Decision Procedures An Algorithmic Point of View

Deciding Combined Theories

Daniel Kroening and Ofer Strichman

So far we know how to...

■ Decide Equality Logic with Uninterpreted Functions: $(x_1 = x_2) \lor \neg (f(x_2) = x_3) \land \dots$

Decide Disjunctive Linear arithmetic:

$$3x_1 + 5x_2 \ge 2x_3 \land x_2 \le 4x_4 \dots$$

What about a combined formula ? $(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \neq f(x_3)$

We also know how to...

- Decide bit-vector equations
 - $a[32] \times b[32] = b[32] \times a[32]$
- But how shall we decide
 - $f(a[32], b[1]) = f(b[32], a[1]) \land a[32] = b[32]$

More combination examples:

Combining lists, arithmetic and Uninterpreted Functions:

$$(x_{\scriptscriptstyle 1} \leq x_{\scriptscriptstyle 2}) \land (x_{\scriptscriptstyle 2} \leq x_{\scriptscriptstyle 1} + car(cons(0, x_{\scriptscriptstyle 1}))) \land p(h(x_{\scriptscriptstyle 1}) - h(x_{\scriptscriptstyle 2})) \land \neg p(0)$$

Combining Arrays and Arithmetic:

 $x = \text{store}(v, i, e)[j] \land y = v[j] \land x > e \land x > y$

Combining theories

- Approach #1: Reduce all theories to a common logic, if possible (e.g. Propositional Logic).
 - \Box All un-quantified theories we saw so far are in NP.
 - □ We saw their direct translation to SAT (i.e. not through a Turing-machine).
- Approach #2: Combine decision procedures of the individual theories.
 - □ How? we will learn the Nelson-Oppen method*
 - * Greg Nelson and Derek Oppen, *simplification by cooperating decision procedures*, 1979

Reminders: theories and signatures

■ First order logic –

- Symbols (Boolean connectives and quantifiers over variables), Syntax (wff-s).
- \Box Axioms, inference rules.
- First order theories
 - □ Additional axioms and symbols characterizing the theory.
 - \Box The signature Σ of a theory \mathcal{T} holds the set of functions and predicates of the theory.
- "First order quantifier-free theories with equality" the equality predicate must be part of the signature.

The Theory-Combination problem

Given theories \mathcal{T}_1 and \mathcal{T}_2 with signatures Σ_1 and Σ_2 , the combined theory $\mathcal{T}_1 \oplus \mathcal{T}_2$

 \Box has signature $\Sigma_1 \cup \Sigma_2$ and

 \Box the union of their axioms.

• Let ϕ be a $\Sigma_1 \cup \Sigma_2$ formula.

• The problem: Does $\mathcal{T}_1 \oplus \mathcal{T}_2 \models \phi$?

The problem

- The Theory-Combination problem is undecidable (even when the individual theories are decidable).
- Under certain restrictions, it becomes decidable.
- We will assume the following restrictions:
 - $\Box \mathcal{T}_1$ and \mathcal{T}_2 are decidable, quantifier-free first-order theories with equality.
 - \square Disjoint signatures (other than equality): $\Sigma_1 \cap \Sigma_2 = \emptyset$
 - \Box More restrictions to follow...
- There are extensions to the basic algorithm that we will study, that partially overcomes each of these restrictions.

The Nelson-Oppen method (1)

- Purification: validity-preserving transformation of the formula after which predicates from different theories are not mixed.
- 1. Replace an `alien' sub-expression ϕ with a new auxiliary variable *a*
- 2. Constrain the formula with $a = \phi$

Transform ... into

Uninterpreted Functions

Arithmetic

$$x_1 \le f(x_1)$$

$$x_1 \le a_1 \land a_1 = f(x_1)$$

Pure expressions, shared variables

The Nelson-Oppen method (2)

- After purification we are left with several sets of pure expressions $F_1...F_n$ such that:
 - \Box F_i belongs to some 'pure' theory which we can decide.
 - □ Shared variables are allowed, i.e. it is possible that for some $i, j, vars(F_i) \cap vars(F_j) \neq \emptyset$.
 - $\Box \phi$ is satisfiable $\leftrightarrow F_1 \land \ldots \land F_n$ is satisfiable

The Nelson-Oppen method* (3)

- 1. Purify ϕ into $F_1 \wedge \ldots \wedge F_n$.
- 2. If $\exists i. F_i$ is unsatisfiable, return `unsatisfiable'.
- 3. If $\exists i, j$. F_i implies an equality not implied by F_j , add it to F_j and goto step 2.
- 4. Return `satisfiable'.

* So far only for 'non-convex' theories – to be explained

Example (1)

$$(x_{1} \leq x_{2}) \land (x_{2} \leq (x_{1} + car(cons(0, x_{1})))) \land p(h(x_{1}) - h(x_{2})) \land \neg p(0)$$

Purification:

$$\begin{array}{ll} (x_1 \leq x_2) \wedge (x_2 \leq x_1 + a_1) \wedge p(a_2) \wedge \neg p(a_5) \wedge \\ a_1 = car(cons(a_5, x_1)) \wedge \\ a_2 = a_3 - a_4 & \wedge \\ a_3 = h(x_1) & \wedge \\ a_4 = h(x_2) & \wedge \\ a_5 = 0 \end{array}$$

Example (1), cont'd

Arithmetic	EUF	Lists
$x_1 \leq x_2$	$a_3 = h(x_1)$	$a_1 = car(cons(a_5, x_1))$
$x_{\scriptscriptstyle 2} \leq x_{\scriptscriptstyle 1} + a_{\scriptscriptstyle 1}$	$a_4 = h(x_2)$	
$a_{2} = a_{3} - a_{4}$	$p(a_2)$	
$a_{5} = 0$	$\neg p(a_5)$	
$a_1 = a_5$	$a_{1} = a_{5}$	$a_1 = a_5$
$x_1 = x_2$	$x_{\scriptscriptstyle 1}{=}x_{\scriptscriptstyle 2}$	$x_1 = x_2$.
$a_{3} = a_{4}$	$a_3 = a_4$	$a_{3}^{} = a_{4}^{}$
$a_{2} = a_{5}$	$a_{2} = a_{5}$	$a_2 = a_5$
	False	

Example(2)

$$(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \neq f(x_3)$$

Purification:

$$\begin{split} (x_2 \geq x_1) \wedge (x_1 - x_3 \geq x_2) \wedge (x_3 \geq 0) \wedge f(a_1) \neq f(x_3) \wedge \\ a_1 = a_2 - a_3 \wedge \\ a_2 = f(x_1) & \wedge \\ a_3 = f(x_2) \end{split}$$

Example (2) – cont'd

Arithmetic	EUF	
$x_2 \ge x_1$	$f(\mathbf{a}_1) \neq f(x_3)$	
$x_1 - x_3 \ge x_2$	$a_2 = f(x_1)$	
$x_3 \ge 0$	$a_3 = f(x_2)$	
$a_1 = a_2 - a_3$		
$x_3 = 0$	$x_3 = 0$	
$x_1 = x_2$	$x_1 = x_2$	
$a_2 = a_3$	$a_2 = a_3$	
$a_1 = 0$	$a_1 = 0$	
	False	
Decision Procedures		

Wait, it's not so simple...

• Consider: $\phi: 1 \le x \land x \le 2 \land p(x) \land \neg p(1) \land \neg p(2)$

 $x \in \mathbb{Z}$

	Uninterpreted predicates
$1 \leq x$	p(x)
$x \leq 2$	$\neg p(1)$
	$\neg p(2)$

- Neither theories imply an equality, and both are satisfiable.
- But **\u03c6** is unsatisfiable!

Some theories have it, some don't

- Definition: A theory *T* is *convex* if for all conjunctions \$\ophi\$ it holds that
 - $\phi \to \bigvee_{i=1..n} x_i = y_i \text{ for some } n > 1 \Leftrightarrow$ $\phi \to x_i = y_i \text{ for some } i \in \{1..n\}$

where x_i, y_i are some \mathcal{T} variables.

Convex: Linear Arithmetic over R, EUF *Non-convex*: Almost anything else...

Convexity: examples

• Linear arithmetic over \mathbb{R} is convex

$$\begin{split} &\varphi: x_1 \leq 1 \land x_1 \geq 0 & \text{implies an infinite disjunction of equalities,} \\ &\varphi: x_1 \leq 1 \land x_1 \geq 1 & \rightarrow x_1 = 1 & \text{implies a singleton} \\ &\varphi: x_1 \leq 1 \land x_1 \geq 2 & \text{implies everything} \end{split}$$

Linear arithmetic over Z is not convex $\phi: 1 \le x_1 \land x_1 \le 2$ Although $\phi \to (x_1 = 1 \lor x_1 = 2)$ It is not the case that $\phi \to x_1 = 1 \lor \phi \to x_1 = 2$

So why is convexity important?

• Recall: $\phi: 1 \leq x \wedge x \leq 2 \wedge p(x) \wedge \neg p(1) \wedge \neg p(2)$

 $x \in \mathcal{Z}$

Arithmetic over \mathbb{Z}	Uninterpreted predicates
$1 \leq x$	p(x)
$x \leq 2$	$\neg p(1)$
	$\neg p(2)$

Neither theories imply an equality, and both are satisfiable.

So why is convexity important ? (cont'd)

- But: 1 $\leq x \land x \leq 2$ imply the disjunction $x = 1 \lor x = 2$
- Since the theory is non-convex we cannot propagate either x=1 or x=2.
- We can only propagate the disjunction itself.

So why is convexity important ? (cont'd)

Propagate the disjunction and perform case-splitting.

Arithmetic over \mathbb{Z}	Uninterpreted predicates
$1 \leq x$	p(x)
$x \leq 2$	$ eg p(1) \land \neg p(2) $
$x = 1 \lor x = 2$	$x = 1 \lor x = 2$ Split!
	$\langle \cdot \rangle \wedge x = 1 \mid \langle \cdot \rangle \wedge x = 2$
	False False

So why is convexity important? (cont'd)

- Conclusion: when the theory is non-convex, we must case-split.
- This adds a splitting step in Nelson-Oppen.
- As a result:
 - □ Convex theories: Polynomial
 - □ Non-Convex theories: Exponential

The (full) Nelson-Oppen method

- 1. Purify ϕ into $\phi': F_1 \wedge \ldots \wedge F_n$.
- 2. If $\exists i. F_i$ is unsatisfiable, return `unsatisfiable'.
- 3. If $\exists i, j$. F_i implies an equality not implied by F_j , add it to F_j and goto step 2.
- 4. If ∃i. F_i → (x₁= y₁∨...∨ x_k= y_k) but ∀j F_i → x_j= y_j, apply recursively to \$\phi' ∧ x₁ = y₁, ...,\$\phi' ∧ x_k = y_k. If any of them is satisfiable, return 'satisfiable'. Otherwise return 'unsatisfiable'.
- 5. Return `satisfiable'.

Correctness is hard to prove...

- Theorem: N.O. returns unsatisfiable if and only if its input formula ϕ is unsatisfiable.
- We will prove this theorem for the case of combining two convex theories. The generalization is not hard. The proof is based on [NO79].

Correctness is hard to prove...

- (\rightarrow) N.O. returns 'unsatisfiable' $\rightarrow \phi$ is unsatisfiable. (That's the simple side)
 - \square Assume ϕ is satisfiable and let α be a satisfying assignment of ϕ .
 - □ Let $A = \{a_1, ..., a_n\}$ be the purification (auxiliary) variables.
 - \Box Claim: there exists an assignment to the A variables such that α extended with this assignment satisfies $F_1 \wedge F_2$.
 - \Box Let α ' be this extended assignment.
 - $\Box \quad \text{For each equality } eq \text{ added in line 3, } \exists i. \ F_i \to eq.$
 - $\Box \quad \text{Since } \alpha' \vDash F_i \text{ then also } \alpha' \vDash eq.$
 - $\square \quad \text{Hence for all } j \in \{1,2\}, \, \alpha' \vDash F_j \land eq.$
 - □ Thus, N.O. *does not* return unsat in this case.
 - \Box In other words, if N.O. returns unsat, then ϕ is unsat.

$\operatorname{Proof}\left(\boldsymbol{\leftarrow}\right)$

- (⇐) If N.O. returns 'satisfiable', \$\overline\$ is satisfiable.
 (This will require several definition and lemmas)
- Dfn: A residue of a formula φ, denoted Res(φ), is the strongest Equality Logic formula implied by φ.

Res $(x = f(a) \land y = f(b))$ is $a = b \rightarrow x = y$ Res $(x \le y \land y \le x)$ is x = y

 Lemma 1: For any formula F, there exists a formula Res(F) (we will skip the proof of this Lemma)

$Proof(\boldsymbol{\leftarrow})$

- Recall: the Logical symbols of a formula are those shared by all first-order theories. We consider `=' as a logical symbol. The Non-logical symbols are theory-specific.
- Dfn: The parameters of a formula φ, denoted param(φ), are the non-logical symbols in φ.
- Craig's Interpolation Lemma: if *A* and *B* are formulas such that $A \rightarrow B$, then there exists a formula *H* such that $A \rightarrow H$ and $H \rightarrow B$, and $param(H) \subseteq param(A) \cap param(B)$.

$Proof (\boldsymbol{\leftarrow})$

Lemma 2: if F_1 and F_2 are formulas with disjoint signatures, $\operatorname{Res}(F_1 \land F_2) \leftrightarrow (\operatorname{Res}(F_1) \land \operatorname{Res}(F_2)).$

■ Proof: (→) □ $F_1 \rightarrow \operatorname{Res}(F_1), F_2 \rightarrow \operatorname{Res}(F_2),$ □ $F_1 \wedge F_2 \rightarrow \operatorname{Res}(F_1) \wedge \operatorname{Res}(F_2)$ □ $\operatorname{Res}(F_1 \wedge F_2) \rightarrow \operatorname{Res}(F_1) \wedge \operatorname{Res}(F_2) // *$

* The consequence (RHS) is Equality Logic, hence it is implied by the residue of the Antecedent (LHS).

Proof of Lemma 2 (

- $^{(1)} \bullet F_1 \land F_2 \to \operatorname{Res}(F_1 \land F_2)$
- (2) $\square F_1 \to (F_2 \to \operatorname{Res}(F_1 \land F_2))$
 - There exists an interpolant H such that
- (3) $(F_1 \to H) \land (H \to (F_2 \to \operatorname{Res}(F_1 \land F_2)))$ Can be rewritten as
- ⁽⁴⁾ (Res $(F_1) \rightarrow H$) \land ($H \rightarrow (F_2 \rightarrow \text{Res}(F_1 \land F_2)$)) because H is an Equality Logic formula, and hence everything implied by F_1 is also implied by Res (F_1) .

Why is H an Equality Logic formula? because $param(\text{RES}(F_1 \land F_2)) = \{\} //\text{Equality Logic formula}$ and $param(F_1) \cap param(F_2) = \{\}$

Decision Procedures An algorithmic point of view

q.e.d (Lemma 2): $\operatorname{Res}(F_1) \land \operatorname{Res}(F_2) \leftrightarrow \operatorname{Res}(F_1 \land F_2)$

■ q.e.d (Lemma 2):

- (7) and hence (7) $(\operatorname{Res}(F_1) \wedge \operatorname{Res}(F_2)) \to \operatorname{Res}(F_1 \wedge F_2)$
- (6) (Res $(F_1) \rightarrow (\text{Res}(F_2) \rightarrow \text{Res}(F_1 \land F_2)))$
- Since $\operatorname{Res}(F_1 \land F_2)$ is also an Equality Logic formula: (5) $(\operatorname{Res}(F_1) \to H) \land (H \to (\operatorname{Res}(F_2) \to \operatorname{Res}(F_1 \land F_2)))$
- (4) (Res $(F_1) \rightarrow H$) \land $(H \rightarrow (F_2 \rightarrow \text{Res}(F_1 \land F_2)))$

Proof of Lemma 2 (\leftarrow)

Lemma 3

Lemma 3:

 \Box Let F_1 and F_2 be satisfiable Equality Logic formulas s.t.

- $V = vars(F_1) \cup vars(F_2)$.
- $\forall x,y \in V, \ (F_1 \to x = y \land F_2 \to x = y) \text{ or } (F_1 \nrightarrow x = y \land \ F_2 \nrightarrow x = y)$

 \Box Then, $F_1 \land F_2$ is satisfiable.

Proof: Let

 $\Box S$ = the set of all equalities implied by both F_1 and F_2

 \Box *T* = the rest of the possible equalities in *V*.

- $\Box \alpha =$ an assignment s.t. $\forall eq \in S. \alpha \vDash eq, \forall eq \in T. \alpha \nvDash eq$
- \Box Claim: $\alpha \models F_1 \land F_2$

Proof of Lemma 3

- Falsely assume that $\alpha \nvDash F_1$
- $\blacksquare \quad \text{Then, } (F_1 \to \vee_{eq \in T} eq)$
 - □ (Can it be, alternatively, that F_1 implies a negation of one of the equalities in **S** ? no, because it implies $\wedge_{eq \in S} eq$
- If T is empty, F_1 is false

(contradiction)

(*contradiction*)

- If $\exists eq \in T. F_1 \rightarrow eq$, then $eq \in S$ (contradiction)
- Otherwise, F_1 is non-convex
- q.e.d (Lemma 3)

$\operatorname{Proof}\left(\boldsymbol{\leftarrow}\right)$

Now suppose N.O. returns SAT although $F_1 \wedge F_2$ is unsatisfiable.

• $\operatorname{Res}(F_1 \wedge F_2) = \operatorname{false}$

■ Hence, by Lemma 2, $\operatorname{Res}(F_1) \wedge \operatorname{Res}(F_2) = \operatorname{false}$

Proof (\leftarrow)

- On the other hand, in step 4, where we return 'Satisfiable', we know that
 - \Box F_1 and F_2 are separately satisfiable
 - \Box F_1 and F_2 imply exactly the same equalities.
 - \Box Thus, $\text{Res}(F_1)$ and $\text{Res}(F_2)$ are satisfiable and imply the same equalities.
- Hence, according to Lemma 3, $\text{Res}(F_1) \land \text{Res}(F_2)$ is also satisfiable, i.e. $\text{Res}(F_1) \land \text{Res}(F_2) \neq \text{false}$ (contradiction).

• Q.E.D (N.O.)

More problems...

Definition: A Σ-theory T is Stably-infinite if for every quantifier-free Σ-formula φ
 φ is satisfiable ⇔
 φ can be satisfied by an interpretation with an infinite domain.

Specifically, this means that no theory with a finite domain is stably infinite.

Problem: non-stably infinite theories

• Consider a theory \mathcal{T}_1 : $\Box \Sigma_1$: A function f, \Box A views that only allow

 Axioms that only allow solutions with 2 distinct values. And a theory *T*₂:
□ Σ₂: A function *g*,
□ Domain: N

Recall that the combined theory $\mathcal{T}_1 \oplus \mathcal{T}_2$ has the union of the axioms. Hence the solution to any formula $\phi \in \mathcal{T}_1 \oplus \mathcal{T}_2$ cannot have more than 2 distinct values.

So this formula is unsatisfiable:

 $\phi: f(x_1) \neq f(x_2) \land g(x_1) \neq g(x_3) \land g(x_2) \neq g(x_3)$

Problem: non-stably infinite theories

 $\phi: f(x_1) \neq f(x_2) \land g(x_1) \neq g(x_3) \land g(x_2) \neq g(x_3)$

\mathcal{T}_2
$g(x_1) \neq g(x_3)$ $g(x_2) \neq g(x_3)$
$g(x_2) \neq g(x_3)$

No equalities to propagate: Satisfiable !

Solution to non-stable infinite theories

- Nelson-Oppen method cannot be used.
- Recently a solution to this problem was suggested by Tinelli & Zarba [TZ05]
 - □ Assuming all combined theories are stably-finite (in particular, it has a small model property), it computes, if possible, the upper bound on the minimal satisfying assignment, and propagates this information between the theories.