
HOARE LOGIC

Parts of the slides are taken from the lecture notes of
Carl Leonadsson, Yih-Kuen Tsai, and Michael Gordon

Outline

¨  Prove Program Correctness
¤  WHILE program
¤  Hoare Triple

¨  Axioms and Rules
¤  Assignment Axiom
¤  Composition Rule
¤  Conditional Rule
¤  Iteration Rule

Hoare Logic

¨  Hoare Logic - An axiomatic basis for computer
programming (1969, C.A.R. Hoare)
¤  Describes a deductive system for proving program correctness.
¤  A set of axioms and inference rules about asserted programs.
¤  Development to the logic is still active

n  E.g., separation logic (reasoning about pointers)

WHILE Program

¨  Assume that we have an underlying logic L, e.g. Integer Arithmetic

Define inductively
¨  For all integer variable X and term E, X:=E is a program.
¨  If S1 and S2 are programs, B is a Boolean expression, then the following

are programs
¤  S1;S2

¤  If B then S1 else S2 fi
¤  while B do S1 od

E.g. X+5, 4-Y*Z

A sample program:
SUM:=0;
I:=1;
while I<100 do
 if I%2=0 then
 SUM:=SUM+I ; I:=I+1
 else
 I:=I+1
 fi
od

Program States and Transitions

¨  A state is a valuation of all program variables.

¨  A program statement defines transitions between
program states.

SUM=0
I=0

SUM=0
I=0

SUM=0
I=1

SUM:=0; I:=1;

SUM=0
I=0

SUM:=0;I:=1; while I<100 do SUM:=SUM+I ; I:=I+1 od
SUM=?

I=?

Predicates

¨  A predicate characterizes a set of program states

I<5 Æ SUM>3

SUM=7
I=0

SUM=8
I=1

SUM=9
I=2 …

SUM=2
I=5

? ?

Written in standard mathematical
notations together with logical operators
such as Æ(and), Ç(or), ¬(not),) (implies)

Specification of Imperative Programs

Acceptable
Initial States

“X is greater
than zero”

Acceptable
Final States

“Y is the square
root of X” Action of the Program

Hoare’s notation

¨  C.A.R. Hoare introduced the following notation called a
partial correctness specification for specifying what a
program does:

 {P}S{Q}
¤  Here S is a program,
¤  P is a predicate describes the precondition of S
¤  Q is a predicate describes the postcondition of S

¨  Note: Hoare’s original notation was P{S}Q instead of
{P}S{Q}, but the latter form is now more widely used

Meaning of Hoare’s Notation

 {P}S{Q} means
¤  Whenever S is executed in a state satisfying P
¤  and if the execution of S terminates
¤  Then the state in which S terminates satisfies Q.

¨  Example: {X = 1} X:= X+1 {X = 2}
¤  P: the value of X is 1
¤  Q: the value of X is 2
¤  S: an assignment X:= X + 1

n  X becomes X + 1

¨  {X = 1} X := X + 1 {X = 2} is true
¨  {X = 1} X := X + 1 {X = 2} is false

Some practices

(1) Is the following formula valid?
 {X < 1} X:=X+1 ; X:= X+1 {X < 3}

(2) Is the following formula valid?

 {X < 100} while true do X:=X+1 od {X < 0}

(3) Is the following formula valid?

 {X < 100} if X=1 then S1 else S2 {X < 200}
 S1´ while true do X:=X+1 od
 S2´ X:=X+2

Formal versus Informal Proof

¨  Informal Proof:
¤  Like what we used in the previous slides

¨  Formal verification uses formal proof
¤  The rules used are described and followed very precisely

¨  An example: proof of (X+1)2 = X2 + 2£X +1

The Structure of Proofs
¨  A proof consists of a sequence of lines

¨  Each line is an instance of an atom
¤  E.g., the definition of ()^2

¨  or follows from previous lines by a rule of inference
¤  E,g, the substitution of equivalent objects

¨  The statement on the last line of the proof is the statement proved
by it
¤  Thus (X+1)2 = X2 + 2£X +1 is proved by the proof on the previous slides

¨  These are “Hibert style” formal proofs
¤  can use a tree structure rather than a linear one
¤  the choice is a matter of convenience

Formal proof is syntactic “symbol pushing”

¨  Formal system reduce verification and proof to symbol
pushing.

¨  The rule say…
¤  If you have a string of characters of this form
¤  You can obtain a new string of characters of this other form

¨  Even if you don’t know what the strings are intended to
mean, provided the rules are designed properly and you
apply them correctly, you will get correct results.
¤  Though not necessary the desired result

Hoare Logic

¨  Hoare Logic is a deductive proof system for Hoare triple
{P} S {Q}

¨  Can be used to verify programs
¤  Original proposal by Hoare
¤  Tedious and error prone

¨  Exists tools to help its automation

Partial Correctness Specification

¨  An expression {P} S {Q} is called a partial correctness specification
¤  P is called its precondition
¤  Q is called its postcondition

¨  {P} S {Q} means
¤  Whenever S is executed in a state satisfying P
¤  and if the execution of S terminates
¤  Then the state in which the execution of S terminates satisfies Q

¨  It is partial because for {P} S {Q} to be true, it is not necessary for
the execution of S to terminate when stated in a state satisfying P

¨  {X = 1} while T do X := X + 1 od {X = -3 } – this specification is true!

Total Correctness Specification
¨  A stronger kind of specification is a total correctness

specification
¤  There is no standard notation for such specifications
¤  Here we use [P] S [Q]

¨  [P] S [Q] means
¤  Whenever S is executed in a state satisfying, the execution of S

terminates
¤  After S terminates Q holds

¨  [X = 1] while T do X := X + 1 od [X = -3]
¤  This says the execution of the program terminates when stated in a

state satisfying X = 1
¤  After which Y = 1 will hold

Clearly false

Total Correctness

¨  Informally
 Total Correctness = Termination + Partial Correctness

¨  Total correctness is the ultimate goal
¤  Usually easier to show partial correctness and termination

separately

¨  Termination is usually straightforward to show, but there
exists examples where it is not.

Example
while X > 1 do
 if X%2==1
 then X := (3*X)+1
 else X := X/2
 fi
od

Collatz conjecture: if the program
terminates with X = 1 for all values of X

Auxiliary Variables

¨  {X=x Æ Y=y} R:=X; X:=Y; Y:=R {X=y Æ Y=x}
¤  If the program terminates, then the values of X and Y are swapped

¨  The variables x and y, which do not occur in the program and
are used to name the initial values of program variables X
and Y

¨  They are called auxiliary variables or ghost variables.

¨  Informal convention:
¤  Program variables are upper case
¤  Auxiliary variables are lower case

More examples
¨  {X = x Æ Y = y} X:=Y ; Y:=X {X = y Æ Y = x}

¤  It says the program can swap the values of X and Y, which is not true

¨  {T} S {Q}
¤  Whenever S halts, Q holds

¨  {P} S {T}
¤  This specification is true for all P and S
¤  Because T is always true

¨  [P] S [T]
¤  S terminates if initially P holds

¨  [T] S [Q]
¤  S always terminates and ends in a state where Q holds

A More Complicated Example

{T}
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od
{ R< Y Æ X = R + (Y £ Q)}

¨  The specification is true if the execution of the program
terminates, then Q is the quotient and R is the reminder
resulting from dividing Y into X

¨  This is true even if X is initially negative

Some Easy Exercises

¨  When is [T] S [T] true?

¨  Write a partial correctness specification which is true iff
the program S has the effect of multiplying the values of
X and Y and storing the results in X

¨  Write a specification which is true if the execution of S
always terminates when the execution is stated in a
state satisfying P

Specification can be Tricky
¨  “The program must set Y to the maximum of X and Y”

 [T] S [Y=max(X,Y)]
¨  A suitable program

¤  if X ¸ Y then Y:=X else X := X fi

¨  Another?
¤  If X ¸ Y then X:=Y else X := X fi

¨  Or even
¤  Y:=X

¨  Later we will be able to prove that all the programs are “correct”

¨  The postcondition [Y=max(X,Y)] is the maximum of X and Y in the final
state

Specification can be Tricky

¨  The intended specification was not properly captured by
 [T] S [Y=max(X,Y)]

¨  The correct one should be
 [X=xÆ Y=y] S [Y=max(x,y)]

¨  The lesson
¤  It is easy to write the wrong specification
¤  A proof system will not help since the incorrect program can be

proved “correct”
¤  Testing could be helpful in this case

Outline

¨  Prove Program Correctness
¤  WHILE program
¤  Hoare Triple

¨  Axioms and Rules
¤  Assignment Axiom
¤  Composition Rule
¤  Conditional Rule
¤  Iteration Rule

Formal Proof

(1) Is the following formula valid?
 {X < 1} X:=X+1 ; X:= X+1 {X < 3}

(2) Is the following formula valid?

 {X < 100} while true do X:=X+1 od {X < 0}

(3) Is the following formula valid?

 {X < 100} if X=1 then S1 else S2 {X < 200}
 S1´ while true do X:=X+1 od
 S2´ X:=X+2

 How can we formally prove the previous examples?

Assignment Axiom

¨  We begin with Foyld’s version of the assignment axiom
 {P} X := E {?}

¨  The term E might contain X, e.g. E ´ X+1
¨  An example: X := X + 1

¨  We need to differentiate these two values!

The value of X after
executing the statement

The value of X before
executing the statement

Assignment Axiom

¨  We begin with Foyld’s version of the assignment axiom
 {P} X := E {?}

9V.(X=E[V/X] Æ P[V/X])

Intuition: we use new variable V to denote the old value of X

Notations

E[V/X] E
P[V/X] P : replacing all free occurrences of X in with V

Assignment Axiom

Foyld’s Assignment Axiom

{P} X:=E {9 V. X=E[V/X] Æ P[V/X]}

We do not want to have quantifiers in the reasoning path!

Example
{Y + X = 42} X := X + 5 {9 V. X = V + 5 Æ Y + V =42}

Example
{Y = 5 } X := X/Y + X {?}

Assignment Axiom

Hoare’s Assignment Axiom

{Q[E/X]} X:=E {Q}

Backward reasoning

Expressions with Side-effect

¨  The validity of the assignment axiom depends on
expressions not having side-effects.

¨  Suppose that our language were extended so that it
contained the “block expression”

 BEGIN Y:=1;2 END
¤  This expression has value 2, but its evaluation also change the value

of Y to 1

¨  If the assignment axiom applied to block expressions, then
it could be used to deduce the following, which is false
¤  {Y=0} X:= BEGIN Y:=1; 2 END {Y=0}
¤  Notice that (Y=0)[E/X] = (Y=0)

Assignment Axiom

Hoare’s Assignment Axiom

{Q[E/X]} X:=E {Q}

Backward reasoning

Below is an informal proof of the soundness of this axiom:

Let s be the state before X := E and s′ the state after.
So, s′ = s[X ! E] (assuming E has no side-effect).

Q[E/X] holds in s if and only if Q holds in s′, because
(1) Every variable, except X, has the same value in s and s′, and
(2) Q[E/X] has every X in Q replaced by E,
(3) Q has every X evaluated to E in s (s’ = s[X ! E]).

Assignment Axiom

Hoare’s Assignment Axiom

{Q[E/X]} X:=E {Q}

Backward reasoning

Example
{X + Y + 5 > 5} X := X + Y + 5 {X > 5}

Example
{?} X := X + 1 {X<10} Try it!

Composition Rule

Composition Rule
{P}S1{R} {R}S2{Q}

{P}S1;S2{Q}

Composition Rule

Example
P: {true} X:=2 ; Y:=X {X >0Æ Y=2}

(1) 2>0 Æ 2 = 2 , true (Integer arithmetic)
(2) {2 > 0 Æ 2 = 2} X:=2 {X > 0 Æ X =2} (assignment axiom)
(3) {X > 0 Æ X = 2} Y:=X {X > 0 Æ Y = 2 } (assignment axiom)
(4) {true} X:=2 {X > 0 Æ X =2} (by (1), we can replace 2>0 Æ 2 = 2 in (3) with true)
(5) {true} X:=2 ; Y:=X {X >0Æ Y=2} (by (3), (4), and composition rule)

Composition Rule

Example
P: {X=x Æ Y=y} R:=X ; X:=Y ; Y:=R {Y=xÆX=y}

(1) {X=x Æ Y=y} R:=X {R =x Æ Y =y} (assignment axiom)
(2) {R =x Æ Y =y} X:=Y {R =x Æ X =y} (assignment axiom)
(3) {R =x Æ X =y} Y:=R {Y =x Æ X =y} (assignment axiom)
(4) {X=x Æ Y=y} R:=X; X:=Y {R =x Æ X =y} (by (1), (2), and composition rule)
(5) {X=x Æ Y=y} R:=X ; X:=Y ; Y:=R {Y=xÆX=y} (by (4), (3), and composition rule)

Conditional Rule

Conditional Rule
{PÆE} S1 {Q} {PÆ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

Conditional Rule

Example
P: {true} if X < 10 then X:=10 else X:=0 fi {X=10 Ç X=0}

We can infer P if we can infer
(1) P1: {true Æ X < 10} X:=10 {X=10 Ç X=0}
(2) P2: {true Æ X ¸ 10} X:=0 {X=10 Ç X=0}

Here we need other proof rule to prove (1) and (2)

Conditional Rule
{PÆE} S1 {Q} {PÆ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

Consequence Rule

Consequence Rule
P) P’ {P’} S {Q’} Q’) Q

{P} S {Q}

•  We can strengthen the precondition, i.e. assume more than we need

•  We can weaken the postcondition, i.e. conclude less than we are
allowed to

Consequence Rule

Consequence Rule
P) P’ {P’} S {Q’} Q’) Q

{P} S {Q}

Example
P1: {true Æ X < 10} X:=10 {X=10 Ç X=0}

(1) {true} X:=10 {X=10 Ç X=0} (by Assignment Rule)
(2) trueÆX<10) true (by underlying logic)
(3) X = 10 Ç X = 0) X = 10 Ç X = 0 (by underlying logic)
(4) {true Æ X < 10} X:=10 {X=10 Ç X=0} (by consequence rule, (2), and (3))

Consequence Rule

Example
P2: {true Æ X ¸ 10} X:=0 {X=10 Ç X=0}

Consequence Rule
P) P’ {P’} S {Q’} Q’) Q

{P} S {Q}

Try it yourself!

Another example

Example
{T} if X ¸ Y then MAX :=X else MAX := Y fi {MAX = max (X,Y)}

(1) T Æ X ¸ Y) X=max(X,Y) (by Underlying Logic)
(2) T Æ ¬(X ¸ Y)) Y = max(X,Y) (by Underlying Logic)
(3) MAX=max(X,Y)) MAX=max(X,Y) (by Underlying Logic)
(4)  {X = max(X,Y) } MAX:=X {MAX=max(X,Y)} (by Assignment Axiom)
(5)  {Y = max(X,Y) } MAX:=Y {MAX=max(X,Y)} (by Assignment Axiom)
(6)  {T Æ X ¸ Y} MAX:=X {MAX=max(X,Y)} (by Consequence Rule, (1), and (3))
(7)  {T Æ ¬(X ¸ Y) } MAX:=Y {MAX=max(X,Y)} (by Consequence Rule, (2), and (3))
(8)  {T} if X ¸ Y then MAX :=X else MAX := Y fi {MAX = max (X,Y)} (by Conditional

Rule, (6), and (7))

Iteration Rule

Iteration Rule
{P Æ B} S {P}

{P} while B do S od {P Æ¬ B}

Iteration Rule

Iteration Rule
{P Æ B} S {P}

{P} while B do S od {P Æ¬ B}

Example
{X·10} while X < 10 do X := X + 1 od {X = 10}

{X+1 · 10}X:=X+1{X · 10} (Assignment Axiom)

{X+1 · 10 Æ X · 10} X:=X+1{X · 10}

{X · 10} while X+1 · 10 do X:=X+1 od {X · 10 Æ X+1 £ 10} {X · 10}

while X+1 · 10 do X:=X+1 od {X = 10}
by Underlying Logic

by Iteration Rule

by Underlying Logic

Another Example

Example
{T}
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od
{ R< Y Æ X = R + (Y £ Q)}

Another Example

Example
{T}
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od
{ R< Y Æ X = R + (Y £ Q)}

X=R + (Y£Q) Æ Y· R) X=R-Y + (Y£Q) +Y {X=R-Y + (Y£Q) +Y} R:=R-Y{X=R + (Y£Q)+Y)) } (Assignment Axiom)

{X=R + (Y£Q) Æ Y· R} R:=R-Y{X=R + (Y£Q)+Y)) }

{X=R + (Y£Q) Æ Y· R} R:=R-Y{X=R + (Y£(Q+1)) } {X=R + (Y£(Q+1)) } Q:=Q+1{X=R + (Y£Q) } (Assignment Axiom)

(omitted…try it yourself) {X=R + (Y£Q) Æ Y· R} R:=R-Y; Q:=Q+1 {X=R + (Y£Q) }

{T} R:=X; Q=0{X=R+(Y*Q)} {X=R+(Y*Q)} while Y· R do R:=R-Y; Q:=Q+1 od { R< Y Æ X = R + (Y £ Q)}

{T} R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od { R< Y Æ X = R + (Y £ Q)}
By composition rule

By Iteration rule

By composition rule

By underlying logic

By consequence rule

Is valid by underlying logic

Iteration Rule and Invariants

¨  An invariant at some point of a program is an assertion
that holds whenever execution of the program reaches
that point.

¨  Assertion P in the iteration rule for a while loop is called
a loop invariant of the while loop.

Iteration Rule
{P Æ B} S {P}

{P} while B do S od {P Æ¬ B}

How Does One Find an Invariant?

¨  Look at the facts
¤  Invariant P must hold initially
¤  With negated test \neg B the invariant must establish the result
¤  When the test B holds, the body must leave the invariant P unchanged

¨  Think about how the loop works – the invariant should say that:
¤  What has been done so far together with what remains to be done
¤  Holds at each iteration of the loop
¤  Gives the desired result when the loop terminates

Iteration Rule
{P Æ B} S {P}

{P} while B do S od {P Æ¬ B}

Example

¨  Look at the facts

¤  Initially X=n and Y=1
¤  Finally X=0 and Y=n!
¤  On each loop Y is increased and X is decreased

¨  Think how the loop works
¤  Y holds the results so far
¤  X! is what remains to be computed
¤  n! is the desired results

¨  The invariant here is X! £ Y = n!
¤  “Stuff to be done” £ “result so far” = “desired result”
¤  Decrease in X combines with increase in Y to make invariant

¨  Try to prove the specification using the given invariant.

Example
{X=n Æ Y=1}
while X ≠ 0 do Y:=Y£X; X:=X-1 od
{X=0 Æ Y=n!}

Example

¨  Look at the facts

¤  Initially X=0 and Y=1
¤  Finally X=N and Y=N!
¤  On each loop both X and Y are increased: X by 1 and Y by X

¨  An invariant should be Y = X!
¨  Try to prove the specification using the given invariant

Example
{X=0 Æ Y=1}
while X < N do X:=X+1; Y:=Y£X od
{Y=N!}

Example

¨  Look at the facts

¤  Initially X=0 and Y=1
¤  Finally X=N and Y=N!
¤  On each loop both X and Y are increased: X by 1 and Y by X

¨  An invariant is Y = X!, but not sufficient to prove the results
¨  At the end need Y = N!, but the Iteration rule only gives ¬ (X<N)

¨  The invariant needed is Y = X! Æ X · N
¨  At the end, X · N Æ ¬ (X < N)) X=N
¨  Often need to strengthen invariants to get them to work.

¤  Typical to add thing to “carry along” such as X· N

Example
{X=0 Æ Y=1}
while X < N do X:=X+1; Y:=Y£X od
{Y=N!}

Conjunction/Disjunction Rule

Conjunction Rule
{P1} S {Q1} {P2} S {Q2}
{P1 Æ Q1} S {P2 Æ Q2}

Disjunction Rule
{P1} S {Q1} {P2} S {Q2}
{P1 Ç Q1} S {P2 Ç Q2}

Some Quick Review

¨  Which of the following is correct?

Hoare’s Assignment Axiom

{P[E/X]} X:=E {P}

Hoare’s Assignment Axiom

{P} X:=E {P[E/X]}

Some Quick Review

Iteration Rule
{P Æ B} S {P}

{P} while B do S od {P Æ¬B}

Conditional Rule
{PÆE} S1 {Q} {PÆ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

Consequence Rule
P) P’ {P’} S {Q’} Q’) Q

{P} S {Q}

Composition Rule
{P}S1{R} {R}S2{Q}

{P}S1;S2{Q}

Further Studies

¨  Soundness and completeness proof for the axioms and
inference rules.

¨  Richer program constructs: pointers, procedure call,
arrays, code block

¨  Automation. E.g., finding loop invariants

