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Decision Procedures  

An algorithmic point of view 

So far we know how to… 

 Decide Equality Logic with Uninterpreted Functions: 
(x1 = x2) Ç  :(f(x2) = x3) Æ  … 

 

 Decide Disjunctive Linear arithmetic: 

 3x1 + 5x2 ¸  2x3 Æ  x2 ·  4x4… 

 

 What about a combined formula ? 
(x2 ¸  x1) Æ  (x1- x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(f(x1) - f(x2))  f(x3)  

 



Decision Procedures  

An algorithmic point of view 

We also know how to… 

 Decide bit-vector equations 

 a[32] £  b[32] = b[32] £  a[32] 

 But how shall we decide 

 f(a[32], b[1]) = f(b[32], a[1]) Æ  a[32] = b[32] 



Decision Procedures  

An algorithmic point of view 

More combination examples:  

 Combining lists, arithmetic and Uninterpreted 

Functions: 

  

 (x1 ·  x2) Æ  (x2 ·  x1 + car(cons(0,x1))) Æ  p(h(x1) – h(x2)) Æ  :p(0) 

 

 Combining Arrays and Arithmetic: 

  

 x = store(v,i,e)[j] Æ  y = v[j] Æ  x > e Æ  x > y 



Decision Procedures  

An algorithmic point of view 

Combining theories  

 Approach #1: Reduce all theories to a common logic, 

if possible (e.g. Propositional Logic). 

 All un-quantified theories we saw so far are in NP. 

We saw their direct translation to SAT (i.e. not through a 

Turing-machine). 

 Approach #2: Combine decision procedures of the 

individual theories.  

 How? we will learn the Nelson-Oppen method* 

 

* Greg Nelson and Derek Oppen, simplification by cooperating decision 

procedures, 1979  



Decision Procedures  

An algorithmic point of view 

Reminders: theories and signatures 

 First order logic –  

 Symbols (Boolean connectives and quantifiers over variables), Syntax 

(wff-s  ). 

 Axioms, inference rules.  

 First order theories –  

 Additional axioms and symbols characterizing the theory. 

 The signature  of a theory T  holds the set of functions and predicates 

of the theory. 

 “First order quantifier-free theories with equality” – the 

equality predicate must be part of the signature. 



Decision Procedures  

An algorithmic point of view 

The Theory-Combination problem 

 Given theories T1 and T2 with signatures 1 and 2, 

the combined theory T1 ©  T2  

 has signature 1 [ 2 and  

 the union of their axioms. 

 Let  be a 1 [ 2 formula. 

 The problem:   Does T1 ©  T2  ²    ? 



Decision Procedures  

An algorithmic point of view 

The problem 

 The Theory-Combination problem is undecidable (even when 

the individual theories are decidable). 

 Under certain restrictions, it becomes decidable. 

 We will assume the following restrictions:   

 T1 and T2 are decidable, quantifier-free first-order theories with equality. 

 Disjoint signatures (other than equality):   1 Å  2 = ; 

 More restrictions to follow… 

 There are extensions to the basic algorithm that we will study, 

that partially overcomes each of these restrictions.  



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method (1) 

 Purification:   validity-preserving transformation of 

the formula after which predicates from different 

theories are not mixed. 

 

1. Replace an `alien’ sub-expression  with a new auxiliary 

variable a 

2. Constrain the formula with a =  

 Transform   x1·  f(x1)    

 … into  x1·  a1 Æ   a1 = f(x1) 

Arithmetic 

Uninterpreted Functions Pure expressions, shared variables 



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method (2) 

 After purification we are left with several sets of pure 

expressions F1…Fn such that: 

 Fi belongs to some ‘pure’ theory which we can decide.  

 Shared variables are allowed, i.e. it is possible that for 

some i,j, vars(Fi) Å  vars(Fj)  ;.  

   is satisfiable $ F1 Æ  … Æ  Fn is satisfiable 



Decision Procedures  

An algorithmic point of view 

The Nelson-Oppen method* (3) 

1. Purify  into F1Æ  … Æ   Fn. 

2. If 9i. Fi is unsatisfiable, return `unsatisfiable’ . 

3. If 9i,j. Fi implies an equality not implied by Fj, add 

it to Fj  and goto step 2. 

4. Return `satisfiable’. 

* So far only for ‘non-convex’ theories – to be explained 



Decision Procedures  

An algorithmic point of view 

Example (1) 

 (x1 ·  x2) Æ  (x2 ·  (x1 + car(cons(0,x1)))) Æ  p(h(x1) – h(x2)) Æ  :p(0) 

 

 Purification: 

 (x1 ·  x2) Æ  (x2 ·  x1 + a1)Æ  p(a2) Æ  :p(a5) Æ  

 a1 =  car(cons(a5, x1)) Æ  

 a2  = a 3 – a4  Æ  

 a3 =  h(x1)   Æ  

 a4 = h(x2)  Æ  

 a5 = 0  

 



Decision Procedures  

An algorithmic point of view 

Example (1), cont’d 

Arithmetic EUF Lists 

x1 ·  x2  

x2 ·  x1 + a1 

a2  = a 3 – a4 

a5 = 0 

a3 =  h(x1)  

a4 = h(x2) 

p(a2)  

:p(a5) 

a1 =  car(cons(a5,x1)) 

a1 = a5 a1 = a5 

x1 = x2 

a1 = a5 

x1 = x2 x1 = x2 

a3 = a4 a3 = a4 
a3 = a4 

a2 = a5 a2 = a5 a2 = a5 

False 



Decision Procedures  

An algorithmic point of view 

Example(2) 

 (x2 ¸  x1) Æ  (x1 – x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(f(x1) – f(x2))  f(x3) 

 

 Purification: 

 (x2 ¸  x1) Æ  (x1 – x3 ¸  x2) Æ  (x3 ¸  0) Æ  f(a1)  f(x3) Æ  

 a1 = a2 –  a3 Æ  

 a2 = f(x1)  Æ  

 a3 = f(x2)  

 



Decision Procedures  

An algorithmic point of view 

Example (2) – cont’d 

Arithmetic EUF 

x2 ¸  x1  

x1 – x3 ¸  x2  

x3 ¸  0  

a1 =  a2 –  a3  

 

 

 

 

 

 

f(a1)  f(x3) 

a2 = f(x1)  

a3 = f(x2) 

x3 = 0 x3 = 0 

x1 = x2 
x1 = x2 

a2 = a3 a2 = a3 

a1 = 0 a1 = 0 

False 



Decision Procedures  

An algorithmic point of view 

Wait, it’s not so simple… 

 Consider: : 1 ·  x Æ  x ·  2 Æ  p(x) Æ  :p(1) Æ  :p(2 ) 

 x2Z  

 

 

 

 

 

 Neither theories imply an equality, and both are 

satisfiable. 

 But  is unsatisfiable! 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

p(x)  

:p(1)  

:p(2) 



Decision Procedures  

An algorithmic point of view 

Some theories have it, some don’t 

 Definition: A theory T is convex if for all 

conjunctions  it holds that 

 ! Ç i=1..n xi=yi for some n > 1 ,  

 ! xi = yi   for some i 2 {1..n} 

 where xi,yi are some T variables.  

 

 Convex: Linear Arithmetic over R, EUF  

 Non-convex: Almost anything else… 



Decision Procedures  

An algorithmic point of view 

Convexity: examples 

 Linear arithmetic over R is convex 

 : x1 ·  1 Æ  x1 ¸  0  implies an infinite disjunction of equalities,  

 : x1 ·  1 Æ  x1 ¸  1  ! x1 = 1  implies a singleton 

: x1 ·  1 Æ  x1 ¸  2   implies everything 

  

 

 Linear arithmetic over Z is not convex 

 : 1 ·  x1 Æ  x1 ·  2 

 Although    ! (x1 = 1 Ç  x1 =2) 

 It is not the case that   ! x1 = 1 Ç   ! x1 = 2 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ?  

 Recall: : 1  ·  x Æ  x ·  2 Æ  p(x) Æ  :p(1) Æ  :p(2) 

 x2Z  

 

 

 

 

 

 Neither theories imply an equality, and both are 

satisfiable. 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

p(x)  

:p(1)  

:p(2) 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ? (cont’d) 

 But: 1   ·  x Æ  x ·  2  imply the disjunction x = 1 Ç  x = 2 

 Since the theory is non-convex we cannot propagate 

either x=1 or x=2. 

 We can only propagate the disjunction itself. 

 

 



Decision Procedures  

An algorithmic point of view 

So why is convexity important ? (cont’d) 

 Propagate the disjunction and perform case-splitting. 

 

 

 

 

 

 

Arithmetic over Z Uninterpreted 

predicates 

1  ·   x  

x ·  2 

 

 

 

 

p(x)  

:p(1) Æ  :p(2) 

 x = 1 Ç  x = 2 x = 1 Ç  x = 2 

h¢i  Æ  x = 1 

False 

h¢i  Æ  x = 2 

False 

Split! 



Decision Procedures  

An algorithmic point of view 

So why is convexity important? (cont’d) 

 Conclusion: when the theory is non-convex, we must 

case-split. 

 This adds a splitting step in Nelson-Oppen. 

 As a result:  

 Convex theories: Polynomial  

 Non-Convex theories: Exponential  



Decision Procedures  

An algorithmic point of view 

The (full) Nelson-Oppen method  

1. Purify  into ’: F1Æ…Æ  Fn. 

2. If 9i. Fi is unsatisfiable, return `unsatisfiable’ . 

3. If 9i,j. Fi implies an equality not implied by Fj, add it to Fj  

and goto step 2. 

4. If 9i. Fi ! (x1= y1Ç…Ç  xk= yk) but 8j Fi 9 xj= yj,  

apply recursively to ’Æ  x1= y1, … ,’Æ  xk= yk.  

If any of them is satisfiable, return ‘satisfiable’. Otherwise 

return ‘unsatisfiable’. 

5. Return `satisfiable’. 



Decision Procedures  

An algorithmic point of view 

Correctness is hard to prove… 

 

 Theorem: N.O. returns unsatisfiable if and only if its input 

formula  is unsatisfiable. 

 

 We will prove this theorem for the case of combining two 

convex theories. The generalization is not hard. The proof is 

based on [NO79]. 

 



Decision Procedures  

An algorithmic point of view 

Correctness is hard to prove… 

 () N.O. returns ‘unsatisfiable’ !  is unsatisfiable.  
(That’s the simple side) 

 Assume  is satisfiable and let  be a satisfying assignment of . 

 Let A = {a1,…,an} be the purification (auxiliary) variables. 

 Claim: there exists an assignment to the A variables such that  

extended with this assignment satisfies F1Æ  F2. 

 Let ’ be this extended assignment. 

 For each equality eq added in line 3, 9i. Fi ! eq.  

 Since ’ ²  Fi then also ’²  eq.  

 Hence for all j 2 {1,2}, ’ ²  Fj Æ  eq. 

 Thus, N.O. does not return unsat in this case. 

 In other words, if N.O. returns unsat, then  is unsat. 



Decision Procedures  

An algorithmic point of view 

Proof () 

 () If N.O. returns ‘satisfiable’,  is satisfiable.  

(This will require several definition and lemmas) 

 

 Dfn:   A residue of a formula , denoted Res(), is the 

strongest Equality Logic formula implied by . 

 

Res(x= f(a) Æ   y = f(b))   is  a = b !  x = y 

Res(x·  y Æ   y·  x)  is  x = y 

 

 Lemma 1:   For any formula F, there exists a formula Res(F) 

(we will skip the proof of this Lemma) 



Decision Procedures  

An algorithmic point of view 

Proof () 

 Recall: the Logical symbols of a formula are those shared by all 

first-order theories. We consider `=‘ as a logical symbol. The 

Non-logical symbols are theory-specific. 

 

 Dfn: The parameters of a formula , denoted param(), are the 

non-logical symbols in . 

 Craig’s Interpolation Lemma:   if A and B are formulas such 

that A ! B, then there exists a formula H such that A ! H 

and H ! B, and param(H) µ  param(A) Å  param(B). 



Decision Procedures  

An algorithmic point of view 

Proof () 

 

 Lemma 2:   if F1 and F2 are formulas with disjoint signatures, 

Res(F1 Æ   F2) $ (Res(F1) Æ   Res(F2)). 

 Proof:   ( )  

  F1 ! Res(F1), F2 ! Res(F2),  

  F1 Æ   F2   ! Res(F1) Æ   Res(F2)   

  Res(F1 Æ   F2)  ! Res(F1) Æ   Res(F2)  // * 

 

* The consequence (RHS) is Equality Logic, hence it is implied by the 

residue of the Antecedent (LHS). 



Decision Procedures  

An algorithmic point of view 

Proof of Lemma 2 () 

 F1 Æ   F2 ! Res(F1 Æ   F2) 

  F1 ! (F2 ! Res(F1 Æ   F2)) 

 There exists an interpolant H such that  

(F1 !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

Can be rewritten as  

    (Res(F1) !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

because H is an Equality Logic formula, and hence 

everything implied by F1 is also implied by Res(F1).  

 

(1) 

(2) 

(3) 

(4) 

Why is H  an Equality Logic formula? because  

param(RES(F1 Æ  F2))  = {} //Equality Logic formula 

and param(F1) Å  param(F2)  = {} 



Decision Procedures  

An algorithmic point of view 

Proof of Lemma 2 () 

 (Res(F1) !  H) Æ  (H ! (F2 ! Res(F1 Æ   F2))) 

 Since Res(F1 Æ   F2) is also an Equality Logic formula: 
(Res(F1) ! H) Æ  (H ! (Res(F2) ! Res(F1 Æ   F2))) 

which implies 
(Res(F1) ! (Res(F2) ! Res(F1 Æ   F2))) 

and hence 

(Res(F1) Æ  Res(F2)) ! Res(F1 Æ   F2) 

 

 

 q.e.d (Lemma 2):   

 Res(F1) Æ   Res(F2) $ Res(F1 Æ   F2) 

 

(5) 

(6) 

(7) 

(4) 



Decision Procedures  

An algorithmic point of view 

Lemma 3 

 Lemma 3:  

 Let F1 and F2 be satisfiable Equality Logic formulas s.t. 

 V = vars(F1) [ vars(F2).  

 8x,y 2 V,  (F1 ! x=y Æ  F2 ! x=y) or (F1 9 x=y Æ   F2 9 x=y) 

 Then, F1 Æ   F2 is satisfiable. 

 Proof:   Let  

 S  = the set of all equalities implied by both F1 and F2 

 T = the rest of the possible equalities in V.  

  = an assignment s.t. 8eq 2 S.  ²  eq, 8eq 2 T .  2 eq 

 Claim:    ²  F1 Æ   F2 



Decision Procedures  

An algorithmic point of view 

Proof of Lemma 3 

 Falsely assume that  2 F1 

 Then, (F1 ! Ç eq2 T eq)  

 (Can it be, alternatively, that F1 implies a negation of one of the 

equalities in S ? no, because it implies Æ eq 2 S eq 

 

 If T is empty, F1 is false   (contradiction) 

 If 9eq 2 T. F1 ! eq, then eq 2 S 

 (contradiction) 

 Otherwise, F1 is non-convex   (contradiction) 

 q.e.d (Lemma 3)  



Decision Procedures  

An algorithmic point of view 

Proof () 

 Now suppose N.O. returns SAT although F1 Æ  F2 is 

unsatisfiable. 

 Res(F1 Æ  F2) = false 

 Hence, by Lemma 2, Res(F1) Æ  Res(F2) = false 

 



Decision Procedures  

An algorithmic point of view 

Proof () 

 On the other hand, in step 4, where we return ‘Satisfiable’, we 

know that 

 F1 and F2 are separately satisfiable 

 F1 and F2 imply exactly the same equalities.  

 Thus, Res(F1) and Res(F2) are satisfiable and imply the 

same equalities. 

 Hence, according to Lemma 3, Res(F1) Æ  Res(F2) is also 

satisfiable, i.e. Res(F1) Æ  Res(F2)  false (contradiction). 

 

 Q.E.D (N.O.) 



Decision Procedures  

An algorithmic point of view 

More problems… 

 Definition: A -theory T is Stably-infinite if for every 

quantifier-free -formula   

 is satisfiable ,  

 can be satisfied by an interpretation with an infinite 

domain. 

 

 Specifically, this means that no theory with a finite 

domain is stably infinite. 



Decision Procedures  

An algorithmic point of view 

Problem: non-stably infinite theories 

 Consider a theory T1:  

  1: A function f,  

 Axioms that only allow 

solutions with 2 distinct values. 

 And a theory T2: 

 2: A function  g, 

 Domain: N 

So this formula is unsatisfiable: 

 

:  f(x1)  f(x2)  Æ   g(x1)  g(x3)  Æ   g(x2)  g(x3) 

Recall that the combined theory T1 ©  T2 has the union of the axioms.  

Hence the solution to any formula  2 T1 ©  T2 cannot have more than 2 distinct  

values. 



Decision Procedures  

An algorithmic point of view 

Problem: non-stably infinite theories 

:  f(x1)  f(x2)  Æ   g(x1)  g(x3)  Æ   g(x2)  g(x3) 

T1 T2 

f(x1)  f(x2) 

 

g(x1)  g(x3) 

g(x2)  g(x3) 

 

No equalities to propagate: Satisfiable ! 
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An algorithmic point of view 

Solution to non-stable infinite theories 

 Nelson-Oppen method cannot be used. 

 Recently a solution to this problem was suggested by Tinelli & 

Zarba [TZ05] 

 Assuming all combined theories are stably-finite (in particular, it has a 

small model property), it computes, if possible, the upper bound on the 

minimal satisfying assignment, and propagates this information 

between the theories. 


