
Embedded Domain-Specific Languages
FLOLAC 2014

Exercises, Part 1

1 Introduction

This short collection of exercises explores a little around deep and shallow em-
beddings of domain-specific languages. The domain in this case is of formal
languages, grammars, and (if we get that far) parsers. In this sense, a formal lan-

guage is nothing more than a set of finite strings, each of which is a finite (possibly
empty) sequence of characters.

2 Grammars

Here is a simple datatype of grammars for formal languages:

data Grammar :: ⇤ where
Empty :: Grammar

Unit :: Grammar

Single :: Char ! Grammar

Conc :: Grammar ! Grammar ! Grammar

Union :: Grammar ! Grammar ! Grammar

The intended interpretation is as follows:

• the grammar Empty represents the empty language { }

• the grammar Unit represents the language consisting of precisely one string,
the empty string: {""}

• for any character c, the grammar Single c represents the language {[c]} con-
sisting of precisely one string, the string consisting of the single character c

• if x and y are two grammars representing languages X and Y respectively,
then Conc x y is the grammar representing the language containing strings
of the form s ++ t where s 2 X and t 2 Y

• if x and y are two grammars representing languages X and Y respectively,
then Union x y is the grammar representing the language X [Y

1

1. Write a grammar representing car registration plates. In the UK, these
are currently of the form “AB 34 EFG”, but before that they were of the
form “A 234 EFG”; I believe that in Taiwan they are currently of the forms
“ABC 5678” and “AB 3456”. Make sure your definition type-checks, even
though you can’t do anything else with it yet.

3 Recognition

One thing you might want to do with your grammar is to use it to decide whether
a given string is within the language it represents; we call this ‘recognition’. We
model this as a function recog that takes a Grammar and a String and returns a
Bool, indicating whether or not the string is in the language.

recog :: Grammar ! String ! Bool

2. Define recog.

3. Use recog to check your grammar of registration plates: apply it to various
strings to see whether it gives you the results you expected.

As it happens, the class of grammars discussed above itself forms a little
domain-specific language, and the grammar you defined for registration plates is
a little program in that DSL. The datatype Grammar is a deep embedding of the
language, and your function recog is a semantics for the DSL.

4. Define recognition instead as a shallow embedding. That is, represent gram-
mars directly by their semantics (of type String ! Bool), and define five
functions on that semantics;

type Grammar = String ! Bool

empty :: Grammar

unit :: Grammar

single :: Char ! Grammar

conc :: Grammar ! Grammar ! Grammar

union :: Grammar ! Grammar ! Grammar

The recognition function above is a little awkward, especially as regards the
Conc constructor: in order to recognise whether a string s is in the formal language
represented by Conc x y, it’s not enough to ask whether s is in the languages
represented by x and by y—you have to ask about different strings (s1 and s2
such that s1 ++ s2 = s) instead. More convenient is to define a function

2

match :: Grammar ! String ! Maybe (String, String)

that returns a little more information. Here, the datatype Maybe represents op-
tional values:

data Maybe a = Just a | Nothing

The idea is that match g s takes a grammar g and a string s, and determines
whether any prefix of s matches g. If s is not in the formal language represented
by g it returns Nothing, instead of False. But if s is in the formal language. it
returns Just (s1, s2), where s1 and s2 are two strings such that s1 ++ s2 = s, and s1
matches g. That’s more useful for Conc cases, because it tells you where to start
matching the second language.

5. Define match, twice: once as a semantics for the deep embedding of Grammar ,
and once as a shallow embedding.

4 Generation

Here’s another semantics for grammars: interpret them as ‘generators’, that gen-
erate the formal language they represent. For example, applying a generator to
your language of registration plates should generate a (very long!) list of possible
registration plates.

6. Define the function

generate :: Grammar ! [String]

as a semantics for the deep embedding.

7. As an alternative, take the semantics [String] as a shallow embedding, and
redefine the five grammar constructors on this type.

If you answered the question above naively, it will work but will not be very
interesting. For example, on UK registration plates, it might generate “AA 00 AAA”,
then “AA 00 AAB”, and so on, and you’ll have to wait for 263 = 17576 elements to
pass before you see anything as exciting as “AA 01 AAA”; and you’ll have to wait an
awful lot longer before you see the first of the form “A 000 AAA”. For generating
strings in the union of two formal languages, you might want to ‘interleave’ the
generators of the two languages; for generating strings in the concatenation of the
two languages, you might want to ‘diagonalise’. I will explain these two techniques
in class.

8. Redefine generate to use interleaving and diagonalisation.

3

5 Parsing

Recognising, matching, and generating are all very well, but often one wants to do
more than merely ask whether a string is in a formal language—if it is, one wants
to use it for some purpose, building some data structure based on the string. In
programming languages, that process is known as ‘parsing’, although it is a bit of
a misnomer.

It’s two small steps from grammars to parsers. The first step is to define a
parametrised type Parser a instead of an unparametrised type Grammar ; a parser
of type Parser a is like a Grammar , representing a set of strings, but it will also
allow you to extract a value of type a from any one of those strings. For example,
a parser of type Parser Float will allow you to recognise strings representing
floating point numbers, but also to extract the floating point number in question.
The second step is to add one more constructor, which we call Using, to modify
extracted values. So the datatype is as follows:

data Parser :: ⇤ ! ⇤where
Fail :: Parser a

Succeed :: a ! Parser a

Char :: Char ! Parser Char

Seq :: Parser a ! Parser b ! Parser (a, b)
Choice :: Parser a ! Parser a ! Parser a

Using :: Parser a ! (a ! b) ! Parser b

The constructors correspond to those of Grammar in the obvious way, except for
Using which is new.

9. Define a semantics

parse :: Parser a ! String ! Maybe (a, String)

for the deeply embedded DSL of parsers above. This is like match for gram-
mars, except that instead of returning a successful match Just (s1, s2), it
returns the extracted value in place of s1. (Hint: the definitions you need are
in my lecture notes.)

10. Use the semantic domain

type Parser a = String ! Maybe (a, String)

as a shallow embedding of the parser DSL instead of an interpretation of
a deep embedding; define the six parser constructors as functions on this
domain.

Jeremy Gibbons
University of Oxford

July 2014

4

