

Logic

Lecture 2: classical logic

28 August 2012

柯向上

Department of Computer Science University of Oxford

Hsiang-Shang.Ko@cs.ox.ac.uk

Classical semantics of propositional logic

Classical semantics adopts the *principle of bivalence*: every proposition denotes exactly one of the two truth-values, 0 (false) or 1 (true).

Definition. The set of *valuations* is defined to be $\mathcal{PV} \rightarrow \mathbf{2}$, where $\mathbf{2} := \{0, 1\}$.

Definition. Let σ be a valuation. The *truth-value interpretation* $[_]_{\sigma} : PROP \rightarrow 2$ of propositional formulas is defined by

$$\begin{split} \llbracket \bot \rrbracket_{\sigma} &= 0 \\ \llbracket v \rrbracket_{\sigma} &= \sigma v & \text{for } v : \mathcal{PV} \\ \llbracket \varphi \land \psi \rrbracket_{\sigma} &= \min \llbracket \varphi \rrbracket_{\sigma} \llbracket \psi \rrbracket_{\sigma} \\ \llbracket \varphi \lor \psi \rrbracket_{\sigma} &= \max \llbracket \varphi \rrbracket_{\sigma} \llbracket \psi \rrbracket_{\sigma} \\ \llbracket \varphi \to \psi \rrbracket_{\sigma} &= \text{if } \llbracket \varphi \rrbracket_{\sigma} \leq \llbracket \psi \rrbracket_{\sigma} \text{ then } 1 \text{ else } 0 \end{split}$$

Meta-connectives

Let σ be a valuation.

$$\begin{split} & [\![\neg\varphi]\!]_{\sigma} = 1 \iff [\![\varphi]\!]_{\sigma} \le [\![\bot]\!]_{\sigma} \iff [\![\varphi]\!]_{\sigma} \le 0 \iff [\![\varphi]\!]_{\sigma} = 0. \\ & [\![\top]\!]_{\sigma} = [\![\neg\bot]\!]_{\sigma} = 1 - [\![\bot]\!]_{\sigma} = 1 - 0 = 1. \\ & [\![\varphi \leftrightarrow \psi]\!]_{\sigma} = 1 \\ \Leftrightarrow \quad \{ \operatorname{case} `\wedge` \} \\ & \min [\![\varphi \to \psi]\!]_{\sigma} [\![\psi \to \varphi]\!]_{\sigma} = 1 \\ \Leftrightarrow \quad \{ \operatorname{arithmetic} \} \\ & [\![\varphi \to \psi]\!]_{\sigma} = 1 \quad \text{and} \quad [\![\psi \to \varphi]\!]_{\sigma} = 1 \\ \Leftrightarrow \quad \{ \operatorname{case} `+` \} \\ & [\![\varphi]\!]_{\sigma} \le [\![\psi]\!]_{\sigma} \quad \text{and} \quad [\![\psi]\!]_{\sigma} \le [\![\varphi]\!]_{\sigma} \\ \Leftrightarrow \quad \{ \operatorname{antisymmetry} \} \\ & [\![\varphi]\!]_{\sigma} = [\![\psi]\!]_{\sigma}. \end{split}$$

Semantic definitions

Definitions. Let φ , ψ : PROP and Γ : LIST PROP.

- A valuation σ satisfies φ if [[φ]]_σ = 1; it satisfies Γ if it satisfies every formula in Γ.
- φ is a *semantic consequence* of Γ if, for any valuation σ , φ is satisfied by σ whenever Γ is satisfied by σ . In this case we write $\Gamma \models \varphi$.
- φ is *valid* if $\emptyset \models \varphi$. In this case φ is also called a *tautology*, and we simply write $\models \varphi$.
- φ and ψ are *semantically equivalent* if $[\![\varphi]\!]_{\sigma} = [\![\psi]\!]_{\sigma}$ for every valuation σ . In this case we write $\varphi \approx \psi$.

 $\mathsf{Example:} \models \varphi \vee \neg \varphi$

ASSUME
$$\sigma : \mathcal{PV} \to \mathbf{2}$$

PROVE $\llbracket \varphi \lor \neg \varphi \rrbracket_{\sigma} = 1$
PROOF Case analysis on $\llbracket \varphi \rrbracket_{\sigma}$.
1 CASE $\llbracket \varphi \rrbracket_{\sigma} = 1$
PROOF $\llbracket \varphi \lor \neg \varphi \rrbracket_{\sigma} = max \llbracket \varphi \rrbracket_{\sigma} (1 - \llbracket \varphi \rrbracket_{\sigma}) = max \ 1 \ 0 = 1.$
2 CASE $\llbracket \varphi \rrbracket_{\sigma} = 0$
PROOF $\llbracket \varphi \lor \neg \varphi \rrbracket_{\sigma} = max \llbracket \varphi \rrbracket_{\sigma} (1 - \llbracket \varphi \rrbracket_{\sigma}) = max \ 0 \ 1 = 1.$
3 QED.
PROOF Either $\llbracket \varphi \rrbracket_{\sigma} = 1$ or $\llbracket \varphi \rrbracket_{\sigma} = 0$; 1 and 2.
Notation. "CASE C" abbreviates "ASSUME C PROVE QED".

$\models \varphi \vee \neg \varphi - \mathsf{truth \ table \ method}$

We may just summarise the case analysis on $[\![\varphi]\!]_{\sigma}$ and evaluation of the value of the entire propositional formula in a *truth table*.

φ	φ	\vee		φ
0	0	1	1	0
1	1	1	0	1

Theorem. Validity in classical propositional logic is *decidable*, i.e., there is a mechanical procedure that, given a propositional formula, decides whether it is valid or not in a finite amount of time.

We do not actually need that many connectives for classical propositional logic.

Definition. The set Prop^- is inductively defined by the following rules:

- \bot : Prop⁻;
- $v: \operatorname{Prop}^-$ if $v: \mathcal{PV}$;
- $\varphi \to \psi : \operatorname{Prop}^-$ if $\varphi, \psi : \operatorname{Prop}^-$.

Definition. Let the function $_^+ : PROP^- \rightarrow PROP$ be defined by

$$\begin{array}{rcl} \bot^+ & = & \bot \\ \mathbf{v}^+ & = & \mathbf{v} \\ (\varphi \to \psi)^+ & = & \varphi^+ \to \psi^+. \end{array} \text{ for } \mathbf{v} : \mathcal{PV}$$

Theorem. For every φ : PROP, there exists φ^- : PROP⁻ such that $\varphi \approx (\varphi^-)^+$.

Lemma. $\varphi \approx \psi$ if and only if $\models \varphi \leftrightarrow \psi$.

From now on we assume that $_^+$ is implicitly applied where needed.

Theorem. $\vdash_{NJ^{-}} \varphi$ implies $\models \varphi$ for every $\varphi : PROP^{-}$.

PROOF Semantic truth is preserved by every deduction rule.

1 $\Gamma \vdash_{NJ^{-}} \varphi$ implies $\Gamma \models \varphi$ for every $\varphi : PROP^{-}$ and $\Gamma : LIST PROP^{-}$.

2 QED. PROOF Choose $\Gamma := \emptyset$ in 1.

Inductive definition of derivations

Definition. The sets $NJ^{-}[\Gamma; \varphi]$ of (closed) derivations, where Γ ranges over LIST PROP⁻ and φ over PROP⁻, are inductively defined by the following rules:

$$\begin{split} & \overline{\Gamma \vdash \varphi} \ ^{(\text{assum})} : \mathrm{NJ}^{-}[\Gamma; \varphi] \quad \text{if} \quad \varphi \in \Gamma; \\ & \underline{d} \\ \overline{\Gamma \vdash \varphi} \ (\bot \mathsf{E}) : \mathrm{NJ}^{-}[\Gamma; \varphi] \quad \text{if} \quad d : \mathrm{NJ}^{-}[\Gamma; \bot]; \\ & \underline{d} \\ \overline{\Gamma \vdash \varphi \rightarrow \psi} \ (\to \mathsf{I}) : \mathrm{NJ}^{-}[\Gamma; \varphi \rightarrow \psi] \quad \text{if} \quad d : \mathrm{NJ}^{-}[\Gamma, \varphi; \psi]; \\ & \underline{d} \\ & \underline{e} \\ \overline{\Gamma \vdash \psi} \ (\to \mathsf{E}) : \mathrm{NJ}^{-}[\Gamma; \psi] \quad \text{if} \quad d : \mathrm{NJ}^{-}[\Gamma; \varphi \rightarrow \psi] \text{ and} \\ & e : \mathrm{NJ}^{-}[\Gamma; \varphi]. \end{split}$$

Definition. φ is *derivable* from Γ in NJ⁻ if the set NJ⁻[$\Gamma; \varphi$] is inhabited. In this case we write $\Gamma \vdash_{NJ^-} \varphi$.

Treating proofs as formal objects is the defining characteristic of *proof theory*.

Induction principle on $\rm NJ^-$

The rule

•
$$\frac{d}{\Gamma \vdash \varphi \to \psi} (\to \mathsf{I}) : \mathrm{NJ}^{-}[\Gamma; \varphi \to \psi] \quad \text{if} \quad d: \mathrm{NJ}^{-}[\Gamma, \varphi; \psi]$$

is interpreted as "if d is a derivation with conclusion $\Gamma, \varphi \vdash \psi$, then $\frac{d}{\Gamma \vdash \varphi \rightarrow \psi}$ (\rightarrow I) is a derivation with conclusion $\Gamma \vdash \varphi \rightarrow \psi$ ".

Let $P \ \Gamma \ \varphi \ d$ be a property on Γ : LIST PROP⁻, φ : PROP⁻, and d: NJ⁻[Γ ; φ], i.e., P talks about a derivation d and the context Γ and formula φ in the conclusion of d. The corresponding case of the above rule in the induction principle on NJ⁻ is

• For any
$$\Gamma$$
: LIST PROP⁻, φ , $\psi \in PROP^-$, and $d: NJ^-[\Gamma, \varphi; \psi]$,
 $P \ \Gamma \ (\varphi \to \psi) \ \left(\frac{d}{\Gamma \vdash \varphi \to \psi} (\to I)\right)$ holds if $P \ (\Gamma, \varphi) \ \psi \ d$ holds.

1	$\Gamma \vdash_{\mathrm{NJ}^-} \varphi \text{ implies } \Gamma \models \varphi \text{for every } \varphi : \mathrm{Prop}^- \text{ and }$			
	Γ : List Prop ⁻ .			
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
	$\fbox{PROOF} \text{Induction on the derivation of } \Gamma \vdash_{\mathrm{NJ}^{-}} \varphi.$			
	1.1 Case (assum).			
	ASSUME Γ : LIST PROP ⁻ , φ : PROP ⁻ , $\varphi \in \Gamma$,			
	$\sigma:\mathcal{PV} ightarrow2$, σ satisfies Γ			
	$\begin{tabular}{c} \mbox{PROVE} & [\![\varphi]\!]_{\sigma} = 1 \end{tabular}$			
	PROOF Since σ satisfies Γ and $\varphi \in \Gamma$.			

CASE $\llbracket \varphi \rrbracket_{\sigma} = 1$ 1.3.2 **PROOF** ψ must be true, and therefore so must $\varphi \rightarrow \psi$. 1.3.2.1 σ satisfies Γ, φ . **PROOF** σ satisfies Γ and φ . 1.3.2.2 $\llbracket \psi \rrbracket_{\sigma} = 1.$ **PROOF** $[\Gamma, \varphi \models \psi \text{ and } 1.3.2.1].$ 1.3.2.3 QED. PROOF $\llbracket \varphi \to \psi \rrbracket_{\sigma} = 1$ \Leftrightarrow {definition of truth } $\llbracket \varphi \rrbracket_{\sigma} < \llbracket \psi \rrbracket_{\sigma}$ \Leftrightarrow {1.3.2.2} $\llbracket \varphi \rrbracket_{\sigma} < 1$ \Leftrightarrow {truth value is either 0 or 1} true.

Non-theorem. $\models \varphi$ implies $\vdash_{NJ^{-}} \varphi$ for any $\varphi : PROP^{-}$.

Counterexample. We have $\models \neg \neg A \rightarrow A$ but not $\vdash_{NJ^{-}} \neg \neg A \rightarrow A$.

If, however, we extend $\rm NJ^-$ to $\rm NK^-$ with the rule

$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi} (\neg \neg \mathsf{E})$$

we do obtain semantic completeness of $\rm NK^-$ with respect to the truth-value semantics.

Theorem. $\models \varphi$ implies $\vdash_{NK^{-}} \varphi$ for any $\varphi : PROP^{-}$.

The $\rm NK^-$ deduction system

Definition. The sets $NK^{-}[\Gamma; \varphi]$ of (closed) derivations, where Γ ranges over LIST PROP⁻ and φ over PROP⁻, are inductively defined by the following rules:

$$\begin{split} & \overline{\Gamma \vdash \varphi} \ ^{(\operatorname{assum})} : \mathrm{NK}^{-}[\Gamma; \varphi] \quad \text{if} \quad \varphi \in \Gamma; \\ & \frac{d}{\Gamma \vdash \varphi} (\bot \mathsf{E}) : \mathrm{NK}^{-}[\Gamma; \varphi] \quad \text{if} \quad d : \mathrm{NK}^{-}[\Gamma; \bot]; \\ & \frac{d}{\Gamma \vdash \varphi \rightarrow \psi} (\to \mathsf{I}) : \mathrm{NK}^{-}[\Gamma; \varphi \rightarrow \psi] \quad \text{if} \quad d : \mathrm{NK}^{-}[\Gamma, \varphi; \psi]; \\ & \frac{d}{\Gamma \vdash \psi} (\to \mathsf{E}) : \mathrm{NK}^{-}[\Gamma; \psi] \quad \text{if} \quad d : \mathrm{NK}^{-}[\Gamma; \varphi \rightarrow \psi] \text{ and} \\ & e : \mathrm{NK}^{-}[\Gamma; \varphi]; \\ & \frac{d}{\Gamma \vdash \varphi} (\neg \neg \mathsf{E}) : \mathrm{NK}^{-}[\Gamma; \varphi] \quad \text{if} \quad d : \mathrm{NK}^{-}[\Gamma; \neg \neg \varphi]. \end{split}$$

Definition. φ is *derivable* from Γ in NK⁻ if the set NK⁻[$\Gamma; \varphi$] is inhabited. In this case we write $\Gamma \vdash_{NK^-} \varphi$.

83

Weakening lemma

Lemma. Let Γ , Γ' : LIST PROP⁻ such that $\Gamma \subseteq \Gamma'$ (i.e., $\varphi \in \Gamma$ implies $\varphi \in \Gamma'$ for any φ). Then $\Gamma \vdash_{NK^-} \varphi$ implies $\Gamma' \vdash_{NK^-} \varphi$ for any φ : PROP⁻.

 $\begin{array}{c|c} \mathsf{PROOF} & \mathsf{Induction} \text{ on the derivation of } \Gamma \vdash_{\mathsf{NK}^{-}} \varphi. \end{array}$

Definition. The function *vars* : $PROP^- \rightarrow LIST \mathcal{PV}$, which computes the list of propositional variables occurring in a propositional formula, is defined by

$$egin{array}{rcl} {\it vars } ot &= \emptyset \ {\it vars } {\it v} &= [{\it v}] \ {\it vars } (arphi o \psi) &= {\it vars } arphi \cup {\it vars } \psi \end{array}$$
 for ${\it v}: \mathcal{PV}$

Lemma. Let φ : PROP⁻ and σ : $\mathcal{PV} \rightarrow \mathbf{2}$. Define

 $T_{\sigma} \psi := \text{if } \llbracket \psi \rrbracket_{\sigma} = 1 \text{ then } \psi \text{ else } \neg \psi.$

Then T_{σ} (vars φ) $\vdash_{NK^{-}} T_{\sigma} \varphi$, where

$$T_{\sigma} (vars \varphi) = [T_{\sigma} v | v \in vars \varphi].$$

Induction on φ .

PROOF By 1 - 3 and the induction principle on PROP⁻.

3.1 CASE
$$\llbracket \psi \rrbracket_{\sigma} = 1$$

PROOF In this case $T_{\sigma} (\varphi \rightarrow \psi) = \varphi \rightarrow \psi$. We can prove ψ and thus $\varphi \rightarrow \psi$.
3.1.1 $T_{\sigma} (vars \psi) \vdash_{NK^{-}} \psi$.
PROOF Induction hypothesis $T_{\sigma} (vars \psi) \vdash_{NK^{-}} T_{\sigma} \psi$, where $T_{\sigma} \psi = \psi$ since $\llbracket \psi \rrbracket_{\sigma} = 1$.
3.1.2 LET $d : NK^{-}[T_{\sigma} (vars (\varphi \rightarrow \psi)), \varphi; \psi]$
PROOF 3.1.1 and weakening.
3.1.3 QED.
PROOF $\frac{d}{T_{\sigma} (vars (\varphi \rightarrow \psi)) \vdash \varphi \rightarrow \psi} (\rightarrow 1)$

Theorem. $\models \varphi$ implies $\vdash_{NK^{-}} \varphi$ for any $\varphi : PROP^{-}$.

- **PROOF** Construct a derivation that encodes the truth table, where each sub-derivation that encodes an entry of the table is produced by the reconstruction lemma.
- $\begin{array}{c} \textbf{1} \quad \text{For any finite } \Gamma: \text{LIST } \mathcal{PV} \text{ whose elements are all distinct,} \\ \mathcal{T}_{\sigma} \ \Gamma \vdash_{\text{NK}^{-}} \varphi \text{ for any } \sigma \quad \text{implies} \quad \vdash_{\text{NK}^{-}} \varphi. \\ \hline \textbf{PROOF} \quad \text{Induction on (the size of) } \Gamma. \end{array}$

2 QED. **PROOF** Choose $\Gamma := vars \varphi$ in 1.

1.2	$ \begin{array}{l} \hline \textbf{ASSUME} \Gamma: \text{LIST } \mathcal{PV} \text{ consisting of a finite number of} \\ \text{ distinct elements, } v: \mathcal{PV}, v \notin \Gamma, \\ \mathcal{T}_{\sigma} \; \Gamma \vdash_{\text{NK}^{-}} \varphi \text{ for any } \sigma \text{implies} \; \vdash_{\text{NK}^{-}} \varphi, \\ \mathcal{T}_{\sigma} \; \Gamma, \; \mathcal{T}_{\sigma} \; v \vdash_{\text{NK}^{-}} \varphi \text{ for any } \sigma \end{array} $
	$\begin{array}{ c c c } \hline & & & & \\ \hline & & & \\ \hline \hline & & \\ \hline \\ \hline$
	1.2.1 $T_{\sigma} \Gamma, \nu \vdash_{\mathrm{NK}^{-}} \varphi$ for any σ .
	1.2.2 $T_{\sigma} \Gamma, \neg v \vdash_{\mathrm{NK}^{-}} \varphi$ for any σ .
	1.2.3 $T_{\sigma} \Gamma \vdash_{\mathrm{NK}^{-}} \varphi$ for any σ .
	1.2.4 QED.
	PROOF Discharge the condition of the induction
	hypothesis by 1.2.3.

1.2.1
$$T_{\sigma} \Gamma, v \vdash_{NK^{-}} \varphi$$
 for any σ .
PROOF Given σ , instantiate the last assumption
with $\sigma [1/v]$. Then $T_{\sigma [1/v]} v = v$, and
 $T_{\sigma [1/v]} \Gamma = T_{\sigma} \Gamma$ since $v \notin \Gamma$.
1.2.2 $T_{\sigma} \Gamma, \neg v \vdash_{NK^{-}} \varphi$ for any σ .
PROOF Similar to 1.2.1 but instantiating the
assumption with $\sigma [0/v]$.

Definition. Let $f: S \to T$, s: S, and t: T. The function $f[t/s]: S \to T$ is defined by

 $(f[t/s]) \times :=$ **if** x = s then t else f x.

Classical semantics of first-order logic

Definition. Given a signature $\mathcal{S}=(\mathcal{P},\mathcal{F}),$ an $\mathcal{S}\text{-structure}~\mathcal{M}$ consists of

- a nonempty set called the *domain*, which is simply denoted by *M*,
- a function $[\![p]\!]_{\mathcal{M}} : (\mathcal{M} \to)^n \mathbf{2}$ for each predicate symbol $p : \mathcal{P}$ of arity n, and

• a function $\llbracket f \rrbracket_{\mathcal{M}} : (\mathcal{M} \to)^n \mathcal{M}$ for each function symbol $f : \mathcal{F}$ of arity n.

Definition. Given a structure \mathcal{M} , the set of \mathcal{M} -assignments is defined to be $\mathcal{IV} \to \mathcal{M}$.

Classical semantics of first-order logic

Definition. Let S = (P, F) be a signature, M an S-structure, and σ an M-assignment. The *truth-value interpretation* $[\![]_{M,\sigma} : FORM_S \to 2$ of formulas is defined as follows:

$$\begin{split} \llbracket \bot \rrbracket_{\mathcal{M},\sigma} &= 0 \\ \llbracket p \ t_1 \dots t_n \rrbracket_{\mathcal{M},\sigma} &= \llbracket p \rrbracket_{\mathcal{M}} \llbracket t_1 \rrbracket_{\mathcal{M},\sigma} \dots \llbracket t_n \rrbracket_{\mathcal{M},\sigma} \quad \text{for } p : \mathcal{P} \\ \llbracket \varphi \land \psi \rrbracket_{\mathcal{M},\sigma} &= \min \llbracket \varphi \rrbracket_{\mathcal{M},\sigma} \llbracket \psi \rrbracket_{\mathcal{M},\sigma} \\ \llbracket \varphi \lor \psi \rrbracket_{\mathcal{M},\sigma} &= \max \llbracket \varphi \rrbracket_{\mathcal{M},\sigma} \llbracket \psi \rrbracket_{\mathcal{M},\sigma} \\ \llbracket \varphi \to \psi \rrbracket_{\mathcal{M},\sigma} &= \mathbf{if} \llbracket \varphi \rrbracket_{\mathcal{M},\sigma} \le \llbracket \psi \rrbracket_{\mathcal{M},\sigma} \text{ then 1 else } 0 \\ \llbracket \forall \ v. \ \varphi \rrbracket_{\mathcal{M},\sigma} &= \mathbf{if} \llbracket \varphi \rrbracket_{\mathcal{M},\sigma} \llbracket m r v = 1 \text{ for every } m : \mathcal{M} \\ \mathbf{then 1 else } 0 \\ \llbracket \exists \ v. \ \varphi \rrbracket_{\mathcal{M},\sigma} &= \mathbf{if} \llbracket \varphi \rrbracket_{\mathcal{M},\sigma} \llbracket m r v = 0 \text{ for every } m : \mathcal{M} \\ \mathbf{then 0 else } 1 \end{split}$$

where $\llbracket_]_{\mathcal{M},\sigma}$: TERM $_{\mathcal{F}} \to \mathcal{M}$ is defined as follows:

(This page is intentionally left blank.)

Semantic definitions

Definitions. Let S be a signature, φ , ψ : FORM_S, and Γ : LIST FORM_S.

- An S-structure \mathcal{M} and an \mathcal{M} -assignment σ satisfy φ if $[\![\varphi]\!]_{\mathcal{M},\sigma} = 1$; they satisfy Γ if they satisfy every formula in Γ .
- φ is a *semantic consequence* of Γ if, for any S-structure \mathcal{M} and \mathcal{M} -assignment σ , φ is satisfied by \mathcal{M} and σ whenever Γ is satisfied by \mathcal{M} and σ . In this case we write $\Gamma \models \varphi$.
- φ is *valid* if $\emptyset \models \varphi$. In this case we also call φ a *tautology* and simply write $\models \varphi$.
- φ and ψ are *semantically equivalent*, written $\varphi \approx \psi$, if $\llbracket \varphi \rrbracket_{\mathcal{M},\sigma} = \llbracket \psi \rrbracket_{\mathcal{M},\sigma}$ for every *S*-structure \mathcal{M} and \mathcal{M} -assignment σ .

Semantic definitions

Definitions. Let \mathcal{M} be a structure, φ a sentence, and \mathcal{T} a theory.

- \mathcal{M} satisfies φ if φ is satisfied by \mathcal{M} and any \mathcal{M} -assignment σ . In this case we call \mathcal{M} a *model* of φ and write $\mathcal{M} \models \varphi$.
- \mathcal{M} satisfies \mathcal{T} if \mathcal{M} satisfies every axiom in \mathcal{T} . In this case we call \mathcal{M} a *model* of \mathcal{T} and write $\mathcal{M} \models \mathcal{T}$.
- T is *satisfiable* or (semantically) *consistent* if it has a model.

This satisfaction relation is at the heart of *model theory*, which we do not cover in this course.

Example: $\models \neg(\forall v. \neg \varphi) \leftrightarrow \exists v. \varphi$

Equivalently we can prove that $\neg(\forall v. \neg \varphi) \approx \exists v. \varphi$.

ASSUME \mathcal{S} : signature, \mathcal{M} : \mathcal{S} -structure, σ : \mathcal{M} -assignmentPROVE $\llbracket \neg (\forall v. \neg \varphi) \rrbracket_{\mathcal{M}, \sigma} = 1$ if and only if $\llbracket \exists v. \varphi \rrbracket_{\mathcal{M}, \sigma} = 1$

Example: $\models \neg(\forall v. \neg \varphi) \leftrightarrow \exists v. \varphi$

PROOF By definition of truth-value interpretation.

 $\llbracket \neg (\forall \mathbf{v}, \neg \varphi) \rrbracket_{\mathcal{M}, \sigma} = 1$ \Leftrightarrow {truth value of '¬'} $\llbracket \forall \mathbf{v}. \neg \varphi \rrbracket_{\mathcal{M},\sigma} = 0$ \Leftrightarrow {truth value is either 0 or 1} it is not the case that $\llbracket \forall v. \neg \varphi \rrbracket_{\mathcal{M}. \sigma} = 1$ \Leftrightarrow {truth value of ' \forall ' } it is not the case that $\llbracket \neg \varphi \rrbracket_{\mathcal{M}, \sigma[m/v]} = 1$ for every $m : \mathcal{M}$ \Leftrightarrow {truth value of '¬' } it is not the case that $[\![\varphi]\!]_{\mathcal{M},\sigma[m/v]} = 0$ for every $m: \mathcal{M}$ \Leftrightarrow {truth value of ' \exists ' } it is not the case that $[\exists v. \varphi]_{\mathcal{M}.\sigma} = 0$ \Leftrightarrow {truth value is either 0 or 1} $\llbracket \exists \mathbf{v}. \varphi \rrbracket_{\mathcal{M},\sigma} = 1$

Soundness and semantic completeness

Theorem. $\vdash_{NJ} \varphi$ (or $\vdash_{NK} \varphi$) implies $\models \varphi$ for any first-order formula φ .

Completeness is trickier:

- classically it is a well-known result first proved by Gödel, but
- intuitionistically it has been shown to be unprovable by known methods unless we switch to a more sophisticated semantics.

Assuming completeness, we get the following undecidability result as a corollary of the negative answer to Hilbert's *Entscheidungsproblem* independently given by Church and Turing.

Theorem. Validity in classical first-order logic is undecidable.

Logical embedding

The fact that NK is obtained by extending NJ with the $(\neg\neg E)$ rule suggests that intuitionistic logic is a sub-system of classical logic — some results developed in classical mathematics are constructive, while others are not.

The opposite view is possible, though: classical logic can be embedded into intuitionistic logic by the *Gödel–Gentzen negative translation*.

Assertion strength

In terms of provability, $\vdash_{NK} \varphi \lor \neg \varphi$ does not assert that we can prove either φ or $\neg \varphi$, but that it cannot be the case that both φ and $\neg \varphi$ lead to contradiction — its strength is equivalent to that of $\vdash_{NJ} \neg (\neg \varphi \land \neg \neg \varphi)$.

- A disjunctive proposition $\varphi \lor \psi$ in classical logic only amounts to $\neg(\neg \varphi^{\circ} \land \neg \psi^{\circ})$ in intuitionistic logic.
- An existential statement ∃ ν. φ in classical logic only amounts to ¬∀ ν. ¬φ° in intuitionistic logic.
- An atomic proposition $p \ t_1 \dots t_n$ in classical logic only amounts to the assertion that the opposite is impossible, i.e., $\neg \neg (p \ t_1 \dots t_n)$.

As for $\bot,$ '^', '→', and '\forall', their strength are the same in classical and intuitionistic logic.

Definition. Given a signature $S = (\mathcal{P}, \mathcal{F})$, the *Gödel–Gentzen* negative translation _° : FORM_S \rightarrow FORM_S is defined by

$$\begin{array}{rcl} \bot^{\circ} & = & \bot \\ (p \ t_{1} \dots t_{n})^{\circ} & = & \neg \neg (p \ t_{1} \dots t_{n}) & \text{for } p : \mathcal{P} \\ (\varphi \land \psi)^{\circ} & = & \varphi^{\circ} \land \psi^{\circ} \\ (\varphi \lor \psi)^{\circ} & = & \neg (\neg \varphi^{\circ} \land \neg \psi^{\circ}) \\ (\varphi \to \psi)^{\circ} & = & \varphi^{\circ} \to \psi^{\circ} \\ (\forall \ v. \ \varphi)^{\circ} & = & \forall \ v. \ \varphi^{\circ} \\ (\exists \ v. \ \varphi)^{\circ} & = & \neg \forall \ v. \ \neg \varphi^{\circ}. \end{array}$$

Theorem. For any first-order formula φ and list Γ of first-order formulas, $\Gamma \vdash_{NK} \varphi$ if and only if $\Gamma^{\circ} \vdash_{NJ} \varphi^{\circ}$.

PROOF

ASSUME Signature, φ : FORM_S, Γ : LIST FORM_S, $\Gamma^{\circ} \vdash_{\mathbf{NI}} \varphi^{\circ}$ PROVE $\Gamma \vdash_{NK} \varphi$ PROOF 1.1 $\vdash_{\rm NK} \varphi \leftrightarrow \varphi^{\circ}$. $\Gamma^{\circ} \vdash_{\mathrm{NK}} \varphi^{\circ}$. | **PROOF** | All rules of NJ are rules of NK. 1.2 QED. **PROOF** By 1.1, the "Gödel–Gentzen formulas" 1.3 in 1.2 can be replaced by their untranslated versions under NK.

ASSUME S signature

 $\begin{array}{ll} \begin{array}{l} \mbox{PROVE} & \Gamma^{\circ} \vdash_{\rm NJ} \varphi^{\circ} \mbox{ for every } \varphi : {\rm FORM}_{\mathcal{S}} \mbox{ and} \\ & \Gamma : {\rm LIST} \mbox{ FORM}_{\mathcal{S}} \mbox{ such that } \Gamma \vdash_{\rm NK} \varphi. \end{array}$

PROOF

2.1 $\vdash_{NJ} \psi^{\circ} \leftrightarrow \neg \neg \psi^{\circ}$ for any $\psi : FORM_{\mathcal{S}}$. (For the Gödel–Gentzen formulas, double negation elimination is admissible in NJ.)

2.2 QED.

PROOF

Induction on the derivation of $\Gamma \vdash_{\rm NK} \varphi$, using double negation elimination where necessary.

QED.

The two directions are proved in 1 and 2.

Classical logic as a sub-language of intuitionistic logic

We might view

- the language of classical logic as a convenient way of writing the Gödel–Gentzen formulas in intuitionistic logic, and
- NK as an abstraction with which we can write certain indirect proofs in NJ more easily as direct proofs.

Under this view, intuitionistic logic is in fact a richer language, which has stronger disjunction and existential quantification and thus can distinguish constructive theorems from non-constructive ones (whereas classical logic cannot).