
FLOLAC’12

Logic
Lecture 3: Curry–Howard correspondence

29 August 2012

柯向上

Department of Computer Science
University of Oxford

Hsiang-Shang.Ko@cs.ox.ac.uk

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/
mailto:Hsiang-Shang.Ko@cs.ox.ac.uk

Annotated derivation

A, A → B ⊢ A → B A, A → B ⊢ A (→E)
A, A → B ⊢ B (→I)

A ⊢ (A → B) → B
(→I)

⊢ A → (A → B) → B

111

Annotated derivation

x : A, y : A → B ⊢ A → B x : A, y : A → B ⊢ A
(→E)

x : A, y : A → B ⊢ B
(→I)

x : A ⊢ (A → B) → B
(→I)

⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.

112

Annotated derivation

x : A, y : A → B ⊢ y : A → B x : A, y : A → B ⊢ x : A
(→E)

x : A, y : A → B ⊢ B
(→I)

x : A ⊢ (A → B) → B
(→I)

⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.

113

Annotated derivation

x : A, y : A → B ⊢ y : A → B x : A, y : A → B ⊢ x : A
(→E)

x : A, y : A → B ⊢ y x : B
(→I)

x : A ⊢ (A → B) → B
(→I)

⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.

114

Annotated derivation

x : A, y : A → B ⊢ y : A → B x : A, y : A → B ⊢ x : A
(→E)

x : A, y : A → B ⊢ y x : B
(→I)

x : A ⊢ λ y. y x : (A → B) → B
(→I)

⊢ λ x. λ y. y x : A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing its the representations of two
sub-derivations.
Represent (→I) by prefixing λ v. to the representation of its
sub-derivation, where v is the name of the new assumption.

115

Annotated derivation

(var)
x : A, y : A → B ⊢ y : A → B

(var)
x : A, y : A → B ⊢ x : A

(app)
x : A, y : A → B ⊢ y x : B

(abs)
x : A ⊢ λ y. y x : (A → B) → B

(abs)
⊢ λ x. λ y. y x : A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.
Represent (→I) by prefixing λ v. to the representation of its
sub-derivation, where v is the name of the new assumption.

This is a typing derivation for the λ-term λ x. λ y. y x!

116

Simply typed λ-calculus (á la Curry)

Let the set of types be the implicational fragment of Prop, i.e.,
the subset of the propositional language generated by variables and
implication only.

A λ-term t is said to have type τ under context Γ if, using the
following rules, there is a closed typing derivation whose conclusion
is Γ ⊢ t : τ . In this case we simply write Γ ⊢ t : τ .

(var)
Γ ⊢ v : τ if (v : τ) ∈ Γ

Γ, v : σ ⊢ t : τ (abs)
Γ ⊢ λ v. t : σ → τ

Γ ⊢ t : σ → τ Γ ⊢ s : σ (app)
Γ ⊢ t s : τ

117

Curry–Howard correspondence

Deduction systems and programming calculi can be put in
correspondence — a corresponding pair of a deduction system and
a programming calculus can be regarded as logical and
computational interpretations of essentially the same set of
syntactic objects.

Slogan: propositions are types; proofs are programs.

Natural deduction for full propositional logic corresponds to simply
typed λ-calculus with constants: defining the set of types to be
Prop, the derivations in natural deduction (the proofs) correspond
exactly to the well-typed λ-terms (the programs).

118

BHK interpretation revised
A proposition type is an expression a specification of what counts
as its proof a conforming program.

There is no program of type ⊥.
A program of type φ ∧ ψ is one that computes a program of
type φ and a program of type ψ.
A program of type φ ∨ ψ is one that computes either a
program of type φ or a program of type ψ.
A program of type φ→ ψ is a function which computes a
program of type ψ given a program of type φ as its input.

119

Cartesian products
Conjunctions correspond to cartesian products: the introduction
rule gives type to the pairing operator,

Γ ⊢ s : σ Γ ⊢ t : τ (∧I)
Γ ⊢ ⟨s, t⟩ : σ ∧ τ

and the two elimination rules give types to the projections.
Γ ⊢ t : σ ∧ τ (∧EL)
Γ ⊢ outl t : σ

Γ ⊢ t : σ ∧ τ (∧ER)
Γ ⊢ outr t : τ

Note that we are adding the constants ⟨_,_⟩, outl, and outr into
the language of λ-calculus.

120

Disjoint sums

Disjunctions correspond to disjoint sums (unions): the introduction
rules give types to the injections,

Γ ⊢ s : σ (∨IL)
Γ ⊢ inl s : σ ∨ τ

Γ ⊢ t : τ (∨IR)
Γ ⊢ inr t : σ ∨ τ

and the elimination rule gives type to the conditional operator.
Γ ⊢ c : σ ∨ τ Γ, u : σ ⊢ s : ϑ Γ, v : τ ⊢ t : ϑ (∨E)

Γ ⊢ case c
[u⇝ s

v⇝ t : ϑ

Again we add the constants inl, inr, and case_
[_⇝ _

_⇝ _ to the
language of λ-calculus.

121

Example: distributivity

The type
A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

is inhabited by the λ-term

λ x. case (outr x)
[y⇝ inl ⟨outl x, y⟩

z⇝ inr ⟨outl x, z⟩ .

122

Empty set

⊥ is interpreted as the empty set. The elimination rule gives type
to a variant of Dijkstra’s abort operator.

Γ ⊢ t : ⊥ (⊥E)
Γ ⊢ abort t : φ

Example. The type ⊤, i.e., ⊥ → ⊥, is inhabited by λ x. abort x.

123

δ-reduction
In pure λ-calculus we have β-reduction that rewrites β-redexes.

(λ v. s) t ⇝β s [t/v]

Note that this is how an introduction form (λ-abstraction)
interacts with an elimination form (application).

For λ-calculus with constants, we should also specify how to
reduce the δ-redexes, which involve the introduction and
elimination forms of the additional constants.

outl ⟨s, t⟩ ⇝δ s outr ⟨s, t⟩ ⇝δ t

case (inl p)
[u⇝ s

v⇝ t ⇝δ s [p/u]

case (inr q)
[u⇝ s

v⇝ t ⇝δ t [q/v]

124

Proof normalisation
β-/δ-redexes in λ-terms correspond to detours in derivations, and
evaluation of λ-terms corresponds to proof normalisation.

B → C → B, A ⊢ B → C → B (→I)
B → C → B ⊢ A → B → C → B (→I)

⊢ (B → C → B) → A → B → C → B

B, C ⊢ B (→I)
B ⊢ C → B (→I)

⊢ B → C → B
(→E)

⊢ A → B → C → B

normalises to
A, B, C ⊢ B (→I)

A, B ⊢ C → B (→I)
A ⊢ B → C → B (→I)

/////////////B → C → B ⊢ A → B → C → B

The corresponding reduction is

(λ x. λ y. x) (λ z. λ w. z) ⇝β λ y. λ z. λ w. z.

125

Detours
We need a substitution function on derivations which has type

Γ, φ ⊢NJ ψ → Γ ⊢NJ φ → Γ ⊢NJ ψ,

corresponding to substitution on λ-terms.

Wherever the assumption φ is used in the first derivation we plug
in a suitably weakened version of the second derivation.

126

Detours
Corresponding to the β-/δ-redexes, the possible forms of detours
are:

Γ, φ ⊢ ψ (→I)
Γ ⊢ φ→ ψ Γ ⊢ φ (→E)

Γ ⊢ ψ
Γ ⊢ φ Γ ⊢ ψ (∧I)

Γ ⊢ φ ∧ ψ (∧EL)
Γ ⊢ φ

Γ ⊢ φ Γ ⊢ ψ (∧I)
Γ ⊢ φ ∧ ψ (∧ER)
Γ ⊢ ψ

Γ ⊢ φ (∨IL)
Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ (∨E)

Γ ⊢ ϑ
Γ ⊢ ψ (∨IR)

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ (∨E)
Γ ⊢ ϑ

127

Subject reduction and strong normalisation

For simply typed λ-calculus we have the following results.

Theorem (subject reduction). If Γ ⊢ t : τ and t⇝βδ t ′, then
Γ ⊢ t ′ : τ .

Theorem (strong normalisation). Every reduction sequence of a
well-typed λ-term terminates.

Corollary. Every well-typed λ-term has a normal form.

They are readily translated into theorems about derivations.

Theorem. Elimination of a detour produces a derivation with the
same conclusion.

Theorem. Every derivation can be normalised (to a derivation
that does not contain detours).

128

Canonicity

Definition. A λ-term is in canonical form if its head position is an
introduction form, i.e., one of the following:

λ-abstraction,
pairing ⟨_,_⟩, and
injections inl and inr.

Theorem (canonicity). If ⊢ t : τ and t is in normal form, then t is
in canonical form.

PROOF Induction on the typing derivation of t. The elimination
forms give rise to redexes, in contradiction to the
assumption that t is in normal form.

129

Underivability

Corollary. NJ is consistent, i.e., ̸⊢NJ ⊥.

PROOF If ⊢NJ ⊥, then there is a λ-term of type ⊥ in canonical
form. But none of the canonical forms can have type ⊥.

Remark. This notion of consistency, which is about the deduction
system NJ itself, is different from the one about theories that we
introduced in the first lecture.

130

Underivability

Corollary (disjunction property). If ⊢NJ φ ∨ ψ, then either ⊢NJ φ
or ⊢NJ ψ.

PROOF A λ-term of type φ ∨ ψ under the empty context can be
reduced to either inl p where ⊢ p : φ or inr q where
⊢ q : ψ.

Remark. The disjunction property does not hold for NK.

Corollary. A ∨ ¬A is underivable in NJ.

PROOF If ⊢NJ A ∨ ¬A, then either ⊢NJ A or ⊢NJ ¬A by the
disjunction property, and thus either |= A or |= ¬A by
soundness. But neither A nor ¬A is a tautology.

131

Unifying programming and reasoning

The Curry–Howard correspondence suggests that programs and
proofs be identified. Both of them are mental constructions, which
are all that intuitionistic mathematics cares about.

Per Martin-Löf: “If programming is understood
not as the writing of instructions for this or that computing
machine
but as the design of methods of computation that it is the
computer’s duty to execute

(a difference that Dijkstra has referred to as the difference
between computer science and computing science),

then it no longer seems possible to distinguish the discipline of
programming from constructive mathematics.”

132

Martin-Löf Type Theory

Martin-Löf Type Theory is an influential framework in which
programs and proofs are treated uniformly. It is simultaneously

a computationally meaningful higher-order logic system and
a very expressively typed functional programming language.

There are numerous variations, extensions, and applications of
MLTT. The Coq proof assistant is one of its descendants.

133

Predicates as type functions/families

Let Set be the type of all “small” propositions/sets/types.

A predicate on a set A is a function of type A → Set, which can
be regarded as a family of types indexed by A.

Example. Define the predicate Even : N → Set by

Even 0 = ⊤
Even 1 = ⊥
Even (2 + n) = Even n.

Then Even 4 computes to ⊤ and is thus inhabited, whereas Even 3
computes to ⊥ and has no inhabitant.

Allowing such type functions means that types can depend on
values and that non-trivial computation can happen at type level.
Such type disciplines are called dependent types.

134

Operations on type families

Let A : Set and B : A → Set. Over the type family B we can form

the dependent product type Π A B : Set and
the dependent sum type Σ A B : Set.

135

Dependent product types

Let A : Set and B : A → Set.

An element of the set Π A B is a function that, given a : A,
returns an element of B a.

Dependent product types
provide universal quantification,
generalise conjunction, and
subsume implication.

They are also known as dependent function types.

136

Dependent sum types

Let A : Set and B : A → Set.

An element of the set Σ A B is a pair whose first component is an
element a : A and whose second component is an element of B a.

Dependent sum types
provide existential quantification,
generalise disjunction, and
subsume conjunction.

They are also known as dependent pair types.

137

Algebraic datatypes

Inductively defined sets are algebraic datatypes.

-- PV : Set

data Prop− : Set where
bot : Prop−
var : PV → Prop−
imp : Prop− → Prop− → Prop−

-- Membership : Prop− → List Prop− → Set

data NJ− : List Prop− → Prop− → Set where
assum : Membership φ Γ → NJ− Γ φ
botElim : NJ− Γ bot → NJ− Γ φ
impIntro : NJ− (φ :: Γ) ψ → NJ− Γ (imp φ ψ)
impElim : NJ− Γ (imp φ ψ) → NJ− Γ φ → NJ− Γ ψ

138

Induction principle
The induction principle for an algebraic datatype is the type of a
variant of the fold operator on the datatype.

indProp− : (P : Prop− → Set) →
P bot →
((v : PV) → P (var v)) →
((phi : Prop−) → (psi : Prop−) →

P phi → P psi → P (imp phi psi)) →
(phi : Prop−) → P phi

indProp− P pbot pvar pimp bot = pbot
indProp− P pbot pvar pimp (var v) = pvar v
indProp− P pbot pvar pimp (imp phi psi) =

pimp phi psi (indProp− P pbot pvar pimp phi)
(indProp− P pbot pvar pimp psi)

Notation. We abbreviate Π A (λ x. B x) to (x : A) → B x.
139

Programming with more precise types

Rather than giving a sorting function on lists of natural numbers
the simple type

List N → List N,

we can assign to it a more informative type

(xs : List N) → (ys : List N)× Perm xs ys × Ordered ys.

A program of this type
not only describes a computational process
but also includes a correctness proof that the process performs
sorting, whose validity can be checked by a typechecker.

Notation. We abbreviate Σ A (λ x. B x) to (x : A)× B x.

140

Summary: the triangle

..
Languages
(Propositional, First-order)
Inductive syntax

. [[_]].
Semantics
(BHK, Truth-value)
Semantic consequence

.

Soundness
Semantic completeness

.

Deduction systems
(NJ, NK)
Derivability
Consistency
Syntactic completeness

.

Curry–Howard correspondence:
programming and reasoning go
hand in hand.

141

	Simply typed lambda-calculus with constants
	Proof normalisation

	Dependent types
	Summary

