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1. Introduction

“Domain-specific
language: a computer
programming language of
limited expressiveness
focussed on a particular
domain” (Fowler)

e customized for domain
e cOmmon assumptions wired in

e more direct, less general
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1.1. History

1980s: “fourth-generation languages”

1970s: Bentley’s “little languages” in Unix

1960s: “application-oriented”, “task-specific”, “special purpose”
1950s: Fortran, Cobol...?

Not a new idea!



1.2. Approaches

Standalone:
+ custom syntax; no favoured implementation language
+ standard compilation techniques
+ may be diagrammatic, gestural. ..
— significant effort, reinvented wheels
Embedded (our focus):
+ reuse features of host language
+ familiar notation
— awkward notation
— still “programming”

— leaky abstractions



1.3. Embedding approaches

Deep embedding:
e terms construct ASTs
e Operational
e Syntax-driven
Shallow embedding:
e terms are directly interpreted
e denotational

e semantics-driven



1.4. FP support for embedded DSLs

Most work in OO on DSLs assumes standalone approach.
Much work in FP assumes embedded.

Why is that?
e algebraic datatypes: lightweight definitions of tree-shaped data

e higher-order functions: programs parametrized by other programs



2. Algebraic datatypes for DSLs

Deep embedding centred around ASTSs.

Lightweight algebraic datatypes an essential feature:
e observers inductively defined over structure

e Optimizations and transformations via tree manipulation

(Incidentally, algebraic datatypes also very convenient as a marshalling
format for interoperation.)
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2.1. A simple language

A deeply embedded expression language:

data ExprD :: [where
Val :: Integer — ExprD
Add :: ExprD - ExprD - ExprD

For example, the expression 3 + (4 +5) is represented by the term
Add (Val 3) (Add (Val 4) (val 5)), which has this shape:

+

/ \

3 +
/ \
4 5
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2.2. One semantics

To evaluate an ExprD, yielding an Integer:

eval ;. ExprD - Integer
eval (Valn) =n
eval (Add xy) =eval x +eval y
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2.3. Another semantics

To print an ExprD, yielding a String:

print :: ExprD - String
print (Valn) =show n
print (Add x y) = paren (print X + print y)

where

paren :: String - String
parens ="(" Hs+H ")
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2.4. Deep embedding—summary

e syntax of language represented by algebraic datatypes
e semantics expressed by recursive functions

e easy to provide multiple semantics
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3. Shallow embedding

Here’s an alternative representation of expressions: as their evaluation.

type ExprS; = Integer

val ::Integer - ExprS;
valn =n

add :: ExprS; - ExprS; - ExprSy
add xy =x+vy

Now the evaluation semantics is easy:

eval :: ExprS,; - Integer
eval X =X -

The syntax has been discarded; only semantics is left.
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3.1. Another shallow embedding

This time, under print interpretation:

type ExprS, = String

val ::Integer - EXprS,

val n = show n

add :: ExprS, - ExprS, - EXprS,
add x y = paren (x #+ ""+"" +HvYy)
print :: EXprS, - String

print X = x -- |
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3.2. Deep versus shallow embedding

Deep:
e syntax of language represented by algebraic datatypes
e semantics expressed by recursive functions
e easy to provide multiple interpretations
Shallow:
e No explicit representation of syntax, only semantics
e NO separate ‘observers’ required

e but what about multiple interpretations?
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4. Higher-order functions for DSLs

What about both interpretations at once?

type ExprS; = (Integer, String)

eval :: ExprS; - Integer
eval (n,s) =n

print :: ExprS; - String
print (n,s) =s

val ::Integer - EXprSj
val n = (n,show n)

add :: ExprS; — ExprS; - EXprS;
add x y = (eval x +eval y, paren (print x + ""+"" + print y))

Note that with lazy evaluation, if only one interpretation is demanded,
then only that one will be computed.

But with three interpretations? Ten? Unforeseen interpretations?
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4.1. What makes an interpretation?

What do the different interpretations have in common?
More importantly, how do they differ?

e a semantic domain

e an interpretation of values in this domain (a function)

e an interpretation of addition in this domain (a binary operator)

So let’s capture these ingredients:
type ExprAlg a = (Integer - a,a - a - a)

In mathematical terms, the ingredients of an interpretation are an
‘algebra’.
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4.2. Parametrized interpretation of shallow embedding

Now, a term iIs represented as a parametrized interpretation:
If you tell it how to interpret, it will give you back the interpretation.
type ExprS a = ExprAlg a - a

val ::Integer - EXprS a
valn=A(f,g) - fn

add :: ExprS a - ExprS a - ExprS a
add xy =A(f,g9) - g (x(f,9)) (v (f.9))

For example,

e . ExprS a
e = add (val 3) (add (val 4) (val 5))
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4.3. Instantiating the parametrized interpretation

It’s quite general:

evalAlg :: ExprAlg Integer

evalAlg = (id, (+))

printAlg :: ExprAlg String

printAlg = (show,Ast - paren (s + "+"" +H 1)

So with e :: ExprS a as before, we have

e evalAlg =12
e printAlg =" (3+(4+5))"
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4.4. Church encoding

Where did ExprAlg come from?

Consider fold function for Expr algebraic datatype:

fold :: (Integer - a,a - a - a) - Expr - a
fold (f,g) (Vvaln) =1fn

fold (f,g) (Add xy) =g (fold (f,g) x) (fold (f,g) y)

Swap the arguments around:

flipFold :: Expr - (Integer - a,a - a - a) - a

flipFold :: Expr - ([a.HxprAlg a - a)

flipFold (Valn) (f,g)=fn

flipFold (Add x y) (f,g) = g (flipFold x (f,g)) (flipFold y (f,Q))

This is known as the Church encoding of e,
and [a.BxprAlg a the Church encoding of datatype Expr.
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4.5. Polymorphic interpretation of shallow embedding

Alternatively, using type classes (poor person’s modules):

class Expr a where
val : Integer - a
add:a-a - a

Interpretations at Integer and String types:

Instance Expr Integer where
valn =n
add xy =x+vy

Instance Expr String where
valn =shown
add xy = paren (x #+ ""+"" +HYy)
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Then DSL term has polymorphic type:

expr ::Expra [al
expr = add (val 3) (add (val 4) (val 5))

and can be interpreted at any type in the type class Expr:

evalExpr :: Integer
evalExpr = expr
printExpr :: String
printExpr = expr
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