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Classical semantics of propositional logic

Classical semantics adopts the principle of bivalence: every
proposition denotes exactly one of the two truth-values, 0 (false)
or 1 (true).

Definition. The set of valuations is defined to be PV → 2, where
2 := {0, 1}.

Definition. Let σ be a valuation. The truth-value interpretation
[[_]]σ : Prop → 2 of propositional formulas is defined by

[[⊥]]σ = 0
[[v ]]σ = σ v for v : PV
[[φ ∧ ψ]]σ = min [[φ]]σ [[ψ]]σ
[[φ ∨ ψ]]σ = max [[φ]]σ [[ψ]]σ
[[φ→ ψ]]σ = if [[φ]]σ ≤ [[ψ]]σ then 1 else 0
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Meta-connectives
Let σ be a valuation.

[[¬φ]]σ = 1 ⇔ [[φ]]σ ≤ [[⊥]]σ ⇔ [[φ]]σ ≤ 0 ⇔ [[φ]]σ = 0.

[[⊤]]σ = [[¬⊥]]σ = 1− [[⊥]]σ = 1− 0 = 1.

[[φ↔ ψ]]σ = 1
⇔ { case ‘∧’ }

min [[φ→ ψ]]σ [[ψ → φ]]σ = 1
⇔ { arithmetic }

[[φ→ ψ]]σ = 1 and [[ψ → φ]]σ = 1
⇔ { case ‘→’ }

[[φ]]σ ≤ [[ψ]]σ and [[ψ]]σ ≤ [[φ]]σ
⇔ { antisymmetry }

[[φ]]σ = [[ψ]]σ.
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Semantic definitions
Definitions. Let φ, ψ : Prop and Γ : List Prop.

A valuation σ satisfies φ if [[φ]]σ = 1; it satisfies Γ if it satisfies
every formula in Γ.
φ is a semantic consequence of Γ if, for any valuation σ, φ is
satisfied by σ whenever Γ is satisfied by σ. In this case we
write Γ |= φ.
φ is valid if ∅ |= φ. In this case φ is also called a tautology,
and we simply write |= φ.
φ and ψ are semantically equivalent if [[φ]]σ = [[ψ]]σ for every
valuation σ. In this case we write φ ≈ ψ.
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Example: |= φ ∨ ¬φ

ASSUME σ : PV → 2
PROVE [[φ ∨ ¬φ]]σ = 1

PROOF Case analysis on [[φ]]σ.

1 CASE [[φ]]σ = 1

PROOF [[φ ∨ ¬φ]]σ = max [[φ]]σ (1− [[φ]]σ) = max 1 0 = 1.

2 CASE [[φ]]σ = 0

PROOF [[φ ∨ ¬φ]]σ = max [[φ]]σ (1− [[φ]]σ) = max 0 1 = 1.

3 QED.
PROOF Either [[φ]]σ = 1 or [[φ]]σ = 0; 1 and 2 .

Notation. “ CASE C ” abbreviates “ ASSUME C PROVE QED”.
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|= φ ∨ ¬φ — truth table method

We may just summarise the case analysis on [[φ]]σ and evaluation
of the value of the entire propositional formula in a truth table.

φ φ ∨ ¬ φ

0 0 1 1 0
1 1 1 0 1

Theorem. Validity in classical propositional logic is decidable, i.e.,
there is a mechanical procedure that, given a propositional formula,
decides whether it is valid or not in a finite amount of time.
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Reducing connectives

We do not actually need that many connectives for classical
propositional logic.

Definition. The set Prop− is inductively defined by the following
rules:

⊥ : Prop−;
v : Prop− if v : PV;
φ→ ψ : Prop− if φ, ψ : Prop−.

Definition. Let the function _+ : Prop− → Prop be defined by

⊥+ = ⊥
v+ = v for v : PV
(φ→ ψ)+ = φ+ → ψ+.
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Reducing connectives

Theorem. For every φ : Prop, there exists φ− : Prop− such
that φ ≈ (φ−)+.

PROOF Induction on φ.

1 ⊥ ≈ (φ−)+ for some φ− : Prop−.
PROOF Choose φ− := ⊥.

2 ASSUME v : PV
PROVE v ≈ (φ−)+ for some φ− : Prop−

PROOF Choose φ− := v.
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Reducing connectives

3 ASSUME ψ : Prop, ψ− : Prop−, ψ ≈ (ψ−)+,
ϑ : Prop, ϑ− : Prop−, ϑ ≈ (ϑ−)+

PROVE ψ ∧ ϑ ≈ (φ−)+ for some φ− : Prop−

PROOF Choose φ− := ¬(ψ− → ¬ϑ−), which is justified by
the following truth table:
ψ ϑ ψ ∧ ϑ ↔ ¬( (ψ−)+ → ¬ (ϑ−)+)

0 0 0 0 0 1 0 0 1 1 0
0 1 0 0 1 1 0 0 1 0 1
1 0 1 0 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 0 1

Lemma. φ ≈ ψ if and only if |= φ↔ ψ.
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Reducing connectives

4 ASSUME ψ : Prop, ψ− : Prop−, ψ ≈ (ψ−)+,
ϑ : Prop, ϑ− : Prop−, ϑ ≈ (ϑ−)+

PROVE ψ ∨ ϑ ≈ (φ−)+ for some φ− : Prop−

PROOF Choose φ− := ¬ψ− → ϑ−, which is justified by the
following truth table:
ψ ϑ ψ ∨ ϑ ↔ (¬ (ψ−)+ → (ϑ−)+)

0 0 0 0 0 1 1 0 0 0
0 1 0 1 1 1 1 0 1 1
1 0 1 1 0 1 0 1 1 0
1 1 1 1 1 1 0 1 1 1
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Reducing connectives

5 ASSUME ψ : Prop, ψ− : Prop−, ψ ≈ (ψ−)+,
ϑ : Prop, ϑ− : Prop−, ϑ ≈ (ϑ−)+

PROVE ψ → ϑ ≈ (φ−)+ for some φ− : Prop−

PROOF Choose φ− := ψ− → ϑ−.

6 QED.
PROOF By 1 – 5 and the induction principle on Prop.
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Soundness
From now on we assume that _+ is implicitly applied where needed.

Theorem. ⊢NJ− φ implies |= φ for every φ : Prop−.

PROOF Semantic truth is preserved by every deduction rule.

1 Γ ⊢NJ− φ implies Γ |= φ for every φ : Prop− and
Γ : List Prop−.
PROOF Induction on the derivation of Γ ⊢NJ− φ.

2 QED.
PROOF Choose Γ := ∅ in 1 .
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Inductive definition of derivations
Definition. The sets NJ−[Γ;φ] of (closed) derivations, where
Γ ranges over List Prop− and φ over Prop−, are inductively
defined by the following rules:

(assum)
Γ ⊢ φ : NJ−[Γ;φ] if φ ∈ Γ;

d (⊥E)
Γ ⊢ φ : NJ−[Γ;φ] if d : NJ−[Γ;⊥];

d (→I)
Γ ⊢ φ→ ψ

: NJ−[Γ;φ→ ψ] if d : NJ−[Γ, φ;ψ];

d e (→E)
Γ ⊢ ψ : NJ−[Γ;ψ] if d : NJ−[Γ;φ→ ψ] and

e : NJ−[Γ;φ].

Definition. φ is derivable from Γ in NJ− if the set NJ−[Γ;φ] is
inhabited. In this case we write Γ ⊢NJ− φ.

Treating proofs as formal objects is the defining characteristic of
proof theory. 74



Induction principle on NJ−

The rule
d (→I)

Γ ⊢ φ→ ψ
: NJ−[Γ;φ→ ψ] if d : NJ−[Γ, φ;ψ]

is interpreted as “if d is a derivation with conclusion Γ, φ ⊢ ψ, then
d (→I)

Γ ⊢ φ→ ψ
is a derivation with conclusion Γ ⊢ φ→ ψ”.

Let P Γ φ d be a property on Γ : List Prop−, φ : Prop−, and
d : NJ−[Γ;φ], i.e., P talks about a derivation d and the context Γ
and formula φ in the conclusion of d. The corresponding case of
the above rule in the induction principle on NJ− is

For any Γ : List Prop−, φ, ψ ∈ Prop−, and d : NJ−[Γ, φ;ψ],
P Γ (φ→ ψ)

(
d (→I)

Γ ⊢ φ→ ψ

)
holds if P (Γ, φ) ψ d holds.
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Soundness

1 Γ ⊢NJ− φ implies Γ |= φ for every φ : Prop− and
Γ : List Prop−.
PROVE Γ |= φ holds for every Γ : List Prop− and

φ : Prop− such that Γ ⊢NJ− φ.
PROOF Induction on the derivation of Γ ⊢NJ− φ.
1.1 Case (assum).

ASSUME Γ : List Prop−, φ : Prop−, φ ∈ Γ,
σ : PV → 2, σ satisfies Γ

PROVE [[φ]]σ = 1

PROOF Since σ satisfies Γ and φ ∈ Γ.
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Soundness

1.2 Case (⊥E).
ASSUME Γ : List Prop−, Γ ⊢NJ− ⊥, Γ |= ⊥,

φ : Prop−, σ : PV → 2, σ satisfies Γ

PROVE [[φ]]σ = 1

PROOF Such σ could not have been given.
1.2.1 [[⊥]]σ = 0.

PROOF By definition.
1.2.2 [[⊥]]σ = 1.

PROOF Γ |= ⊥ and σ satisfies Γ.
1.2.3 QED.

PROOF 1.2.1 and 1.2.2 are contradictory —
invoke the principle of explosion.
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Soundness

1.3 Case (→I).
ASSUME Γ : List Prop−, φ, ψ : Prop−,

Γ, φ ⊢NJ− ψ, Γ, φ |= ψ,
σ : PV → 2, σ satisfies Γ

PROVE [[φ→ ψ]]σ = 1

PROOF Case analysis on the truth value of φ.
1.3.1 CASE [[φ]]σ = 0

1.3.2 CASE [[φ]]σ = 1

1.3.3 QED.
PROOF By 1.3.1 and 1.3.2 .
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Soundness

1.3.1 CASE [[φ]]σ = 0

PROOF [[φ→ ψ]]σ = 1
⇔ { definition of truth }

[[φ]]σ ≤ [[ψ]]σ
⇔ { assumption }

0 ≤ [[ψ]]σ
⇔ { truth value is either 0 or 1 }

true.
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Soundness

1.3.2 CASE [[φ]]σ = 1

PROOF ψ must be true, and therefore so must φ→ ψ.
1.3.2.1 σ satisfies Γ, φ.

PROOF σ satisfies Γ and φ.
1.3.2.2 [[ψ]]σ = 1.

PROOF Γ, φ |= ψ and 1.3.2.1 .
1.3.2.3 QED.

PROOF [[φ→ ψ]]σ = 1
⇔ { definition of truth }

[[φ]]σ ≤ [[ψ]]σ
⇔ { 1.3.2.2 }

[[φ]]σ ≤ 1
⇔ { truth value is either 0 or 1 }

true. 80



Soundness

1.4 Case (→E).
ASSUME Γ : List Prop−, φ, ψ : Prop−,

Γ ⊢NJ− φ→ ψ, Γ |= φ→ ψ, Γ ⊢NJ− φ, Γ |= φ,
σ : PV → 2, σ satisfies Γ

PROVE [[ψ]]σ = 1

PROOF Left as an exercise.
1.5 QED.

PROOF By 1.1 – 1.4 and the induction principle
on NJ−.
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Semantic completeness
Non-theorem. |= φ implies ⊢NJ− φ for any φ : Prop−.

Counterexample. We have |= ¬¬A → A but not ⊢NJ− ¬¬A → A.

If, however, we extend NJ− to NK− with the rule
Γ ⊢ ¬¬φ (¬¬E)
Γ ⊢ φ

we do obtain semantic completeness of NK− with respect to the
truth-value semantics.

Theorem. |= φ implies ⊢NK− φ for any φ : Prop−.
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The NK− deduction system

Definition. The sets NK−[Γ;φ] of (closed) derivations, where
Γ ranges over List Prop− and φ over Prop−, are inductively
defined by the following rules:

(assum)
Γ ⊢ φ : NK−[Γ;φ] if φ ∈ Γ;

d (⊥E)
Γ ⊢ φ : NK−[Γ;φ] if d : NK−[Γ;⊥];

d (→I)
Γ ⊢ φ→ ψ

: NK−[Γ;φ→ ψ] if d : NK−[Γ, φ;ψ];

d e (→E)
Γ ⊢ ψ : NK−[Γ;ψ] if d : NK−[Γ;φ→ ψ] and

e : NK−[Γ;φ];
d (¬¬E)

Γ ⊢ φ : NK−[Γ;φ] if d : NK−[Γ;¬¬φ].

Definition. φ is derivable from Γ in NK− if the set NK−[Γ;φ] is
inhabited. In this case we write Γ ⊢NK− φ. 83



Weakening lemma

Lemma. Let Γ, Γ′ : List Prop− such that Γ ⊆ Γ′ (i.e., φ ∈ Γ
implies φ ∈ Γ′ for any φ). Then Γ ⊢NK− φ implies Γ′ ⊢NK− φ
for any φ : Prop−.

PROOF Induction on the derivation of Γ ⊢NK− φ.
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Reconstruction lemma
Definition. The function vars : Prop− → List PV, which
computes the list of propositional variables occurring in a
propositional formula, is defined by

vars ⊥ = ∅
vars v = [v ] for v : PV
vars (φ→ ψ) = vars φ ∪ vars ψ

Lemma. Let φ : Prop− and σ : PV → 2. Define

Tσ ψ := if [[ψ]]σ = 1 then ψ else ¬ψ.

Then Tσ (vars φ) ⊢NK− Tσ φ, where

Tσ (vars φ) = [Tσ v | v ∈ vars φ ].

PROOF Induction on φ.
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Reconstruction lemma

1 ⊢NK− ¬⊥.
PROOF ⊥ ⊢ ⊥ (→I)

⊢ ¬⊥
2 ASSUME v : PV

PROVE Tσ v ⊢NK− Tσ v
PROOF (assum)Tσ v ⊢ Tσ v
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Reconstruction lemma

3 ASSUME φ : Prop−, Tσ (vars φ) ⊢NK− Tσ φ,
ψ : Prop−, Tσ (vars ψ) ⊢NK− Tσ ψ

PROVE Tσ (vars (φ→ ψ)) ⊢NK− Tσ (φ→ ψ)

PROOF Case analysis to determine Tσ (φ→ ψ).
3.1 CASE [[ψ]]σ = 1

3.2 CASE [[ψ]]σ = 0

PROOF Left as an exercise.
3.3 QED.

PROOF By 3.1 and 3.2 .

4 QED.
PROOF By 1 – 3 and the induction principle on Prop−.
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Reconstruction lemma

3.1 CASE [[ψ]]σ = 1

PROOF In this case Tσ (φ→ ψ) = φ→ ψ. We can prove
ψ and thus φ→ ψ.

3.1.1 Tσ (vars ψ) ⊢NK− ψ.
PROOF Induction hypothesis Tσ (vars ψ) ⊢NK− Tσ ψ,

where Tσ ψ = ψ since [[ψ]]σ = 1.
3.1.2 LET d : NK−[Tσ (vars (φ→ ψ)), φ; ψ]

PROOF 3.1.1 and weakening.
3.1.3 QED.

PROOF d (→I)
Tσ (vars (φ→ ψ)) ⊢ φ→ ψ
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Semantic completeness
Theorem. |= φ implies ⊢NK− φ for any φ : Prop−.

PROOF Construct a derivation that encodes the truth table,
where each sub-derivation that encodes an entry of the
table is produced by the reconstruction lemma.

1 For any finite Γ : List PV whose elements are all distinct,
Tσ Γ ⊢NK− φ for any σ implies ⊢NK− φ.
PROOF Induction on (the size of) Γ.

2 QED.
PROOF Choose Γ := vars φ in 1 .
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Semantic completeness

2 QED.
PROOF Choose Γ := vars φ in 1 .
2.1 Tσ (vars φ) ⊢NK− Tσ φ for any σ.

PROOF By the reconstruction lemma.
2.2 Tσ (vars φ) ⊢NK− φ for any σ.

PROOF In 2.1 , Tσ φ = φ for any σ since φ is valid.
2.3 QED.

PROOF Choose Γ := vars φ in 1 and discharge the
condition by 2.2 .
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Semantic completeness

1 For any finite Γ : List PV whose elements are all distinct,
Tσ Γ ⊢NK− φ for any σ implies ⊢NK− φ.
PROOF Induction on (the size of) Γ.
1.1 ⊢NK− φ for any σ implies ⊢NK− φ.

PROOF Use the condition by choosing an arbitrary σ.
1.2 ASSUME Γ : List PV consisting of a finite number of

distinct elements, v : PV, v /∈ Γ,
Tσ Γ ⊢NK− φ for any σ implies ⊢NK− φ,
Tσ Γ,Tσ v ⊢NK− φ for any σ

PROVE ⊢NK− φ

1.3 QED.
PROOF By 1.1 – 1.2 and the induction principle on

lists.
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Semantic completeness

1.2 ASSUME Γ : List PV consisting of a finite number of
distinct elements, v : PV, v /∈ Γ,
Tσ Γ ⊢NK− φ for any σ implies ⊢NK− φ,
Tσ Γ,Tσ v ⊢NK− φ for any σ

PROVE ⊢NK− φ

PROOF Use the induction hypothesis.
1.2.1 Tσ Γ, v ⊢NK− φ for any σ.
1.2.2 Tσ Γ,¬v ⊢NK− φ for any σ.
1.2.3 Tσ Γ ⊢NK− φ for any σ.
1.2.4 QED.

PROOF Discharge the condition of the induction
hypothesis by 1.2.3 .
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Semantic completeness

1.2.1 Tσ Γ, v ⊢NK− φ for any σ.
PROOF Given σ, instantiate the last assumption

with σ [1/v ]. Then Tσ [1/v ] v = v, and
Tσ [1/v ] Γ = Tσ Γ since v /∈ Γ.

1.2.2 Tσ Γ,¬v ⊢NK− φ for any σ.
PROOF Similar to 1.2.1 but instantiating the

assumption with σ [0/v ].

Definition. Let f : S → T, s : S, and t : T. The function
f [t/s ] : S → T is defined by

(f [t/s ]) x := if x = s then t else f x.
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Semantic completeness

1.2.3 Tσ Γ ⊢NK− φ for any σ.
ASSUME σ : PV → 2
PROVE Tσ Γ ⊢NK− φ

PROOF Refute ¬φ and use double negation elimination.
1.2.3.1 LET d : NK−[Tσ Γ,¬φ, v ; φ]

PROOF 1.2.1 and weakening.
1.2.3.2 LET e : NK−[Tσ Γ,¬φ,¬v ; φ]

PROOF 1.2.2 and weakening.
1.2.3.3 QED.
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Semantic completeness

1.2.3.3 QED.
PROOF

∆,¬v ⊢ ¬φ e (→E)
∆,¬v ⊢ ⊥ (→I)
∆ ⊢ ¬¬v

∆, v ⊢ ¬φ d (→E)
∆, v ⊢ ⊥ (→I)
∆ ⊢ ¬v (→E)

∆︷ ︸︸ ︷
Tσ Γ,¬φ ⊢ ⊥ (→I)Tσ Γ ⊢ ¬¬φ (¬¬E)Tσ Γ ⊢ φ
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Classical semantics of first-order logic

Definition. Given a signature S = (P,F), an S-structure M
consists of

a nonempty set called the domain, which is simply denoted
by M,
a function [[p ]]M : (M →)n 2 for each predicate symbol p : P
of arity n, and
a function [[f ]]M : (M →)n M for each function symbol f : F
of arity n.

Definition. Given a structure M, the set of M-assignments is
defined to be IV → M.
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Classical semantics of first-order logic

Definition. Let S = (P,F) be a signature, M an S-structure,
and σ an M-assignment. The truth-value interpretation
[[_]]M, σ : FormS → 2 of formulas is defined as follows:

[[⊥]]M, σ = 0
[[p t1 . . . tn]]M, σ = [[p ]]M [[t1]]M, σ . . . [[tn]]M, σ for p : P
[[φ ∧ ψ]]M, σ = min [[φ]]M, σ [[ψ]]M, σ

[[φ ∨ ψ]]M, σ = max [[φ]]M, σ [[ψ]]M, σ

[[φ→ ψ]]M, σ = if [[φ]]M, σ ≤ [[ψ]]M, σ then 1 else 0
[[∀ v. φ]]M, σ = if [[φ]]M, σ[m/v ] = 1 for every m : M

then 1 else 0
[[∃ v. φ]]M, σ = if [[φ]]M, σ[m/v ] = 0 for every m : M

then 0 else 1

where [[_]]M, σ : TermF → M is defined as follows:
[[v ]]M, σ = σ v for v : IV
[[f t1 . . . tn]]M, σ = [[f ]]M [[t1]]M, σ . . . [[tn]]M, σ for f : F . 97
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Semantic definitions
Definitions. Let S be a signature, φ, ψ : FormS , and
Γ : List FormS .

An S-structure M and an M-assignment σ satisfy φ if
[[φ]]M, σ = 1; they satisfy Γ if they satisfy every formula in Γ.
φ is a semantic consequence of Γ if, for any S-structure M
and M-assignment σ, φ is satisfied by M and σ whenever Γ
is satisfied by M and σ. In this case we write Γ |= φ.
φ is valid if ∅ |= φ. In this case we also call φ a tautology and
simply write |= φ.
φ and ψ are semantically equivalent, written φ ≈ ψ, if
[[φ]]M, σ = [[ψ]]M, σ for every S-structure M and
M-assignment σ.
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Semantic definitions
Definitions. Let M be a structure, φ a sentence, and T a theory.

M satisfies φ if φ is satisfied by M and any M-assignment σ.
In this case we call M a model of φ and write M |= φ.
M satisfies T if M satisfies every axiom in T . In this case we
call M a model of T and write M |= T .
T is satisfiable or (semantically) consistent if it has a model.

This satisfaction relation is at the heart of model theory, which we
do not cover in this course.
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Example: |= ¬(∀ v. ¬φ) ↔ ∃ v. φ

Equivalently we can prove that ¬(∀ v. ¬φ) ≈ ∃ v. φ.

ASSUME S : signature, M : S-structure, σ : M-assignment
PROVE [[¬(∀ v. ¬φ)]]M, σ = 1 if and only if [[∃ v. φ]]M, σ = 1
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Example: |= ¬(∀ v. ¬φ) ↔ ∃ v. φ

PROOF By definition of truth-value interpretation.

[[¬(∀ v. ¬φ)]]M, σ = 1
⇔ { truth value of ‘¬’ }

[[∀ v. ¬φ]]M, σ = 0
⇔ { truth value is either 0 or 1 }

it is not the case that [[∀ v. ¬φ]]M, σ = 1
⇔ { truth value of ‘∀’ }

it is not the case that [[¬φ]]M, σ[m/v ] = 1 for every m : M
⇔ { truth value of ‘¬’ }

it is not the case that [[φ]]M, σ[m/v ] = 0 for every m : M
⇔ { truth value of ‘∃’ }

it is not the case that [[∃ v. φ]]M, σ = 0
⇔ { truth value is either 0 or 1 }

[[∃ v. φ]]M, σ = 1

102



Soundness and semantic completeness
Theorem. ⊢NJ φ (or ⊢NK φ) implies |= φ for any first-order
formula φ.

Completeness is trickier:
classically it is a well-known result first proved by Gödel, but
intuitionistically it has been shown to be unprovable by known
methods unless we switch to a more sophisticated semantics.

Assuming completeness, we get the following undecidability result
as a corollary of the negative answer to Hilbert’s
Entscheidungsproblem independently given by Church and Turing.

Theorem. Validity in classical first-order logic is undecidable.
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Logical embedding

The fact that NK is obtained by extending NJ with the (¬¬E) rule
suggests that intuitionistic logic is a sub-system of classical
logic — some results developed in classical mathematics are
constructive, while others are not.

The opposite view is possible, though: classical logic can be
embedded into intuitionistic logic by the Gödel–Gentzen negative
translation.
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Assertion strength

In terms of provability, ⊢NK φ ∨ ¬φ does not assert that we can
prove either φ or ¬φ, but that it cannot be the case that both φ
and ¬φ lead to contradiction — its strength is equivalent to that
of ⊢NJ ¬(¬φ ∧ ¬¬φ).

A disjunctive proposition φ ∨ ψ in classical logic only amounts
to ¬(¬φ◦ ∧ ¬ψ◦) in intuitionistic logic.
An existential statement ∃ v. φ in classical logic only amounts
to ¬∀ v. ¬φ◦ in intuitionistic logic.
An atomic proposition p t1 . . . tn in classical logic only
amounts to the assertion that the opposite is impossible, i.e.,
¬¬(p t1 . . . tn).

As for ⊥, ‘∧’, ‘→’, and ‘∀’, their strength are the same in classical
and intuitionistic logic.
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Gödel–Gentzen negative translation

Definition. Given a signature S = (P,F), the Gödel–Gentzen
negative translation _◦ : FormS → FormS is defined by

⊥◦ = ⊥
(p t1 . . . tn)◦ = ¬¬(p t1 . . . tn) for p : P
(φ ∧ ψ)◦ = φ◦ ∧ ψ◦

(φ ∨ ψ)◦ = ¬(¬φ◦ ∧ ¬ψ◦)
(φ→ ψ)◦ = φ◦ → ψ◦

(∀ v. φ)◦ = ∀ v. φ◦

(∃ v. φ)◦ = ¬∀ v. ¬φ◦.
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Gödel–Gentzen negative translation

Theorem. For any first-order formula φ and list Γ of first-order
formulas, Γ ⊢NK φ if and only if Γ◦ ⊢NJ φ◦.

PROOF

1 ASSUME S signature, φ : FormS , Γ : List FormS ,
Γ◦ ⊢NJ φ◦

PROVE Γ ⊢NK φ

PROOF

1.1 ⊢NK φ↔ φ◦.
1.2 Γ◦ ⊢NK φ◦. PROOF All rules of NJ are rules of NK.
1.3 QED. PROOF By 1.1 , the “Gödel–Gentzen formulas”

in 1.2 can be replaced by their untranslated versions
under NK.
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Gödel–Gentzen negative translation

2 ASSUME S signature
PROVE Γ◦ ⊢NJ φ

◦ for every φ : FormS and
Γ : List FormS such that Γ ⊢NK φ.

PROOF

2.1 ⊢NJ ψ
◦ ↔ ¬¬ψ◦ for any ψ : FormS . (For the

Gödel–Gentzen formulas, double negation elimination is
admissible in NJ.)

2.2 QED.
PROOF Induction on the derivation of Γ ⊢NK φ, using

double negation elimination where necessary.

3 QED.
PROOF The two directions are proved in 1 and 2 .
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Gödel–Gentzen negative translation

Case (∨E).
ASSUME Γ : List FormS , φ, ψ, ϑ : FormS ,

d : NK[Γ;φ ∨ ψ], d ′ : NJ[Γ◦;¬(¬φ◦ ∧ ¬ψ◦)],
e : NK[Γ, φ;ϑ], e ′ : NJ[Γ◦, φ◦;ϑ◦],
f : NK[Γ, ψ;ϑ], f ′ : NJ[Γ◦, ψ◦;ϑ◦]

PROVE Γ◦ ⊢NJ ϑ◦

PROOF (d ′′, e ′′, and f ′′ are suitably weakened versions of d ′,
e ′, and f ′.)

d ′′

Γ◦,¬ϑ◦, φ◦ ⊢ ¬ϑ◦ e ′′
(→E)

Γ◦,¬ϑ◦, φ◦ ⊢ ⊥ (→I)
Γ◦,¬ϑ◦ ⊢ ¬φ◦

Γ◦,¬ϑ◦, ψ◦ ⊢ ¬ϑ◦ f ′′ (→E)
Γ◦,¬ϑ◦, ψ◦ ⊢ ⊥ (→I)
Γ◦,¬ϑ◦ ⊢ ¬ψ◦

(∧I)
Γ◦,¬ϑ◦ ⊢ ¬φ◦ ∧ ¬ψ◦

(→E)
Γ◦,¬ϑ◦ ⊢ ⊥ (→I)
Γ◦ ⊢ ¬¬ϑ◦ 2.1
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Classical logic as a sub-language of intuitionistic logic

We might view

the language of classical logic as a convenient way of writing
the Gödel–Gentzen formulas in intuitionistic logic, and
NK as an abstraction with which we can write certain indirect
proofs in NJ more easily as direct proofs.

Under this view, intuitionistic logic is in fact a richer language,
which has stronger disjunction and existential quantification and
thus can distinguish constructive theorems from non-constructive
ones (whereas classical logic cannot).
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