Note] No change on watched literals

C4

C1 C2

72 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Caching Effect: Reducing from O(n) to
almost O(C)
u  The fact

l  Most of the time, the decision orderings at different parts
of the decision tree are quite similar during a proof (or
even from proof to proof)

è Literals in a clause get the implications
 almost by the same order every time

u  Watched literal
 à point to the last implied literal
è Don’t update watched literals

 after backtrack. After backtracks,
 no evaluations from the
 other unwatched literals.

a
b

c
d

a
b

k
c

d

(L1 + L2 + L3 + L4 + L5 + L6)

73 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Logic implication can be very
efficient for CNF-based SAT by

using “watch” scheme.

Can this idea be applied to
circuit-based SAT?

74 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Generic Watch Scheme

u  It can be shown that the watch scheme can
be applied to primitive gates (e.g. AND/OR)
in a circuit SAT solver, and can be further
extended to complex gates such as
MUXes, Pseudo Boolean gates, etc.

u  For more details, please refer to:
l  "QuteSAT: A Robust Circuit-based SAT

Solver for Complex Circuit Structure",
DATE 2007.

75 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Various Learning Techniques

u  Other than conflict-driven learning, there
are many other learning techniques that
can help
l  Derive more implications

à may help find the conflict earlier
l  Provide information for decision ordering

1.  Static learning
2.  By signal correlations
3.  Recursive learning
4.  Success-driven learning

76 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Static Learning

u  Learn by contrapositive
(a à b Ξ !b à !a)

u  e.g.

a

b
a = 1 à b = 1

Learned b = 0 à a = 0

The question is:
which gate to learn??

Ref: “SOCRATES: A Highly Efficient Automatic Test Pattern
Generation System”, Schulz et.al, TCAD 1988

77 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Learned by Signal Correlations

u  A proof-based approach
l  Since learned information is universally true, we can

create some internal interesting properties, and use
these properties to derive some interesting learning
 (by conflict analysis)

u  e.g. By simulation, if we find a gate ‘g’ is very likely to stuck

at some value ‘v’
è Witness “g = ¬v” (should produce many conflicts)

u  e.g. By simulation, if two signals respond almost the same
è Witness “p != q”

u  No matter the proof is finished or not
l  We can always learn something

Ref: Feng Lu, et. al, “A Circuit SAT Solver with Signal Correlation Guided Learning”, DATE 2003

78 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Recursive Learning

u  To justify f = 0
l  (a = 0) or (b = 0)
l  Let Sa and Sb be the set of implications

 from (a = 0) and (b = 0), respectively
l  Let S = Sa ∩ Sb

 è (f = 0) implies S
u  A recursive process
u  Deep recursion could be

 very expensive
u  How to record the

learned implicaiton?

f = 0

a = 0 b = 0

Ref: “HANNIBAL: an efficient tool for logic verification based on
recursive learning”, Wolfgang Kunz, ICCAD 1993

79 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict vs. Success-Driven Learning
Motivation: Traditional SAT approach finds only 1 solution, can

we find more (or all) the solutions?

u  How to record the solutions?

l  Hash table? (too expensive)
u  Success-driven learning

l  Similar to conflict learning
l  When we find one solution, say (v1, v2, …, vn), add a

blocking gate “v1 && v2 && … vn = 0” so that
§  This solution won’t be repeated
§  May lead to new implication
§  Can continue the justification process for the next solution

l  At the end, all the solutions are recorded as set of
blocking gates (or clauses)

80 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict vs. Success-Driven Learning

u  However, the number of solutions in a SAT
problem can be very huge!!
è Some solutions may look alike ---

 e.g. 1010011, 1100011, 0110011...
 s1 s2 s3

S1 S2 S3

01
1

11
00

11
00

11
00

Can we predict that the sub
-solutions under the sub-search tree

 are already covered?

81 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Success-Driven Learning
u  Ref: Shuo, et al. DATE 2003
u  Assume

l  ATPG-based technique (work on circuit)
l  Decisions on PIs only à forward implications

u  Search State Equivalence
l  If two decisions have the same signature
è The “sub-solutions” under

 the sub-search space
 are the same!!

è No need to search
u  Note: they also store

 the solutions in a
 “free BDD”

PIs
1xxx0xxx00xx111011

implication
frontier

(a cutset)

current
decision

82 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Although “learning” in general can lead to
more implications and possibly lead to
conflicts earlier (i.e. bound earlier) ---

1.  It may slow down the implication process
2.  It may affect the decision ordering, which

may not necessarily reduce the #decisions

83 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can we do to make the learning useful?

1.  Use learning to find better decision ordering
l  zChaff uses learned information to refine the decision

ordering
l  BerkMin uses learned information to increase emphasis

on “locality” of decisions
2.  With conflict analysis, decision can restart any time

l  Change to different decision ordering heuristic to
explore different areas in the input space

3.  Modify the learned information
l  Remove least-used learned information
l  Simplify or synthesize the learned information
l  Any other idea?

84 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What affect the SAT efficiency?

1.  Decision order

2.  Logic implication (Boolean Constraint
Propagation, BCP)

3.  Various learning techniques

4.  Database simplification

85 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Simplify SAT Database, why bother?

1.  CNF proof instances generated from real-
life problems (e.g. assertions in a circuit)
are usually quite redundant
l  Better clausifier?

2.  During SAT proof, the number of added
learnt clauses will become much larger
than the number of original clauses
l  A few thousands vs. millions

3.  Slimmer clause database usually implies
better proof efficiency

86 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Many SAT proof database simplification
techniques...
u  Especially for CNF...

1.  Variable Elimination by Clause Distribution
2.  Clause Subsumption
3.  Self-Subsuming Resolution
4.  Simplification by Definition of a Gate
5.  Blocked Clause Elimination
6.  Equivalent Literal, Pure Literal Elimination, etc

u  Also, many techniques to generate “better” CNF instances
(from circuit problems)

1.  Tseitin Transformation
2.  Plaisted-Greenbaum Encoding
3.  Utilization of Logic Synthesis Techniques

u  Note: in the following slides, (‘) for a literal/variable means
negation; for clause/problem means another one.

87 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Satisfiability Equivalent Problem
u  A SAT proof instance P1 is a “satisfiability

equivalent (SAT-EQ) problem” of another proof
instance P2 iff:
l  P1 is SAT implies P2 is SAT, and
l  P1 is UNSAT implies P2 is UNSAT
è Note that P1 is NOT necessarily logically equivalent

to P2
u  “Resolution” preserves the SAT-EQ

l  Let ⊗ be the resolution operator,
clauses c1 = (x + a1 +... + an), c2 = (x’ + b1 +...+ bm)
and c = c1 ⊗ c2 is the resolvent of c1 and c2

è c = (a1 +... + an + b1 +...+ bm)
è c1 ∧ c2 implies c

88 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Variable Elimination by Clause Distribution

u  In a CNF proof instance S, let Sx and Sx’ be the
sets of clauses in which x and x’ occurs,
respectively.
 è S = Sx ∪ Sx’

u  Resolution operation can be lifted to sets of clauses
as:
l  S’ = S1 ⊗ S2 = { C1 ⊗ C2 | ∀C1 ∈ S1, ∀ C2 ∈ S2 }
è x will be eliminated from S
è S’ is SAT-EQ to S
è Is S’ always simpler than S?
è S’ may contain several trivial clauses. (A clause is

called trivial if it contains a variable and its negation)
è S’ also contains many subsumed clauses

89 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Clause Subsumption
u  A clause C1 is said to (syntactically) subsume another

clause C2 if C1 ⊆ C2
l  e.g. (a + b) subsumes (a + b + c)
l  A subsumed clause is redundant in a SAT problem and can

be removed from the proof
u  [Remember] Variable eliminations by clause distribution

usually lead to many subsumed clauses
u  How to identify the subsumed clauses in a CNF?

l  [Ref: Een SAT2005]
1.  For each clause, a 64-bit signature is stored.
2.  Each literal is hashed to 0...63.
3.  The signature = bitwise_OR of the hashed literal indices
4.  Occur_list: literal à clauses
5.  Check subsumptions with the aid of the clause signatures

90 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Self-Subsuming Resolution

u  It’s often that one clause can “almost subsume”
the other. For example:
l  C1: (x’ + a), C2: (x + a + b)
è C1 does not subsume C2
l  But if we do C2’ = C2 ⊗ C1 = (a + b)
è C2’ will subsume C2
è We say “C2 is strengthened by self-subsumption

using C1”
 (i.e. Problem becomes: (x’ + a) (a + b))

u  Self-subsumption is a powerful technique in
simplifying CNF database

91 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Simplification by Definition of a Gate
u  There are usually many functionally dependent variables in

a CNF. For example:
l  ... (x + a’ + b’)(x’ + a)(x’ + b) ...
è x is actually equal to “a∧b”
è We call the equation “x = a∧b” the definition of x
è Can we remove the variable x?

u  [Fact] If x has a definition and is eliminated by clause
distribution, many redundant resolvents are generated.
l  [e.g.] 1 2 3 4 5 6
 (x + c)(x + d’)(x + a’ + b’) (x’ + a)(x’ + b)(x’ + e’ + f)

 The resolvents are:
§  1⊗4 1⊗5 2⊗4 2⊗5 3⊗6

 (c + a) (c + b) (d’ + a) (d’ + b) (a’ + b’ + e’ + f) è A
§  3⊗4 3⊗5

 (a’ + b’ + a) (a’ + b’ + b) è B
§  1⊗6 2⊗6

 (c + e’ + f) (d’ + e’ + f) è C
è We will show in the next slide that A implies B ∪ C

92 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Simplification by Definition of a Gate

u  Let a CNF S contains a definition of a variable x,
that is, x = a ∧ b ---
l  ... (x + a’ + b’)(x’ + a)(x’ + b) ...

u  Let S = G ∪ R,
 G = (x + a’ + b’)(x’ + a)(x’ + b)
 R = S \ G

u  Let Gx and Gx’ (Rx and Rx’) be the set of clauses of G (R)
in which x and x’ occurs, respectively.
l  S = (Gx ∪ Rx) ∪ (Gx’ ∪ Rx’)
l  S’ = (Gx ∪ Rx) ⊗ (Gx’ ∪ Rx’) = S’’ ∪ G’ ∪ R’

 where ---
 S’’ = (Rx ⊗ Gx’) ∪ (Gx ⊗ Rx’)
 G’ = Gx ⊗ Gx’
 R’ = Rx ⊗ Rx’

è S’’ implies G’ ∪ R’
 That is, G’ and R’ are redundant and thus can be removed

93 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Simplification by Definition of a Gate

u  In the previous example ---
l  Example:

 (x + c)(x + d’)(x + a’ + b’) (x’ + a)(x’ + b)(x’ + e’ + f)

Becomes...

 ((x + a’ + b’) ⊗ (x’ + e’ + f))
({(x + c), (x + d’)} ⊗ { (x’ + a), (x’ + b) })

è (a’ + b’ + e’ + f) (c + a) (c + b) (d’ + a) (d’ + b)

94 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Blocked Clause Elimination (ref: Järvisalo TACAS 10)

u  Blocking literal
l  A literal l in a clause C of a CNF F blocks C (w.r.t.

F) if for every clause C’ ∈ F with l’ ∈ C’, the
resolvent of (C ⊗ C’) on l is a tautology.

u  Blocked clause
l  A clause is blocked if it has a literal that blocks it
 è Removal of a blocked clause reserves
satisfiability

u  Example: (a’ + b) (a + b’ + c’) (a’ + c)
l  c blocks (a’ + c) because (a + b’ + c’) ⊗c (a’ + c) = 1
è Problem becomes (a’ + b) (a + b’ + c’)
l  b’ blocks (a + b’ + c’) è Problem becomes (a’ + b)
è Problem is satisfiable!!

95 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Equivalent Literal, Pure Literal Eliminations

u  Equivalent Literal
l  If both (a + b’) and (a’ + b) exist in CNF, a and b

are equivalent è Replace b with a
l  If (a + b’), (b + c’) and (c + a’) exist in CNF, a, b and

c are equivalent è Pick one representative literal

u  Pure Literal Eliminations
l  If some variable exists only in one phase in all the

clauses it appears (i.e. pure literal) ---
è Assigning these literals to ‘1’ preserves satisfiability
è Removal of these clauses preserves satisfiability

96 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Transforming Circuit Problems for CNF SAT

u  Although the CNF and circuit-based SAT
can be equally efficient, however, there are
much more existing CNF solvers than
circuit SAT.
l  It’s often a need to transform a circuit

problem to CNF
1.  Tseitin Transformation
2.  Plaisted-Greenbaum Encoding
3.  Utilization of Logic Synthesis Techniques

97 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Tseitin Transformation

1.  Assign each gate with a variable
2.  For each gate, generate CNF clauses for its input

and output variables
u  Example:

a b c

f

x
y

z

F: f (f ↔ x ∧ y) (x ↔ a ∨ b) (y ↔ z’) (z ↔ b ∧ c)
≡ f (f → x) (f → y) (f’ → x’ v y’)
 (x’ → a’) (x’ → b’) (x → a v b)
 (y → z’) (y’ → z) ...
≡ f (f’ + x) (f’ + y) (f + x’ + y’)
 (x + a’) (x + b’) (x’ + a + b)
 (y’ + z’) (y + z) ...

However, many redundant variables
/clauses are generated...

98 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Plaisted-Greenbaum Encoding

u  Polarity-cared transformation
l  A is satisfiable iff LA ∧ A+
l  ¬A is satisfiable iff L¬A ∧ A-

a b c

f

x
y

z

F: f ...
≡ f (f → x ∧ y)...
≡ f (f’ + x) (f’ + y) (x → a v b)...
≡ f (f’ + x) (f’ + y) (x’ + a + b) (y → z’)...
≡ f (f’ + x) (f’ + y) (x’ + a + b) (y → b’ v c’)
≡ f (f’ + x) (f’ + y) (x’ + a + b) (y’ + b’ + c’)

99 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Utilization of Logic Synthesis Techniques

u  How many are there n-input
Boolean functions?
l  e.g. 65536 for 4-input functions
l  Are they all distinct?

u  NPN-equivalent functions
l  Two functions are called NPN-equivalent iff they

are equivalent by negating parts of the inputs and
outputs, and by permuting inputs

l  e.g. (a ∧ b) and (b ∨ a’) are NPN-EQ
u  How many are there distinct NPN-EQ n-input

Boolean functions?
l  Well, no general formula...
l  1-input: 2; 2-input: 4; 3-input: 14; 4-input: 222;

5-input: ??

n22

100 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Utilization of Logic Synthesis Techniques

u  How to utilize this NPN-EQ concept in
generating CNF formula from circuit?
l  For each NPN-EQ class, derive the “best”

CNF representation
l  Partition the circuit into clusters of n-input

“macro cells”. That is, each macro cell has
exactly n inputs and 1 output.
§  e.g. 4-input

l  Generate CNF by table lookup

101 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What we have learned...

u  What is the Boolean Satisfiability (SAT)
problem?

u  Circuit SAT vs. CNF SAT
u  Key factors for SAT efficiency

l  Boolean constraint propagation (BCP)
l  Decision ordering
l  Various learning
l  Database simplification

102 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  Fundamentals of Boolean Satisfiability

 (SAT)
u  Techniques to improve SAT solving
u  Circuit-based SAT algorithms
u  SAT-based (hardware) verification

l  Bounded model checking (BMC)
l  Inductive proof
l  SAT-based abstraction and refinement
l  Interpolation-based method
l  Property-directed reachability

103 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Formal Verification Technologies

Design Under
Verification

(DUV)

Arithmetic /
Logic Model
(Constraints)

Expected
Behavior e.g. Always (req ! ack)

Properties

Check consistency

req ∧ ¬ack

104 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What is formal verification?

“The expression 'formal verification', as it appears in the
literature, refers to a variety of (often quite different)
methods used to prove that a model of a system has certain
specified attributes. What distinguishes ‘formal’ verification
from other undertakings also called 'verification' is that
‘formal’ verification conveys a promise of mathematical
certainty. The certainty is that if a model is formally
verified to have a given attribute, then no behavior or
execution of the model ever can be found to contradict
this”
Robert Kurshan, “Computer-Aided Verification of Coordinating Processes”

105 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What is formal verification?

u  In general, formal verification can be applied to
various disciplines ---
l  Hardware design validation
l  Software verification
l  Protocol checking
l  and more...

u  The “models” checked by formal verification can be ---
l  Continuous / discrete time
l  Finite / infinite states
l  Hardware / software
l  Deterministic / non-deterministic,... etc

106 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

In this class, we will focus on

“Hardware Verification”,

where the design is usually modeled as a

“Finite State Concurrent System”.

“Model Checking”

is the most widely studied and used technique.

107 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Model Checking Problem

u  Let M be the state transition graph obtained
from the concurrent system.

u  Let f be the specification expressed in
temporal logic.

u  Model Checking
l  Find all states s of M such that M, s ⊧ f

108 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The Process of Model Checking

1.  Modeling
l  Convert a design into a formalism accepted by a

model checking tool
l  Parsing, compilation, abstraction, reduction, etc

2.  Specification
l  What are the properties the design must satisfy?
l  e.g. Temporal logic

3.  Verification
l  Try to prove that the model is compliant with the

specification
l  If not, manual debugging is usually required

“Model Checking”, E.M. Clarke, et al.

109 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Remember ---

u  Model checking is an automatic technique
for verifying “finite state concurrent
systems”.

What can be the basic formalism for

“finite state concurrent system” model?
(HDL, circuit, FSM, ??)

110 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

(FYI) Kripke Structure
--- a type of state transition graph
u  Kripke structure M over a set of atomic propositions

AP is a four tuple M = (S, S0, R, L), where
1.  S is a finite set of states
2.  S0 ⊆ S is the set of initial states
3.  R ⊆ S × S is a transition relation that must be total,

that is, for every state s ∈ S there is a state s’ ∈ S
such that R(s, s’)

4.  L: S → 2AP is a function that labels each state with the
set of atomic propositions true in that state.

u  Think ---
l  What is the “state” for a concurrent system (e.g.

hardware design)?
l  How many states does a circuit have?

“Model Checking”, E.M. Clarke, et al.

111 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What?
u  Kripke structure M over a set of atomic propositions AP is a

four tuple M = (S, S0, R, L), where ---
1.  S is a finite set of states

§  e.g. A hardware circuit has finite set of states
2.  S0 ⊆ S is the set of initial states

§  Note: This item can be omitted if we don’t care about initial states
3.  R ⊆ S × S is a transition relation that must be total, that is, for

every state s ∈ S there is a state s’ ∈ S such that R(s, s’)
§  i.e. The next state always exists à The system can keep on

running
4.  L: S → 2AP is a function that labels each state with the set of

atomic propositions true in that state.
§  i.e. For a given state, some atomic propositions are true in this

state, while others are false
§  On the other hand, for a given atomic proposition, what are the

states on which this proposition is true?

112 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Example of Kripke Structure

a b

b c c

AP: {a, b, c}

s1 s2

s0

S: {s0, s1, s2}
S0: {s0}

113 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

u  It can be easily shown that a synchronous
digital circuit can be converted to a kripke
structure

Circuit

inputs (PIs)

outputs (Pos)

PIs POs

seq elm

Combinational
elements

Properties

labeled
What are the states? Is this
a STG or Kripke structure?

114 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The Process of Model Checking

1.  Modeling
l  Convert a design into a formalism accepted by a

model checking tool
l  Parsing, compilation, abstraction, reduction, etc

2.  Specification
l  What are the properties the design must satisfy?
l  e.g. Temporal logic

3.  Verification
l  Try to prove that the model is compliant with the

specification
l  If not, manual debugging is usually required

“Model Checking”, E.M. Clarke, et al.

115 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Property Specification

u  Remember, the definition of Kripke Structure
4.  L: S → 2AP is a function that labels each state with

the set of atomic propositions true in that state.
§  i.e. For a given state, some atomic propositions are

true in this state, while others are false
§  On the other hand, for a given atomic proposition,

what are the states that this proposition is true?

è What are the formula for the atomic proposition?
è In terms of what? States, state variables, or?

116 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Property Specification

a b

b c c s1 s2

s0

What are the formulae to describe propositions a, b, and c?

" ‘a’ is true iff state s = s0
(this type of description does not work if number of states is large)

" ‘a’ will never be true if ‘c’ is true for two consecutive states

" There is an execution trace that ‘a’ can be true infinitely often

117 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Property Specification

u  To describe the formula for a proposition, in
addition to the states or state variables, we also
need the “temporal expression”.

u  We will first introduce “temporal logic” for the
description of the proposition over the span of
execution time

l  Never?
l  Two consecutive?
l  Execution trace?
l  infinitely often?

118 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Kripke Structure vs. (Infinite) Computation Tree

a b

b c c s1 s2

s0 a b

b c c

a b c c

unwind

119 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Describe Properties on Computation Tree

u  There exists an execution path such that ‘b’
always holds

u  For every execution path, c will eventually
holds

è “Path” and “Temporal”

 operators/quantifiers

a b

b c c

a b c c

120 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Computation Tree Logic* (CTL*)
u  Describe the properties for the propositions on the

computation tree

1.  Path quantifier
l  A --- “for every path”
l  E --- “there exists a path”

2.  Temporal operator (State quantifier)
l  Xp --- p holds next time
l  Fp --- p holds sometime in the future
l  Gp --- p holds globally in the future
l  pUq --- p holds until q holds (exclusive)
l  pRq --- p release q (inclusive)

 q holds up to (and including) p holds

ppp…ppp
q
xx….xx

!p!p…!p p
q q ... q q xx…

121 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

For example…
p

p

p

p

p p

AGp

a

b

a

c

p c

EFp

a

b

p

p

p c

AFp

p

p

a

c

p c

EGp

122 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Recursive Definition

u  In an infinite computation tree, any sub-tree
is also an infinite computation tree

u  Let Φ1, Φ2 be temporal formulae
 è “Φ1 (Φ2)” means ---
 “For any state s that satisfies
 Φ1, the sub-tree that roots
 at this state s should
 satisfy the formula Φ2”

s

123 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

More examples…
u  AG(EF p)

l  For any state in the computation tree,
 its sub-tree should at least contain a state that satisfies p

l  e.g. AG(EF Restart) ≡ ¬deadlock
§  From any state it is possible to get to the Restart state

u  AG(AF p)
l  For any state in the computation tree,

 its sub-tree should have a ”cut” that satisfies p
l  e.g. AG(AF DeviceEnabled)

§  From any state, any of its future computation path must see
a DeviceEnabled

§  DeviceEnabled holds infinitely often on every computation path

Is AG(EF p) the same as AG(AF p)??

124 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

No, a counter-example is…

u  Satisfies AG(EF p), but not AG(AF p)

!p p

0

0

1 1

!p

!p p

!p p !p p

!p p !p p !p p !p p

125 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Equivalent Formulae

u  AG(p) ≡ ¬ EF(¬p)

u  AF(p) ≡ ¬ EG(¬p)

p

p

p

p

p p !p

p

p

p

!p

!p

!p

126 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

More Equivalent Formulae

u  AX p ≡ ¬ EX(¬ p)
u  EF p ≡ E(true U p)
u  A(p U q) ≡ ¬(E(¬q U (¬p ∧ ¬q)) ∨ EG ¬q)

u  A(p R q) ≡ ¬ E(¬p U ¬q)
u  E(p R q) ≡ ¬ A(¬p U ¬ q)

!q!q…!q!q !q
!pxx….xxx

!q!q…!q!
q................

or ppp…ppp
q
xxx….xxx

127 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Atomic Operators for CTL*

u  It can be shown that all CTL* formulae can
be expressed by ∨, ¬, X, U, and E
l  p ∧ q ≡ ¬(¬p ∨ ¬q)
l  p R q ≡ ¬(¬p U ¬q)
l  F p ≡ True U p
l  G p ≡ ¬ F ¬p
l  A p ≡ ¬ E ¬p

q q… q q q
 pxx….xxx

q q… q q................
or p R q

128 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

CTL (Computation Tree Logic)
u  A restricted subset of CTL* that permits only branching-

time operators. Each of the state quantifiers G, F, X and U
must be immediately preceded by a path quantifier A or E

u  10 basic operators (path + state quantifiers)
l  AX, AF, AG, AU, AR
l  EX, EF, EG, EU, ER

u  Formula
[(CTL formula)] := <Path_quantifier> <state quantifier> [(CTL formula)]
e.g. AG(p à EF q) ….. OK
e.g. AGF p ….. Not OK, no A/E between GF
e.g. AG(p à E q) ….. Not OK, missing state quantifier

129 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

LTL (Linear Temporal Logic)
u  A restricted subset of CTL* that consists of the form “A f”

where f is a path formula. The quantifiers in f must be state
quantifiers G, F, X and U, followed by atomic proposition
è f is the path formula that holds for ALL the paths in the

computation tree

u  Formula
[(LTL formula)] := A <state quantifiers>... <atomic proposition>
e.g. AGF(p) OK (p occurs infinitely often)
e.g. AFG(p) OK
e.g. AGAF(p) Not OK; CTL, not LTL
e.g. EGF(p) Not OK; not start with A

130 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

CTL*, CTL, LTL, ^*^#(*^(*#^$%!^*#!@#

 Many early model checking tools adopted these
languages for property specification.

But many people thought that they were not easy to

learn.

Therefore, in late 90’s, several companies were

extending HDLs or programming languages (e.g.
C++) and making them into different “easier-to-
learn” or say “programmable” property
specification languages.

131 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Standardization of Property Specification
Language (PSL)
u  Background

l  Different companies were using different property
specification languages (Intel, IBM, Motorola,...)

l  Making verification tool support very difficult
u  Accellera (http://www.accellera.org/home)

l  Formed in 2000, to drive development and use of
standards required by systems, semiconductor and design
tools companies

l  4 major contenders for PSL
§  IBM sugar; Intel ForSpec; Verisity “e”; Motorola CBV

l  After long debates and voting, Accellera chose IBM sugar
as the standard
(http://www.eetimes.com/story/OEG20020425S0018)

l  However, Intel ForSpec was later combined with Synopsys
Vera and then called OpenVera. It lastly became a part of
the SystemVerilog standard

132 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Learning New PSL
u  Sugar PSL 1.1 LRM

l  131 pages
l  8 chapters

u  SystemVerilog 3.1 LRM
l  586 pages
l  31 chapters

è Temporal language....
è Formal semantics......
è Still a big burden for most of the (design)

engineers!!

133 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Think:
What’s the goal of hardware verification?
u  The goal: to fix as many bugs as possible

l  Bottom line: a do-or-die game (bug à recall)
l  Limitation: impossible to “know” how many bugs to fix
l  The fact: simulation is still the mainstream

u  Formal method: to prove ONE property at a time
l  Bigger problem 1: “Have I written a correct property?”
l  Bigger problem 2: “Have I written enough properties?”
l  Bigger problem 3: “What if proof aborts?”
l  Dilemma:

 è Complex property (but may be wrongly written) or
 Simple property (yet enough to detect bugs)?

134 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Do we write a property to express
the completeness of the

specification,

or

we write a property to guide the
model checker for bug hunting?

135 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The Fact

u  More than 90% of properties written for hardware
verification are simply “safety (invariance) ”
properties
l  e.g. assert_never(readEn && writeEn);
l  e.g. assert_next(req, ack);
 è Easier to write
 è Higher proof completion percentage
 è Enough to detect bugs
 How to quickly prove all of them is the key issue

136 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Safety Property (Invariance)
u  Something GOOD should always hold;

Something BAD should never happen
u  Without lost of generality, an assertion property on a circuit

can be transformed into an “assert_always
(atomic_proposition)” property with some extra gates
l  e.g. assert_never(p) ≡ assert_always(¬p);
l  e.g. assert property
 (@(posedge clk) req |-> ##[1:2] ack)

req

ack

clk

clk

p

" assert_always (p)

DUV

137 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Proving “assert_always(p)”

u  In later slides, we will mostly focus on how to
prove the property “assert_always(p)”, instead of
proving a complex temporal logic formula

u  assert_always(p) ≡ AG (p) ≡ ¬ EF (¬p)

u  Either
“proving p is true for all states on the state
 transition graph” or
 “finding a trace that can disprove p”

138 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

“Mathematical Certainty” in Formal Verification

u  Space exhaustiveness
l  Verify all input combinations of the system

u  Time exhaustiveness
l  Verify system behavior from initial state to

time infinity

t0 t1 t2 t3 t4 t5 infinity

initial state

all input
combinations

139 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Set of Reachable States
t0 t1 t2 t3 t4 t5 t6 t7 t8

140 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Boolean State Space

Boolean space of n state variables (2n)

!(P2)

!(P1)

unreachable states

reachable states

" AG (p1) ≡ false; AG (p2) ≡ true

141 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Formal Verification Engines for AG

u  Our later discussion of formal verification
engines on AG property will either be

1.  How to compute the set of reachable states

2.  How to generate a trace to (¬p)

3.  How to prove that there is no trace to (¬p)

142 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Think.... BDD vs. SAT

u  (FYI) For Binary Decision Diagram (BDD),
we compute the set of reachable states by
iteratively applying transition relationship
(TR) on current set of states (recorded as
BDDs)

u  However, SAT is a propositional constraint
solver. How to “record” the set of states?

143 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Using Blocking Clauses for Sequential SAT

PIs POs

seq elm

Combinational

elements

a
b

> 0
0
1
0

1
1
0

1
1
0

Suppose we are solving the property
“a > b”

1.  Use SAT to get a solution on the
registers (for !p)
 e.g. (c0, c1, c2) = (1,1, 0)

2.  Add a “blocking clause”
 (c0’ + c1’ + c2) to the original CNF
 è Won’t get the same state
again!!

3.  Repeat 2 for another solution in
the same timeframe..., or

4.  Apply the solution
 “(c0, c1, c2) = (1, 1, 0)”
 to the previous state as
 “(p2, p1, p0) = (1, 1, 0)” and
continue to the search in the
previous timeframe (for p)

c0
c1
c2

p0
p1
p2

1

(c0’ + c1’ + c2)

144 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look on the above algorithm...

PIs POs

seq elm

Combinational

elements

a
b

> 0
0
1
0

1
1
0

•  There are several calls to SAT
•  Call SAT(p == 0)
•  Put the current state value

(e.g. 110) to the previous
state variables and call
SAT(p0p1p2 = 110)

•  Can the proof efforts/results
among different SAT calls be
shared?
•  Yes, by “assumpProve()”
•  Also an “incremental SAT”

approach

c0
c1
c2

p0
p1
p2

(c0’ + c1’ + c2)

145 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Using Blocking Clauses for Sequential SAT

u  The above process needs to continue until ---
1.  The initial state is reached
2.  No new state can be found (i.e. all in blocking

clauses)
è BFS or DFS (in terms of timeframe traversal)?

u  However, in the above approach, we are solving
one state (cube) at a time.

 Comparing to BDD, which finds all the reachable
state in one timeframe at once.

 SAT seems inefficient...

146 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

The bottomline is---

u  SAT is a satisfiabilty solver (i.e. to answer
“satisfiability”; to find ONE solution)

è It is NOT natural for it to enumerate ALL
the solutions

è It is NOT a structure for data storage (e.g.
hash, BDD)

u  SAT solves only propositional constraints
è No temporal logic

147 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Iterative Timeframe Expansion Model

u  There’s another way of using SAT for
sequential property checking

Comb.
ckt

PO

FF

PI

!P

Comb.
ckt

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI PI

PO PO

!P P P

FF

Init S
tates

Iterative Timeframe Expansion Model
è Seq SAT becomes a
combinational problem

148 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

In other words...

Comb.
ckt

PI

FF

PO

!P

Init
S

tates

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI

PO

!P P

FF

Init
S

tates

Comb.
ckt

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI PI

PO PO

!P P P

FF

Init
S

tates

UNSAT

SAT

Cex @ t0

SAT

Cex @ t1

UNSAT
SAT

Cex @ t2 UNSAT

continued for t3

149 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Bounded Model Checking (BMC) Algorithm
u  Let ‘C’ be the set of constraints on the combinational circuit

 è For an iterative model that unfolds the circuit for n times,
let ‘Ci’ correspond to the i-th iteration of the circuit constraint
(0 <= i <= n - 1)

u  Let ‘I0’ be the initial state value
u  Let ‘P’ be the property to prove

u  BMC(P) {
 let k = 1;
 loop:
 if (SAT(I0∧C0∧...∧Ck-1∧!Pk-1))
 return “Find a counter-example @ (K-1)”;
 k = k + 1;
 goto loop;
 }

C0 C1 C2

PI

PO

!P2

I0

PI PI

PO PO

150 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

How far should we go?

u  What’s the limit of K?
 (How many iterations do we need before
concluding the property is always true?)
 è Impossible to know in the above BMC
algorithm
 è A loose upper bound is 2N (N is the
number of registers)

151 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Application of BMC
u  BMC is particularly useful when BDD encounters

the memory explosion problem

u  If the property is false, BMC can find a counter-
example with the shortest length

u  However, BMC cannot conclude that a property is
true...

è It can only conclude that the property holds up to
certain number of timeframes

è NOTE: BMC timeframe is different from the
number of cycles in a simulation trace!!!

 (BMC is best used in “bug-finding”)

152 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Extension of BMC for Unbounded Proof

u  BMC, combined with various techniques, can be
extended to unbounded model checking

1.  K-step Induction
2.  Simple-path constraint
3.  Counter-example-based abstraction
4.  Proof-based abstraction
5.  Image computation by SAT
6.  Over-approximated image computation using

interpolation
etc...

153 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

K-induction

u  Induction:
SSS2000

P(s0)
∀i: P(si) ⇒ P(si+1)

∀i: P(si)
•  k-step induction:

P(s0..k-1)
∀i: P(si..i+k-1) ⇒ P(si+k)

∀i: P(si)
 * Some of the following slides in this lecture note are adopted

 and modified from Dr. Ken McMillan’s CAV03 tutorial

154 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

K-induction with a SAT solver

u  Let:
 Uk = C0 ∧ C1 ∧ ... ∧ Ck

u  Two formulas to check:
l  Base case:

I0 ∧ Uk-1 ⇒ P0...Pk-1

l  Induction step:
Uk ∧ P0...Pk-1 ⇒ Pk

u  If both are valid, then P always holds.
u  If not, increase k and try again.

C0 C1 C2

PI

PO

!P2

I0

PI PI

PO PO

155 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Induction SAT
for (k = 0 to infinity)
 S = Uk ∧ Fk // Fk = P0 ∧... ∧ Pk-1 ∧ !Pk
 T = I0 ∧ S
 // induciton step
 if (SAT(S) == false)
 return NO_SOLUTION; // i.e. P is true
 // normal proof: base case for next k
 if (SAT(T) == true)
 return HAS_SOLUTION; // i.e. CEX is found
 if (effort exceeds limit)
 return ABORT;
endfor

156 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Induction SAT

u  In other words, let
 S(k) = Uk ∧ Fk // induction step
 T(k) = I0 ∧ S // BMC step

u  Induction SAT...
 if (S(0) == UNSAT) return UNSAT;
 if (T(0) == SAT) return SAT;
 if (S(1) == UNSAT) return UNSAT;
 if (T(1) == SAT) return SAT;
 ...

157 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

In other words...

Comb.
ckt

PI

FF

PO

!P

xxxxx

SAT

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI

PO

!P P

FF

xxxxx

SAT

UNSAT

Comb.
ckt

PI

FF

PO

!P

Init
S

tates

SAT

Cex @ t0

Comb.
ckt

Comb.
ckt

PI

FF

PO

PI

PO

!P P

FF

Init
S

tates
Cex @ t1

UNSAT

continued for t3

SAT

Proven!!

UNSAT

UNSAT

Proven!!

158 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Does “Induction SAT” guarantee convergence?

i.e. Will we either (given enough time/memory)

 1. conclude no solution in induction step
 or 2. find a counter-example in normal proof
 with a finite number k ???

159 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Simple path assumption

u  Unfortunately, k-induction is not complete.
l  Some properties are not k-inductive for any k.

u  Simple path restriction:
l  There is a path to ¬P iff there is a simple path

to ¬P (path with no repeated states).

P P ¬P

reachable
 states from I

unreachable
 from I, but can

 reach ¬P

160 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Induction over simple paths

u  Let simple(s0..k) be defined as:
l  ∀i,j in 0..k : (i ≠ j) ⇒ si ≠ sj

u  k-induction over simple paths:

P(s0..k-1)
∀i: simple(s0..k) ∧ P(si..i+k-1) ⇒ P(si+k)

∀i: P(si)

Must hold for k large enough, since a simple path cannot be
unboundedly long. Length of longest simple path is called
recurrence diameter.

161 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

...with a SAT solver

u  For simple path restriction, let:
 Sk = ∀t=0..k, t'=t+1..k: ¬ (∀v in V : vt = vt‘)
(where V is the set of state variables).

u  Two formulas to check:
l  Base case:

I0 ∧ Uk-1 ⇒ P0...Pk-1

l  Induction step:
Sk ∧ Uk ∧ P0...Pk-1 ⇒ Pk

u  If both are valid, then P always holds.
u  If not, increase k and try again.

162 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Is the recurrence diameter the
same as the diameter (the

distance from initial state to any
state, i.e. depth of fixed point)??

163 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Recurrence Diameter vs. Diameter
t0 t1 t2 t3 t4 t5 t6 t7 t8

!p

164 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Termination

u  Termination condition:
k is the length of the longest simple path of the form

 P* ¬P
u  This can be exponentially longer than the diameter.

l  example:
§  loadable mod 2N counter where P is (count ≠ 2N-1)
§  diameter = 1
§  longest simple path = 2N

u  Nice special cases:
l  P is a tautology (k=0)
l  P is inductive invariant (k=1)

165 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Limitations of simple path constraint

u  Although simple path constraint can make
the induction-based SAT a complete
algorithm for sequential proof, it has the
limitation in reality that the circuitry for the
simple path constraint can grow too big
(O(n2))
l  Not really applicable in real cases

u  What if we limit the simple path constraint
to “no repeat states within k timeframes”,
where k is a small enough number?
l  Is the algorithm still complete?

166 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  SAT-based logic synthesis

l  Redundancy addition and removal
l  Functional dependency
l  SAT-based re-synthesis techniques
l  Engineering Change Order (ECO)

u  From SAT to optimization problems
l  Pseudo Boolean satisfiability/optimization problems

u  General SAT-based model checking algorithms
u  Quantified Boolean Formula (QBF)
u  Bit-vector/Arithmetic solver
u  Satisfiability Modulo Theories (SMT)	

167 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Applications of Logic Implication

u  We have learned that logic implication can
be very efficient for both CNF and circuit-
based SAT solvers

u  Logic implication is actually also a powerful
approach in exploring signal correlations in
the circuit

u  Any application?
Redundancy addition and removal

168 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Redundancy Addition and Removal (RAR)

u  Redundancy to a circuit
l  When removing or adding some signal/gate to a

circuit, the circuit functionality remains unchanged
u  Motivations

l  Removing redundancy in a circuit can gradually
lead to smaller area, timing, power, etc

l  When (deliberately) adding some redundancy to a
circuit, we may cause other part of the circuit
become redundant
§  Incremental circuit restructuring (rewiring)
§  Can be used for incremental optimization (e.g. timing,

area, etc)

169 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Redundancy in a Combinational Circuit

u  Redundancy in a combinational circuit
 = Single stuck-at fault untestable

PIs POs

1 s-a-

170 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Background: Single Stuck-at Fault Untestable

u  Sufficient untestable condition
è The mandatory assignment
 (MA) of the stuck-at fault has
 conflict

u  Mandatory assignment of a fault

l  Denoted as MA(w) or MA(g), where ‘w’ or ‘g’ is the fault
location (wire or gate)

l  Implications of
1.  Fault sensitization @ fault site
2.  Fault propagation @ the side inputs of the dominators

u  Dominators of a fault
l  The gates where all the paths from the fault site to the POs

must intersect

s-a-0

0
1

1

1
0
0
1

0
0
1
1
0
1

0
1
0

Faulty circuit

1
1

1

1
0
0
1

0
0
0
1
0
1

0
1
0

Good circuit

X
s-a-1

gd PO
1

1
1

0
0

171 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Mandatory Assignment Example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-0

1

1

(1) Fault sensitization: g2 = 1

1
1

0 0

172 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Mandatory Assignment Example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X

s-a-0

1
0

0

1

1
1

1

1

(2) Fault propagation: d = 0, g3 = 1, g4 = 0, f = 1

1
1

1

0

0
0

1/0
1/0

1/0

1/0

1/0

173 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

1.  How do we know a wire in a combinational circuit
is redundant?
è Its corresponding stuck-at fault is untestable

 (s-a-1 for AND inputs; s-a-0 for OR inputs), or
è MA of the fault has conflict

2.  If a wire is NOT redundant, can we add an extra
wire to make this wire redundant?
è Yes, but the extra wire itself must be redundant
è Add a redundant wire to make the originally

irredundant wire become redundant

174 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Target: remove g6

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X
s-a-1

0
0

0

0
0

0

0

1 1
1

1

1

g6 is testable and thus NOT redundant

0

1

x

0/1

0/1

0/1

175 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

How to add an extra wire to make the s-a-1
fault @ g6 untestable?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X
s-a-1

0
0

0

0
0

0

0

1 1
1

1

1

Adding a wire (or with inverter) from any implied gate to a dominator

1

0

0

1

x

0/1

0/1

0/1

1

1 0

176 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

But remember,
the added wire must be redundant!!

177 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

RAMBO: Redundancy Addition and removal
for Multi-level Boolean Optimization
[Cheng et.al. TCAD 1995]
1.  Given a target wire, perform its mandatory assignments (MA)

for its corresponding s-a fault

2.  For each gate gm in the set of MA,
For each dominator gd, test the fault on the added wire (gm à gd)

a.  If value(gm) = 0 and gd is an AND è direct connection
b.  If value(gm) = 1 and gd is an AND è add an inverter
c.  If value(gm) = 0 and gd is an OR è add an inverter
d.  If value(gm) = 1 and gd is an OR è direct connection

3.  If the fault on the added wire in 2.a ~ 2.d is untestable,
è the added wire is redundant and can be an alternative wire
to remove the target wire

178 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Is (!g1 ! g8) redundant?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-0

0

0

0

0
0

0

0

1

1

0

0

No, (!g1 ! g8) is NOT redundant

1/0

1/0

X

179 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Is (g5 ! g9) redundant?

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9

s-a-1

1

0

1

0 0

0

0

1

1

1

Yes, (g5 ! g9) is redundant
1

0
1

X

We can remove g6 and then g7

180 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

RAMBO Algorithm Complexity

u  Need to perform (M * D) redundancy tests
l  M: number of gates in MA
l  D: number of dominators
è Could be a BIG number

u  “Perturb and Simplify” (Chang, et. al. TCAD 1996)

l  Propose several rules to filter out
impossible candidates

181 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

In short, given a target wire, it is easy to add a
wire to its dominator to make this wire
redundant.

The problem is, need to make sure the added

wire is redundant. This may require a large
number of fault tests.

So, can we deliberately add something to a

circuit, and guarantee that it is redundant?

182 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

How do we add “something” to a circuit and
guarantee it is redundant?
u  Add a wire

u  Add a gate

183 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Creating a Redundant Wire

u  e.g. Add to the input of an AND gate gd
1.  Test the output s-a-0 fault of this AND gate
2.  Perform MA of this fault

3.  For each gate gs in the MA, there is a
corresponding redundant wire (or with inverter)
to gd

gs

X
s-a-0

1

1

1
1

Why??

gd

184 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A Two-Way Redundancy Addition and
Removal (2-Way RAR) Algorithm
1.  Given a target wire on gt, perform MA(gt)

l  Adding a wire from a gate gs in MA(gt) to any of its dominator gd
can make this target wire redundant

l  e.g. value(gs) = 0 à AND gate gd

X
s-a-1

1
1

1

gs
0

gd

gt

185 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Way RAR Algorithm

1.  Given a target wire on gt, perform MA(gt)
l  Adding a wire from a gate gs in MA(gt) to any of its dominator gd

can make this target wire redundant
l  e.g. value(gs) = 0 à AND gate gd

2.  Given a destination gate gd(dominator of the target wire gt),
perform MA(gd)

l  Any wire from a gate gs in MA(gd) to this gate gd can be
redundant

l  e.g. value(gs) = 1 à AND gate gd

X
s-a-0

1

gs
1

gd

gt

1

186 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

RAR Example (wt: g6 ! g7)

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9
X
s-a-1

0
0

0

0
0

0

0

1 1
1

1

1. MA of wt : g6 ! g7 s-a-1

187 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

RAR Example (wt: g6 ! g7)

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0
1

1

1

2. Try MA of gd : g9 s-a-0

1

1

1

difference alternative wire

1

188 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Way RAR Algorithm

1.  Given a target wire on gt, perform MA(gt)
2.  Given a destination gate gd(dominator of

the target wire gt), perform MA(gd)
3.  Perform intersection on (1) & (2)
4.  Any contradiction on a gate gs, implies an

alternative wire (gs à gd) for the target wire
on gt
l  Can be generalized for adding a gate or

adding a sub-circuit

[ref: Huang ISPD 1998]

189 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Creating a Redundant Gate (1)

u  Refresh “add a redundant wire”:
e.g. Add to the input of an AND gate gd
1.  Test the output s-a-0 fault of this

AND gate
2.  Perform MA of this fault
3.  For each gate gs in the MA, there is a corresponding

redundant wire (or with inverter) to gd

u  How about adding a redundant gate?
 è Test the output s-a-1 fault of an AND gate?

gs

X
s-a-0 1

1
1

1

gd

gs

X
s-a-1

1 0

gd 0

190 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Creating a Redundant Gate (2)

gs1
1

X
s-a-0 1

1
1

gd

gs2
1

gs

X
s-a-0 1

1
1

gd

gs1

gs2

How?
Can it be a Boolean network?

191 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2-Way RAR Algorithm

u  Pros
l  No need to perform (M*D) redundancy test as in

RAMBO
l  Potential orders of speed-up

u  Cons
l  Only connect to dominators?

 (Can we connect to fanins of dominators?)
l  Still need to try for each dominator
l  MA on target wire may NOT intersect with MA on

dominators
 è Or just find some trivial alternative wires (e.g.
DeMorgan Law)

è Methods to deriving more MAs (e.g. Recursive learning) are
often used (but could be expensive)

è How can we increase the number of MAs?

192 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look at the previous
example

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0
1

1

1

1

1

1

difference alternative wire

1

g9,1 g8,1

f,1

g6,1

b,1
g5,1

level-1 recursive learning

level-2 recursive
learning

193 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SAT-Controlled RAR (SatRAR) [Huang, ASPDAC 2009]

u  Problems with previous RAR techniques
l  RAMBO: too many redundancy tests
l  2-Way RAR: expensive implication technique

needed
u  SAT-controlled RAR

l  NOT just take the advantage of the advancements
from the modern SAT solvers (covered later)
§  Efficient BCP, conflict-driven learning, etc

l  A seamless integration of SAT and RAR algorithms
l  Extensions for general RAR

§  Alternative wire, gate, sub-circuit identification
l  Options to “control” the RAR optimization quality

194 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Single Wire Replacement Theorem in
SatRAR

u  Let MA(wt) and MA(gd) be the mandatory
assignments for the fault tests of the target wire wt
and its dominator gd, respectively.

u  Let <gs, v> belong to MA(wt) but not MA(gd), and
gs be not in the fanout cone of gd.

u  If we make a decision <gs, v> on top of MA(gd)
and encounter a conflict, then
(i) MA(gd) ⇒ <gs, ¬v>
(ii) (gs! gd) or (gs!◦ gd) must be a valid alternative

wire for wt

195 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Single Wire Replacement in SatRAR

b
d

e

a

f

b

c

d

c

g1

g2

g3

g4

g5

g6

g7

g8

g9 X s-a-0
1

1

1

MA(wt = g6) =
{ (g6, 0), (g2, 0), (d, 0), (g1, 0),
 (g4, 0), (g5, 0), (g3, 1), (a, 1),
 (b, 1), (f, 1) }

0

0

0

0

1

1

1 1
1

1

1
1

wt

decision valid alternative wire

196 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look...

MA
(wt)

a MA
(gd)

a

wt

gd

MA(wt) ! (g5 = 0) MA(gd) ! (g5 = 1)

a

conflict g5 = 0

g5 = 0

197 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SRAR-Wire vs. 2-Way RAR

u  Similarity
l  Based on the conflicting implications between

MA(wt) and MA(gd)
u  Difference

l  SAT decision (conflict-driven leanring) vs.
Recursive learning

e

f

d

b

c

0

a
w  Recursive learning:
f = 0 ⇒ d = 0 or e = 0
 ⇒ { a=0, b=0 } or { b=0, c=0 }
 ⇒ b = 0 (Cannot be

 recorded) •  Conflict-driven learning:
 f = 0; decision b = 1 results in
conflict
" f = 0 ⇒ b = 0 (Recorded!!)

198 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SRAR-Wire vs. Original RAMBO (FYI)
u  Similarity (looks like...)

l  For each assignment gs in { MA(wt) - MA(gd) }... vs.
 For each assignment gs in MA(wt)...

u  Difference
l  Incremental SAT vs. Independent redundancy tests

u  Incremental SAT in SatRAR
l  MA(gs) is performed on top of MA(gd)

§  Sharing of different MA(gdi)
l  Conflict-driven learning

§  Learning & RAR at the same time
l  Implication filter

§  Reduce #decisions
l  More importantly, can be extended for alternative gate/

sub-circuit replacements

199 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Single Gate Replacement Theorem in
SatRAR

u  Let MA(wt) and MA(gd) be the mandatory
assignments for the fault tests of the target wire wt
and its dominator gd, respectively.

u  Let both <gs, u> and <gt, v> belong to MA(wt),
and be not in the fanout cone of gd.

u  Suppose we make the decision <gs, u> after
MA(gd) and result in an implication <gt, ¬v>.

u  Let a gate gn = AND(<gs, u>, <gt, v>). Then
(i) MA(gd) ⇒ ¬ gn,
(ii) gn or ¬ gn, when connected to gd, must be a valid

alternative gate for wt

200 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Single Gate Replacement in SatRAR

c

g1 b
d

g4

g3 a
b

g7
d

f

g
9

o2
0 g2 e

¬c

1

g6
g8

gd s-a-0
1 1

1

1

1
0

0

1
1 1

1

0

0

* MA(g6) = { (g6, 0), (g2, 0), (d, 0), (g1,
0), (g4, 0), (g3, 1), (a, 1), (b, 1), (f, 1) }

MA(g9=
1)

g1 = 0
g2 =

1

MA(g6) ! (g1, 0) ∧ (g2, 0)

MA(g9) ! (g1, 1) ∨ (g2, 1)

wt

decision

201 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Single Gate Replacement in SatRAR

MA(g6) ! (g1, 0) ∧ (g2, 0)

c

g1 b
d

g4

g3 a
b

g7
d

f

g
9

o2
0 g2 e

¬c

1

g6
g8

gd s-a-0
1 1

1

1

1
0

0

1
1 1

1

0

0
MA(g9) ! (g1, 1) ∨ (g2, 1)

wt

gn alternative gate

Let gn = ¬ ((g1, 0) ∧ (g2, 0))
 = (g1, 1) ∨ (g2, 1)

202 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Alternative Sub-circuit by SatRAR

MA
(wt)

a MA
(gd)

a

wt

gd

a
b

¬c ¬b c

MA(wt) ! a ∧ (b ∨ c) MA(gd) ! ¬ (a ∧ (b ∨ c))

c

¬b

203 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

What can/should be covered in this
 topic?	
u  SAT-based logic synthesis

l  Redundancy addition and removal
l  Functional dependency
l  SAT-based re-synthesis techniques
l  Engineering Change Order (ECO)

u  From SAT to optimization problems
l  Pseudo Boolean satisfiability/optimization problems

u  General SAT-based model checking algorithms
u  Quantified Boolean Formula (QBF)
u  Bit-vector/Arithmetic solver
u  Satisfiability Modulo Theories (SMT)	

204 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Optimization problems? Finding all solutions
of a SAT instance?
u  It seems that with learning techniques (e.g. blocking

clauses, success-driven learning), we can find all
the solutions of a SAT problem

u  With a (target) cost function, can SAT be used for
optimization problems?
l  minimize(or maximize) f(x);

 subject to X = { x | gi(x) ≥ bi, i = 1...m };
 where
§  x = (x1,..., xn) are optimization (or decision) variables,
§  f(x) is the objective function, and
§  gi(x) and bi form the constraints for the valid values of x.

è Find an assignment A ∈ X such that f(A) is min(Max)

205 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A Brute Force Approach
SatOpt(C, F) {
 Let bestCost = INT_MAX;
 while (SAT(C) has a solution A) {
 if (F(A) < bestCost) {
 bestScore = F(A);
 bestAssign = A;
 }
 // adding blocking clause
 C # C ∧ ¬A;
 }
}

" Number of solutions for SAT(C) may be huge!!
" Any better approach?

206 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A Better Approach
SatOpt(C, F) {
 Let bestCost = INT_MAX;
 while (SAT(C) has a solution A) {
 if (F(A) < bestCost) {
 bestScore = F(A);
 bestAssign = A;
 }
 // adding new constraint
 C # C ∧ (F < bestScore);
 }
}

" Excluding all “F ≥ bestScore” solutions at a time
" But how to transform the inequality “F < bestScore” to CNF ?

207 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Using SAT to solve optimization problems

u  In the following, we will learn ---
1.  Pseudo Boolean (PB) optimization

problems
2.  How to transform a PB optimization into a

SAT problem
3.  SAT vs. PB learning

208 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Using SAT as a Pseudo-Boolean Constraint
Solver
u  A Pseudo Boolean (PB) constraint is an inequality

on a linear combination of Boolean variables
l  PB: c0x0 + c1x1 + ... + cn-1xn-1 ≥ k

 where ci is an integer, xi∈ {0, 1}
l  A PB constraint is said to be satisfied if the

LHS of the PB is greater or equal to k
l  Many problems are more naturally expressed

in PB format!!
u  PB SAT/OPT problem

l  Given a set of PB constraints
l  Given a target function of the form:

a0x0 + a1x1 + ... + an-1xn-1
è Find an assignment that satisfies all the PB

constraints and minimizes the target function

209 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Normalization of PB Constraints

u  Normal form for PB constraints?
l  Usually many syntactically different, yet

semantically equivalent, constraints
§  e.g. 4x + 3y - 3z ≥ -1 and y + ¬z + x ≥ 1
§ Difficult to prove their equivalence

l  No known good method to canonicalize the PB
constraints

u  But, try to apply some normalization steps ---
l  Simplifies the implementation by giving fewer

cases to handle
l  May reduce some constraints and make the

subsequent translation more efficient.

210 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Normalization Steps in miniSat+

1.  ≤ constraints are changed into ≥ constraints
by negating all constants.

2.  Negative coefficients are eliminated by
changing x into ¬x and updating the RHS.

3.  Multiple occurrences of the same variable
are merged into one term x or ¬x :

4.  The coefficients are sorted in ascending
order: ai ≤ aj if i < j.

5.  Trivially satisfied constraints, such as “x + y
≥ 0” are removed

211 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Normalization Steps in miniSat+

6.  Trivially unsatisfied constraints (“x + y ≥ 3”)
will abort the parsing and report
Unsatisfiable.

7.  Coefficients greater than the RHS are
trimmed to (replaced with) the RHS.

8.  The coefficients of the LHS are divided by
their greatest common divisor (“gcd”).

9.  The RHS is replaced by “RHS/gcd”,
rounded upwards

212 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Normalization Example

u  4x + 3y - 3z ≥ -1
è 4x + 3y + 3¬z ≥ 2 (positive coefficients)
è 3y + 3¬z + 4x ≥ 2 (sorting)
è 2y + 2¬z + 2x ≥ 2 (trimming)
è y + ¬z + x ≥ 1 (gcd)
(note: ¬z = 1 - z)

213 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

More Preprocessing on PB Constraints

u  Trivial constraint propagation
l  e.g.

 “3x + y + z ≥ 4” è x must be “TRUE” (why?)

u  Constraint splitting
l  e.g.

4x1 + 4x2 + 4x3 + 4x4 + 2y1 + y2 + y3 ≥ 4
è x1 + x2 + x3 + x4 + ¬z ≥ 1 (clause part)

 2y1 + y2 + y3 + 4z ≥ 4 (PB part)
 ,where z is a new variable not present in any PB
 (what does z mean?)

214 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Optimization Procedure
Given a set of PB constraints and a target function ---
1.  First run the solver on the set of constraints

(without considering the objective function) to
get an initial solution F(x0) = k.
l  How? DPLL? LP relaxation? (Covered later)

2.  Then add the PB constraint F(x) < k and run
again

3.  Run until no more solution in 2 is possible

è What’s the difference between this and the SAT
brute-force approach shown earlier?

è Solve as a PB problem, or as a SAT problem?
è How to use SAT to solve PB constraints?

215 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Using SAT to solve optimization problems

u  In the following, we will learn ---
1.  Pseudo Boolean (PB) optimization

problems
2.  How to transform a PB optimization into a

SAT problem
3.  SAT vs. PB learning

216 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Translating PB Constraints to CNF
u  Converting PB constraints into circuit netlist first!!

 How? (e.g. miniSat+)
1.  BDD
2.  Adder network
3.  Sorter network

u  Basic step: the Tseitin transformation
l  ITE(s, t, f)

§  (~s+~t+ x)(~s+ t+~x) (s+~f+ x) (s+ f+~x) (~t+~f+ x) (t+ f+~x)
l  FA_sum(a, b, c): as XOR(a, b, c)
l  FA_carry(a, b, c): as a + b + c ≥ 2
l  HA_sum: as XOR
l  HA_carry: as AND

217 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Translation of PB-constraint (BDD)

u  Variable order:
l  Largest coefficient to the smallest.

u  Once the BDD is built, it can simply be
treated as a circuit of ITEs and translated to
clauses by the Tseitin transformation.

218 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

1. BDD Translation of
a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8

219 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Translation of PB-constraint (BDD)

u  Transform every BDD node by a
ITE gate, with worst case
exponential.

u  But for cardinality linear
 PBCs, linear size BDDs
 is constructed, so it is
 very efficient.
 eg. BDD for a+b+c+d+e+f ≧3

220 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

2. Adder Translation of
2a + 13b + 2c + 11d + 13e + 6f + 7g + 15h ≥ 12

" Generate a binary sum and then compare with the RHS (12)

221 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Translation of PB-constraint (Adder)

u  For each bit (bucket),
an adder network is
established.
 eg.
Adder circuit for x0+…+x5

222 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

3. Sorter Translation of
 a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8

" Base of 3 representation (above example)
" A comparison network with RHS is then constructed

(LHS ≥ 9) ∨ ((LHS ≥ 6) ∧ (LHS % 3 ≥ 2))

223 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Translation of PB-constraint (Sorter)

u  Basic operator

u  Odd-even merge sorter

Sort
(f ≤ g)

a
b

f
g How?

224 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

SAT-based approach issue: arc-consistency

u  Whenever the original constraint C(X) get
an implication, the translation Φ(X, T) will
get the same implication.
l  X: original variables
l  T: introduced variables

u  Then we say that the translation is arc-
consistency

225 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

e.g. Adder network has no arc-consistency

u  x0 + x1 + x2 + x3 + x4 +
x5 ≥ 4

u  x0 = 0 and x3 = 0
 è All other variables = 1
 è Cannot be derived
from the adder network

226 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Arc Consistency and Complexity Analysis

u  BDD
l  Arc-consistency
l  #clauses: worst case exponential, but linear

when the PBC is cardinality.
u  Adder

l  Not arc-consistency
l  Weaker implicativity
l  O(n) clause size complexity

u  Sorter
l  Not arc-consistency
l  Stronger implicativity
l  O(n log2n) clause size complexity

227 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

We have seen how to translate a
PBC problem into a SAT one.

èThere may be some overhead
and drawbacks...

How about solving PBC on PB

data structure?

228 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

PBC solver

u  Traditionally, PB (or in general ILP) constraint
satisfaction/optimization problem can be solved by
linear programming relaxation...
è Common approach for ILP problems
è Cutting plane / branch and cut / lift and cut... etc

integr
al

 point

linear
 inequality

non-integral
 optimal
 solution

cutting plane

229 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Valid Inequality

u  Given a integer program:
max{ cx: x ∈ X }, where X = { x: Ax ≤ b, x ∈ Z+ }
è An inequality πx ≤ π0 is called a “valid

inequality” if πx ≤ π0 for all x ∈ X.

integral
 point

linear
 inequality

which ones are
 valid inequalities?

230 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Chvátal-Gomory procedure

u  Chvátal-Gomory procedure to construct a
valid inequality
Given X = { x: Ax ≤ b, x ∈ Z+ }
1.  Let u be a row vector with

 nonnegative coefficients
è uAx ≤ ub is a valid inequlity
(i.e. linear combination)

2.  The inequality ⎣uAx⎦ ≤ ⎣ub⎦
 is also valid
(also called: lifting)

231 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Chvátal-Gomory procedure example

u  Ax ≤ b ---
 7x1 - 2x2 ≤ 14
 x2 ≤ 3
 2x1 - 2x2 ≤ 3

1.  Multiply u = (2/7, 37/63, 0)
è uAx = 2x1 + 1/63 x2 ≤ 121/21 = ub

2.  Applying “floor” function on the inequality
è 2x1 + 0x2 ≤ 5
è x1 ≤ 5/2
è x1 ≤ 2

232 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Cutting Plane Algorithms

1.  Using LP relaxation to find an optimal solution
l  e.g. Simplex
l  If the solution is integral, done.

2.  Using cutting plane algorithms to find a (set
of) valid inequality(ies)

3.  Adding the valid inequalities to the constraints
l  Perhaps with some simplification (e.g.

removing redundant inequlities)
4.  Repeat 1

233 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Cutting Plane Algorithms

u  There are many other types of cuts
l  0-1 Knapsack, odd hole, lift and project,...
è More to be covered in “Discrete

Optimization” class

u  How efficient are these algorithms for PB
problem? (i.e. 0-1 ILP problem)
l  How many iterations?
l  DPLL (Branch-and-bound) for PB problem?

234 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

FYI: Branch-and-Cut for ILP problems

maximize f: 12x + 7y
subject to g1: 2x – 3y ≤ 6

 g2: 7x + 4y ≤ 28
 g3: -x + y ≤ 2
 g4: -2x – y ≤ 2

where x, y ∈ Z

x

y

g1

g2

g3 g4

f = k
C

p1
p2

235 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

FYI: Branch-and-Cut for ILP problems

But PB is 0-1 ILP. Any better algorithm?

x = 108/29
y = 14/29 x ≤ 3

x = 3
y = 7/4 y ≥ 2

x = 20/7
y = 2 x ≤ 2

x = 2
y = 7/2 y ≤ 3

x = 2
y = 3 f = 45

x = 3
y = 1 f = 43

infeasible

infeasible
infeasible

Branch-and-bound

However, #decisions can be exponential...
Branch-and-cut = branch-and-bound + cutting plane

236 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Compare: DPLL and new SAT algorithms

u  What make the modern DPLL-based SAT
solvers efficient ---

1.  Efficient BCP

2.  Conflict-driven learning with non-
chronological backtracking

3.  Clause/Circuit reduction/simplification

Can PB solvers have the counterparts?

237 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Let’s summarize the types of PB solvers
first...
1.  Pure SAT-based method

l  Converting PB constraints to CNF
l  e.g. miniSat+

2.  ILP-based
l  Cutting plane, branch and cut, etc.
l  e.g. CPLEX

3.  Hybrid method (SAT + ILP)
l  e.g.
1.  Donald Chai and Andreas Kuehlmann, “A Fast

Pseudo-Boolean Constraint Solver”, TCAD 2005
2.  Hossein M. Sheini and Karem A. Sakallah,

“Pueblo: A Hybrid Pseudo-Boolean SAT Solver”,
JSAT 2006

238 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Hybrid PB Solver Algorithm

While (MakeDecision() != done) {
 while (PBCP() == conflict) {
 CNF_Learning();
 PB_Learning();
 if (learning.conflict())
 return UNSAT;
 }
}
return SAT;

239 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Pseudo Boolean Constraint Propagation
(PBCP)

u  Let the PB constraint be normalized so that:
l  a1x1 + a2x2 + ... + anxn ≥ k, where ai, k ∈ Z+, xi ∈ B
l  Let α = Σ(xi != 0)ai coefficients of non-zero terms

u  Let s denote the slack of a constraint that
l  s = α - k
l  If s < 0 è UNSAT

u  To make sure no conflict
l  α ≥ k, i.e. s ≥ 0

u  An indirect implication is generated if ---
l  s = (α-k) < amax, where amax = max unassigned literal
è xi|amax = 1

240 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Pseudo Boolean Constraint Propagation
(PBCP)
u  Example:

 6x1 + 5x2 + 5x3 + 3x4 + 2x5 + 2x6 + x7 ≥ 12
l  s = 24 - 12 > 0

u  Assign: x3 = 0, x4 = 0
l  α = 16 ≥ 12 è no conflict

u  However ---
l  s = (16 - 12) < 6, where amax = a1 = 6
è Indirect implication x1 = 1

u  Then ---
l  s = (16 - 12) < 5, where amax = a2 = 5

è Indirect implication x2 = 1
è Multiple implications are inferred

241 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Watch Scheme for PBCP
u  Can we do “watch” for PBCP?
u  Dynamic watch

l  Let Lw be a set of watch literals such that
l  Every literal in Lw is non-negative (1 or x)
l  Σ(xi ∈ Lw)ai = αw ≥ k + amax
è However, since αw will change along with

implications, Lw needs to be updated and thus
the number of watch literals will also change

u  All watch
l  Watch all literals

u  Static watch (ref: QuteSat)
l  A conservative but more efficient than all and

dynamic watches

242 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Learning

u  How to perform conflict-driven learning for PB?
l  Learn a clause or an inequality?

u  The bottom line is, any learned constraint must
exhibit the following properties:

1.  The learned constraint must remain in conflict
under the current partial assignment.
l  This ensures that we backtrack from the conflict

2.  After backtracking from the conflict, there must
exist some decision level at which the constraint
will generate one or more implications for the
respective partial assignments

243 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Problematic Conflict Driven Learning
u  3x1 + 2x2 + x7 + 2x8 ≥ 3 (a)

 3x1 + x3 + x5 + x9 ≥ 3 (b)
 x2 + x3 + x6 ≥ 2 (c)

u  Assume
l  x8 ß 1 @ some previous decision level
l  x6 ß 0 @ current decision level

u  Implication graph

u  Deriving learned constraint
 (d) 2x2 + x7 + 2x8 + x3 + x5 + x9 ≥ 3 (a)+(b) // remove x1
 (e) x2 + x7 + 2x8 + x5 + x9 + x6 ≥ 3 (d)+(c) // remove x3
 (f) x3 + x7 + 2x8 + x5 + x9 + 2x6 ≥ 4 (e)+(c) // remove x2
è Does not conflict with (x8 = 1, x6 = 0)

x8 = 1

x6 = 0 x2 = 0 x3 = 0 x1 = 0 x1 = 1 c

c

b

a

244 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

A closer look...

u  Deriving learned constraint
 (a) 3x1 + 2x2 + x7 + 2x8 ≥ 3
 (b) 3x1 + x3 + x5 + x9 ≥ 3

slack (c) x2 + x3 + x6 ≥ 2
 0 (d) 2x2 + x7 + 2x8 + x3 + x5 + x9 ≥ 3 // (a)+(b)
 0 (e) x2 + x7 + 2x8 + x5 + x9 + x6 ≥ 3 // (d)+(c)
 0 (f) x3 + x7 + 2x8 + x5 + x9 + 2x6 ≥ 4 // (e)+(c)

è Remember, if slack ≥ 0, no conflict!!

è Over satisfied!!

è Need to “weaken” the PB constraint!!

245 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Weakening the PB constraints

 (a) 3x1 + 2x2 + x7 + 2x8 ≥ 3
 (b) 3x1 + x3 + x5 + x9 ≥ 3
 è Removing non-0 literal // (b) + “x9 ≥ 0”
 è 3x1 + x3 + x5 ≥ 2
 è Saturating x1
 (b’) 2x1 + x3 + x5 ≥ 2

slack (c) x2 + x3 + x6 ≥ 2
 -1 (d) 4x2 + 2x7 + 4x8 + 3x3 + 3x5 ≥ 6 // 2(a)+3(b’)
 -1 (e) x2 + 2x7 + 4x8 + 3x5 + 3x6 ≥ 6 // (d)+3(c)
 -1 (f) x3 + 2x7 + 4x8 + 3x5 + 4x6 ≥ 7 // (e)+(c)

 è Maintain conflict with (x8 = 1, x6 = 0)!!

246 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Conflict-Driven Learning

1.  CNF learning
l  In the previous

 example, we can learn a CNF clause (x8 + x6) by
traversing on the implication graph
 è Does not depend on the resolutions on the PB
constraints

l  Similar to SAT by ---
§  Record the implication sources in PBCP
§  Backtrack to the UIP and learn a clause

2.  PB learning
l  By applying resolutions and weakening on the PB

constraints

x8 = 1

x6 = 0 x2 = 0 x3 = 0 x1 = 0 x1 = 1

247 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Learning CNF and PB constraints simultaneously

source: “Pueblo”, JSAT 2006

248 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Summary on PB Solver

u  Many applications can be modeled as PB (0-1
ILP) problems
l  Logic optimization, verification, routing, operational

research (OR), etc.
u  Great attention on research these years

l  e.g. PB Evaluation:
 http://www.cril.univ-artois.fr/PB09/

u  To be combined with word-level arithmetic, first-
order logic, theorem proving,... techniques
l  SMT: Satisfiability Modulo Theory
l  e.g. SMT Competition:

 http://www.csl.sri.com/users/demoura/smt-comp/

249 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

Summary of SAT and Its Applications	

u  Remember: SAT is to answer the satisfiability
 problem of a proposition. Don’t use it (directly)
 to compute all the solutions, nor to represent
 a Boolean formula (e.g. the set of reachability)

u  The spirits of SAT solving are:
l  Local/greedy search
l  Conflict earlier, the better
l  Learn from the past
l  Lazy evaluation
l  Simplify from learned model
l  Profiling-based is the trend. Big data? (Haha)

250 FLOLAC 2015 SAT and Its Applications Prof. Chung-Yang (Ric) Huang

To contact me…	

u  Any question? Please feel free to contact
 me…
l  Office: EE-II 444
l  E-mail: cyhuang@ntu.edu.tw
l  Tel: 02-3366-3644
l  Easiest ways to find me…

 ric2k1 on almost major media
 (PTT, P2, Skype FB, Line, WeChat…)

