UNIVERSITY OF

OXFORD

Embedded Domain-Specific Languages

Jeremy Gibbons
FLOLAC, Taipei, July 2014






EDSLs

1. Introduction

“Domain-specific
language: a computer
programming language of
limited expressiveness
focussed on a particular
domain” (Fowler)

e customized for domain
e cOmmon assumptions wired in

e more direct, less general

SPECIFIC
I ANGUAGES

MARTIN FOWLER |

WITH REBECCA PARSONS




1.1. History

1980s: “fourth-generation languages”

1970s: Bentley’s “little languages” in Unix

1960s: “application-oriented”, “task-specific”, “special purpose”
1950s: Fortran, Cobol...?

Not a new idea!



1.2. Approaches

Standalone:
+ custom syntax; no favoured implementation language
+ standard compilation techniques
+ may be diagrammatic, gestural. ..
— significant effort, reinvented wheels
Embedded (our focus):
+ reuse features of host language
+ familiar notation
— awkward notation
— still “programming”

— leaky abstractions



1.3. Embedding approaches

Deep embedding:
e terms construct ASTs
e Operational
e Syntax-driven
Shallow embedding:
e terms are directly interpreted
e denotational

e semantics-driven



1.4. FP support for embedded DSLs

Most work in OO on DSLs assumes standalone approach.
Much work in FP assumes embedded.

Why is that?
e algebraic datatypes: lightweight definitions of tree-shaped data

e higher-order functions: programs parametrized by other programs



2. Algebraic datatypes for DSLs

Deep embedding centred around ASTSs.

Lightweight algebraic datatypes an essential feature:
e observers inductively defined over structure

e Optimizations and transformations via tree manipulation

(Incidentally, algebraic datatypes also very convenient as a marshalling
format for interoperation.)



EDSLs

2.1. A simple language

A deeply embedded expression language:

data ExprD :: [where
Val :: Integer — ExprD
Add :: ExprD - ExprD - ExprD

For example, the expression 3 + (4 +5) is represented by the term
Add (Val 3) (Add (Val 4) (val 5)), which has this shape:

+

/ \

3 +
/ \
4 5



EDSLs

2.2. One semantics

To evaluate an ExprD, yielding an Integer:

eval ;. ExprD - Integer
eval (Valn) =n
eval (Add xy) =eval x +eval y

10



EDSLs

2.3. Another semantics

To print an ExprD, yielding a String:

print :: ExprD - String
print (Valn) =show n
print (Add x y) = paren (print X + print y)

where

paren :: String - String
parens ="(" Hs+H ")

11



2.4. Deep embedding—summary

e syntax of language represented by algebraic datatypes
e semantics expressed by recursive functions

e easy to provide multiple semantics



EDSLs

3. Shallow embedding

Here’s an alternative representation of expressions: as their evaluation.

type ExprS; = Integer

val ::Integer - ExprS;
valn =n

add :: ExprS; - ExprS; - ExprSy
add xy =x+vy

Now the evaluation semantics is easy:

eval :: ExprS,; - Integer
eval X =X -

The syntax has been discarded; only semantics is left.

13



EDSLs

3.1. Another shallow embedding

This time, under print interpretation:

type ExprS, = String

val ::Integer - EXprS,

val n = show n

add :: ExprS, - ExprS, - EXprS,
add x y = paren (x #+ ""+"" +HvYy)
print :: EXprS, - String

print X = x -- |

14



3.2. Deep versus shallow embedding

Deep:
e syntax of language represented by algebraic datatypes
e semantics expressed by recursive functions
e easy to provide multiple interpretations
Shallow:
e No explicit representation of syntax, only semantics
e NO separate ‘observers’ required

e but what about multiple interpretations?



EDSLs

4. Higher-order functions for DSLs

What about both interpretations at once?

type ExprS; = (Integer, String)

eval :: ExprS; - Integer
eval (n,s) =n

print :: ExprS; - String
print (n,s) =s

val ::Integer - EXprSj
val n = (n,show n)

add :: ExprS; — ExprS; - EXprS;
add x y = (eval x +eval y, paren (print x + ""+"" + print y))

Note that with lazy evaluation, if only one interpretation is demanded,
then only that one will be computed.

But with three interpretations? Ten? Unforeseen interpretations?

16



4.1. What makes an interpretation?

What do the different interpretations have in common?
More importantly, how do they differ?

e a semantic domain

e an interpretation of values in this domain (a function)

e an interpretation of addition in this domain (a binary operator)

So let’s capture these ingredients:
type ExprAlg a = (Integer - a,a - a - a)

In mathematical terms, the ingredients of an interpretation are an
‘algebra’.



EDSLs

4.2. Parametrized interpretation of shallow embedding

Now, a term iIs represented as a parametrized interpretation:
If you tell it how to interpret, it will give you back the interpretation.
type ExprS a = ExprAlg a - a

val ::Integer - EXprS a
valn=A(f,g) - fn

add :: ExprS a - ExprS a - ExprS a
add xy =A(f,g9) - g (x(f,9)) (v (f.9))

For example,

e . ExprS a
e = add (val 3) (add (val 4) (val 5))

18



EDSLs

4.3. Instantiating the parametrized interpretation

It’s quite general:

evalAlg :: ExprAlg Integer

evalAlg = (id, (+))

printAlg :: ExprAlg String

printAlg = (show,Ast - paren (s + "+"" +H 1)

So with e :: ExprS a as before, we have

e evalAlg =12
e printAlg =" (3+(4+5))"

19



EDSLs

4.4. Church encoding

Where did ExprAlg come from?

Consider fold function for Expr algebraic datatype:

fold :: (Integer - a,a - a - a) - Expr - a
fold (f,g) (Vvaln) =1fn

fold (f,g) (Add xy) =g (fold (f,g) x) (fold (f,g) y)

Swap the arguments around:

flipFold :: Expr - (Integer - a,a - a - a) - a

flipFold :: Expr - ([a.HxprAlg a - a)

flipFold (Valn) (f,g)=fn

flipFold (Add x y) (f,g) = g (flipFold x (f,g)) (flipFold y (f,Q))

This is known as the Church encoding of e,
and [a.BxprAlg a the Church encoding of datatype Expr.

20



EDSLs

4.5. Polymorphic interpretation of shallow embedding

Alternatively, using type classes (poor person’s modules):

class Expr a where
val : Integer - a
add:a-a - a

Interpretations at Integer and String types:

Instance Expr Integer where
valn =n
add xy =x+vy

Instance Expr String where
valn =shown
add xy = paren (x #+ ""+"" +HYy)

21



EDSLs

Then DSL term has polymorphic type:

expr ::Expra [al
expr = add (val 3) (add (val 4) (val 5))

and can be interpreted at any type in the type class Expr:

evalExpr :: Integer
evalExpr = expr
printExpr :: String
printExpr = expr

22



