
HOARE LOGIC 
 

Parts of the slides are taken from the lecture notes of 
Carl Leonadsson, Yih-Kuen Tsai, and Michael Gordon 



Outline 

¨  Prove Program Correctness 
¤  WHILE program 
¤  Hoare Triple 

¨  Axioms and Rules 
¤  Assignment Axiom 
¤  Composition Rule 
¤  Conditional Rule 
¤  Iteration Rule 

 



Hoare Logic 

¨  Hoare Logic - An axiomatic basis for computer 
programming (1969, C.A.R. Hoare) 
¤  Describes a deductive system for proving program correctness. 
¤  A set of axioms and inference rules about asserted programs. 
¤  Development to the logic is still active 

n  E.g., separation logic (reasoning about pointers) 



WHILE Program 

¨  Assume that we have an underlying logic L, e.g. Integer Arithmetic 

Define inductively 
¨  For all integer variable X and term E, X:=E is a program.  
¨  If S1 and S2 are programs, B is a Boolean expression, then the following 

are programs 
¤  S1;S2 

¤  If B then S1 else S2 fi 
¤  while B do S1 od 

E.g. X+5, 4-Y*Z 

A sample program: 
SUM:=0;  
I:=1; 
while I<100 do 
    if I%2=0 then  
        SUM:=SUM+I ; I:=I+1  
    else  
        I:=I+1  
    fi 
od 



Program States and Transitions 

¨  A state is a valuation of all program variables. 

¨  A program statement defines transitions between 
program states. 

SUM=0 
I=0 

SUM=0 
I=0 

SUM=0 
I=1 

SUM:=0; I:=1; 

SUM=0 
I=0 

SUM:=0;I:=1; while I<100 do SUM:=SUM+I ; I:=I+1 od 
SUM=? 

I=? 



Predicates 

¨  A predicate characterizes a set of program states 

I<5 Æ SUM>3 

SUM=7 
I=0 

SUM=8 
I=1 

SUM=9 
I=2 … 

SUM=2 
I=5 

? ? 

Written in standard mathematical 
notations together with logical operators 
such as Æ(and), Ç(or), ¬(not), ) (implies) 



Specification of Imperative Programs 

Acceptable 
Initial States 

“X is greater 
than zero” 

Acceptable 
Final States 

“Y is the square 
root of X” Action of the Program 



Hoare’s notation 

¨  C.A.R. Hoare introduced the following notation called a 
partial correctness specification for specifying what a 
program does: 

   {P}S{Q} 
¤  Here S is a program,  
¤  P is a predicate describes the precondition of S 
¤  Q is a predicate describes the postcondition of S 

¨  Note: Hoare’s original notation was P{S}Q instead of        
{P}S{Q}, but the latter form is now more widely used 



Meaning of Hoare’s Notation 

   {P}S{Q} means 
¤  Whenever S is executed in a state satisfying P 
¤  and if the execution of S terminates 
¤  Then the state in which S terminates satisfies Q. 

¨  Example: {X = 1} X:= X+1 {X = 2} 
¤  P: the value of X is 1 
¤  Q: the value of X is 2 
¤  S: an assignment X:= X + 1 

n  X becomes X + 1 

¨  {X = 1} X := X + 1 {X = 2} is true 
¨  {X = 1} X := X + 1 {X = 2} is false 



Some practices 

(1) Is the following formula valid? 
 {X < 1} X:=X+1 ; X:= X+1 {X < 3} 

 
(2) Is the following formula valid? 

 {X < 100} while true do X:=X+1 od {X < 0} 
 
(3) Is the following formula valid? 

 {X < 100} if X=1 then S1 else S2 {X < 200} 
 S1´ while true do X:=X+1 od 
 S2´ X:=X+2 

 



Formal versus Informal Proof 

¨  Informal Proof: 
¤  Like what we used in the previous slides 

¨  Formal verification uses formal proof 
¤  The rules used are described and followed very precisely 

¨  An example: proof of (X+1)2 = X2 + 2£X +1 



The Structure of Proofs 
¨  A proof consists of a sequence of lines 

¨  Each line is an instance of an atom 
¤  E.g., the definition of ()^2 

¨  or follows from previous lines by a rule of inference 
¤  E,g, the substitution of equivalent objects 

¨  The statement on the last line of the proof is the statement proved 
by it 
¤  Thus (X+1)2 = X2 + 2£X +1 is proved by the proof on the previous slides 

¨  These are “Hibert style” formal proofs 
¤  can use a tree structure rather than a linear one 
¤  the choice is a matter of convenience 



Formal proof is syntactic “symbol pushing”  

¨  Formal system reduce verification and proof to symbol 
pushing. 

¨  The rule say… 
¤  If you have a string of characters of this form 
¤  You can obtain a new string of characters of this other form 

¨  Even if you don’t know what the strings are intended to 
mean, provided the rules are designed properly and you 
apply them correctly, you will get correct results. 
¤  Though not necessary the desired result 



Hoare Logic 

¨  Hoare Logic is a deductive proof system for Hoare triple 
{P} S {Q} 

¨  Can be used to verify programs 
¤  Original proposal by Hoare 
¤  Tedious and error prone 

¨  Exists tools to help its automation 



Partial Correctness Specification 

¨  An expression {P} S {Q} is called a partial correctness specification 
¤  P is called its precondition 
¤  Q is called its postcondition 

¨  {P} S {Q} means 
¤  Whenever S is executed in a state satisfying P 
¤  and if the execution of S terminates 
¤  Then the state in which the execution of S terminates satisfies Q 

¨  It is partial because for {P} S {Q} to be true, it is not necessary for 
the execution of S to terminate when stated in a state satisfying P 

¨  {X = 1} while T do X := X + 1 od {X = -3 } – this specification is true!  



Total Correctness Specification 
¨  A stronger kind of specification is a total correctness 

specification 
¤  There is no standard notation for such specifications 
¤  Here we use [P] S [Q] 

¨  [P] S [Q] means 
¤  Whenever S is executed in a state satisfying, the execution of S 

terminates 
¤  After S terminates Q holds 

¨  [X = 1] while T do X := X + 1 od [X = -3] 
¤  This says the execution of the program terminates when stated in a 

state satisfying X = 1 
¤  After which Y = 1 will hold 
 

Clearly false 



Total Correctness 

¨  Informally 
 Total Correctness = Termination + Partial Correctness 

¨  Total correctness is the ultimate goal 
¤  Usually easier to show partial correctness and termination 

separately 

¨  Termination is usually straightforward to show, but there 
exists examples where it is not.  

 
  

Example 
while X > 1 do  
    if X%2==1  
        then X := (3*X)+1  
        else X := X/2  
    fi 
od 

Collatz conjecture: if the program 
terminates with X = 1 for all values of X 



Auxiliary Variables 

¨  {X=x Æ Y=y} R:=X; X:=Y; Y:=R {X=y Æ Y=x} 
¤  If the program terminates, then the values of X and Y are swapped 

¨  The variables x and y, which do not occur in the program and 
are used to name the initial values of program variables X 
and Y 

¨  They are called auxiliary variables or ghost variables. 

¨  Informal convention: 
¤  Program variables are upper case 
¤  Auxiliary variables are lower case 



More examples 
¨  {X = x Æ Y = y} X:=Y ; Y:=X {X = y Æ Y = x} 

¤  It says the program can swap the values of X and Y, which is not true 

¨  {T} S {Q} 
¤  Whenever S halts, Q holds 

¨  {P} S {T} 
¤  This specification is true for all P and S 
¤  Because T is always true 

¨  [P] S [T] 
¤  S terminates if initially P holds 

¨  [T] S [Q] 
¤  S always terminates and ends in a state where Q holds 



A More Complicated Example 

{T}  
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od  
{ R< Y Æ X = R + (Y £ Q)} 

¨  The specification is true if the execution of the program 
terminates, then Q is the quotient and R is the reminder 
resulting from dividing Y into X 

¨  This is true even if X is initially negative 



Some Easy Exercises 

¨  When is [T] S [T] true? 

¨  Write a partial correctness specification which is true iff 
the program S has the effect of multiplying the values of 
X and Y and storing the results in X 

¨  Write a specification which is true if the execution of S 
always terminates when the execution is stated in a 
state satisfying P 



Specification can be Tricky 
¨  “The program must set Y to the maximum of X and Y” 

   [T] S [Y=max(X,Y)] 
¨  A suitable program 

¤  if X ¸ Y then Y:=X else X := X fi 

¨  Another? 
¤  If X ¸ Y then X:=Y else X := X fi 

¨  Or even  
¤  Y:=X 

¨  Later we will be able to prove that all the programs are “correct” 

¨  The postcondition [Y=max(X,Y)] is the maximum of X and Y in the final 
state 

  



Specification can be Tricky 

¨  The intended specification was not properly captured by 
   [T] S [Y=max(X,Y)] 

¨  The correct one should be 
        [X=xÆ Y=y] S [Y=max(x,y)] 

¨  The lesson 
¤  It is easy to write the wrong specification 
¤  A proof system will not help since the incorrect program can be 

proved “correct” 
¤  Testing could be helpful in this case 



Outline 

¨  Prove Program Correctness 
¤  WHILE program 
¤  Hoare Triple 

¨  Axioms and Rules 
¤  Assignment Axiom 
¤  Composition Rule 
¤  Conditional Rule 
¤  Iteration Rule 



Formal Proof 

(1) Is the following formula valid? 
 {X < 1} X:=X+1 ; X:= X+1 {X < 3} 

 
(2) Is the following formula valid? 

 {X < 100} while true do X:=X+1 od {X < 0} 
 
(3) Is the following formula valid? 

 {X < 100} if X=1 then S1 else S2 {X < 200} 
 S1´ while true do X:=X+1 od 
 S2´ X:=X+2 

 How can we formally prove the previous examples? 



Assignment Axiom 

¨  We begin with Foyld’s version of the assignment axiom 
   {P} X := E {?} 

¨  The term E might contain X, e.g. E ´ X+1 
¨  An example: X := X + 1 

¨  We need to differentiate these two values! 

The value of X after 
executing the statement 

The value of X before 
executing the statement 



Assignment Axiom 

¨  We begin with Foyld’s version of the assignment axiom 
   {P} X := E {?} 

9V.(  X=E[V/X]   Æ   P[V/X] ) 
 

Intuition: we use new variable V to denote the old value of X 

Notations 

E[V/X]                                                                E 
P[V/X]                                                                P :  replacing all free occurrences of X in     with V 



Assignment Axiom 

Foyld’s Assignment Axiom 
 

{P} X:=E {9 V. X=E[V/X] Æ P[V/X]} 

We do not want to have quantifiers in the reasoning path! 

Example 
{Y + X = 42} X := X + 5 {9 V. X = V + 5 Æ Y + V =42} 

Example 
{Y = 5 } X := X/Y + X {?} 



Assignment Axiom 

Hoare’s Assignment Axiom 
 

{Q[E/X]} X:=E {Q} 

Backward reasoning 



Expressions with Side-effect 

¨  The validity of the assignment axiom depends on 
expressions not having side-effects. 

¨  Suppose that our language were extended so that it 
contained the “block expression” 

  BEGIN Y:=1;2 END 
¤  This expression has value 2, but its evaluation also change the value 

of Y to 1 

¨  If the assignment axiom applied to block expressions, then 
it could be used to deduce the following, which is false 
¤  {Y=0} X:= BEGIN Y:=1; 2 END {Y=0} 
¤  Notice that (Y=0)[E/X] = (Y=0) 



Assignment Axiom 

Hoare’s Assignment Axiom 
 

{Q[E/X]} X:=E {Q} 

Backward reasoning 

Below is an informal proof of the soundness of this axiom: 
 
Let s be the state before X := E and s′ the state after.  
So, s′ = s[X ! E] (assuming E has no side-effect).  
 
Q[E/X] holds in s if and only if Q holds in s′, because 
(1) Every variable, except X, has the same value in s and s′, and  
(2) Q[E/X] has every X in Q replaced by E,  
(3) Q has every X evaluated to E in s (s’ = s[X ! E]). 



Assignment Axiom 

Hoare’s Assignment Axiom 
 

{Q[E/X]} X:=E {Q} 

Backward reasoning 

Example 
{X + Y + 5 > 5} X := X + Y + 5 {X > 5} 

Example 
{?} X := X + 1 {X<10} Try it! 



Composition Rule 

Composition Rule 
{P}S1{R} {R}S2{Q} 

{P}S1;S2{Q} 



Composition Rule 

Example 
P: {true} X:=2 ; Y:=X {X >0Æ Y=2} 

(1) 2>0 Æ 2 = 2 , true (Integer arithmetic)  
(2) {2 > 0 Æ 2 = 2} X:=2 {X > 0 Æ X =2} (assignment axiom) 
(3) {X > 0 Æ X = 2} Y:=X {X > 0 Æ Y = 2 } (assignment axiom) 
(4) {true} X:=2 {X > 0 Æ X =2} (by (1), we can replace 2>0 Æ 2 = 2 in (3) with true ) 
(5) {true} X:=2 ; Y:=X {X >0Æ Y=2} (by (3), (4), and composition rule) 
 



Composition Rule 

Example 
P: {X=x Æ Y=y} R:=X ; X:=Y ; Y:=R {Y=xÆX=y} 

(1) {X=x Æ Y=y} R:=X {R =x Æ Y =y} (assignment axiom) 
(2) {R =x Æ Y =y} X:=Y {R =x Æ X =y} (assignment axiom) 
(3) {R =x Æ X =y} Y:=R {Y =x Æ X =y} (assignment axiom) 
(4) {X=x Æ Y=y} R:=X; X:=Y {R =x Æ X =y} (by (1), (2), and composition rule) 
(5) {X=x Æ Y=y} R:=X ; X:=Y ; Y:=R {Y=xÆX=y} (by (4), (3), and composition rule) 
 



Conditional Rule 

Conditional Rule 
{PÆE} S1 {Q} {PÆ¬E} S2 {Q} 
{P} if E then S1 else S2 {Q} 



Conditional Rule 

Example 
P: {true} if X < 10 then X:=10 else X:=0 fi {X=10 Ç X=0} 

We can infer P if we can infer 
(1) P1: {true Æ X < 10} X:=10 {X=10 Ç X=0}  
(2) P2: {true Æ X ¸ 10} X:=0 {X=10 Ç X=0} 
 
Here we need other proof rule to prove (1) and (2) 

Conditional Rule 
{PÆE} S1 {Q} {PÆ¬E} S2 {Q} 
{P} if E then S1 else S2 {Q} 



Consequence Rule 

Consequence Rule 
P) P’ {P’} S {Q’} Q’ ) Q 

{P} S {Q} 

•  We can strengthen the precondition, i.e. assume more than we need 

•  We can weaken the postcondition, i.e. conclude less than we are 
allowed to 



Consequence Rule 

Consequence Rule 
P) P’ {P’} S {Q’} Q’ ) Q 

{P} S {Q} 

Example 
P1: {true Æ X < 10} X:=10 {X=10 Ç X=0} 

(1) {true} X:=10 {X=10 Ç X=0} (by Assignment Rule) 
(2) trueÆX<10 ) true (by underlying logic) 
(3) X = 10 Ç X = 0 ) X = 10 Ç X = 0 (by underlying logic) 
(4) {true Æ X < 10} X:=10 {X=10 Ç X=0} (by consequence rule, (2), and (3)) 
 



Consequence Rule 

Example 
P2: {true Æ X ¸ 10} X:=0 {X=10 Ç X=0} 

Consequence Rule 
P) P’ {P’} S {Q’} Q’ ) Q 

{P} S {Q} 

Try it yourself! 



Another example 

Example 
{T} if X ¸ Y then MAX :=X else MAX := Y fi {MAX = max (X,Y)} 

(1) T Æ X ¸ Y ) X=max(X,Y) (by Underlying Logic) 
(2) T Æ ¬(X ¸ Y) ) Y = max(X,Y) (by Underlying Logic) 
(3) MAX=max(X,Y) ) MAX=max(X,Y) (by Underlying Logic) 
(4)  {X = max(X,Y) } MAX:=X {MAX=max(X,Y)} (by Assignment Axiom) 
(5)  {Y = max(X,Y) } MAX:=Y {MAX=max(X,Y)} (by Assignment Axiom) 
(6)  {T Æ X ¸ Y} MAX:=X {MAX=max(X,Y)} (by Consequence Rule, (1), and (3)) 
(7)  {T Æ ¬(X ¸ Y) } MAX:=Y {MAX=max(X,Y)} (by Consequence Rule, (2), and (3)) 
(8)  {T} if X ¸ Y then MAX :=X else MAX := Y fi {MAX = max (X,Y)} (by Conditional 

Rule, (6), and (7)) 



Iteration Rule 

Iteration Rule 
{P Æ B} S {P} 

{P} while B do S od {P Æ¬ B} 



Iteration Rule 

Iteration Rule 
{P Æ B} S {P} 

{P} while B do S od {P Æ¬ B} 

Example 
{X·10} while X < 10 do X := X + 1 od {X = 10} 

{X+1 · 10}X:=X+1{X · 10} (Assignment Axiom) 

{X+1 · 10 Æ X · 10} X:=X+1{X · 10} 

{X · 10} while X+1 · 10 do X:=X+1 od {X · 10 Æ X+1 £ 10} {X · 10}  

while X+1 · 10 do X:=X+1 od {X = 10} 
by Underlying Logic 

by Iteration Rule 

by Underlying Logic 



Another Example 

Example 
{T}  
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od  
{ R< Y Æ X = R + (Y £ Q)} 



Another Example 

Example 
{T}  
R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od  
{ R< Y Æ X = R + (Y £ Q)} 

 

 

 

 

X=R + (Y£Q) Æ Y· R ) X=R-Y + (Y£Q) +Y            {X=R-Y + (Y£Q) +Y} R:=R-Y{X=R + (Y£Q)+Y)) } (Assignment Axiom)        

{X=R + (Y£Q) Æ Y· R} R:=R-Y{X=R + (Y£Q)+Y)) }  

{X=R + (Y£Q) Æ Y· R} R:=R-Y{X=R + (Y£(Q+1)) }     {X=R + (Y£(Q+1)) } Q:=Q+1{X=R + (Y£Q) } (Assignment Axiom) 

(omitted…try it yourself)               {X=R + (Y£Q) Æ Y· R} R:=R-Y; Q:=Q+1 {X=R + (Y£Q) } 

{T} R:=X; Q=0{X=R+(Y*Q)}  {X=R+(Y*Q)} while Y· R do R:=R-Y; Q:=Q+1 od { R< Y Æ X = R + (Y £ Q)} 

{T} R:=X;Q=0; while Y· R do R:=R-Y; Q:=Q+1 od { R< Y Æ X = R + (Y £ Q)} 
By composition rule 

By Iteration rule 

By composition rule 

By underlying logic  

By consequence rule 

Is valid by underlying logic    



Iteration Rule and Invariants 

¨  An invariant at some point of a program is an assertion 
that holds whenever execution of the program reaches 
that point. 

¨  Assertion P in the iteration rule for a while loop is called 
a loop invariant of the while loop. 

Iteration Rule 
{P Æ B} S {P} 

{P} while B do S od {P Æ¬ B} 



How Does One Find an Invariant? 

¨  Look at the facts 
¤  Invariant P must hold initially 
¤  With negated test \neg B the invariant must establish the result 
¤  When the test B holds, the body must leave the invariant P unchanged 

¨  Think about how the loop works – the invariant should say that: 
¤  What has been done so far together with what remains to be done 
¤  Holds at each iteration of the loop 
¤  Gives the desired result when the loop terminates 

Iteration Rule 
{P Æ B} S {P} 

{P} while B do S od {P Æ¬ B} 



Example 

 
¨  Look at the facts 

¤  Initially X=n and Y=1 
¤  Finally X=0 and Y=n! 
¤  On each loop Y is increased and X is decreased 

¨  Think how the loop works 
¤  Y holds the results so far 
¤  X! is what remains to be computed 
¤  n! is the desired results 

¨  The invariant here is X! £ Y = n! 
¤  “Stuff to be done” £ “result so far” = “desired result” 
¤  Decrease in X combines with increase in Y to make invariant 

¨  Try to prove the specification using the given invariant. 

Example 
{X=n Æ Y=1}  
while X ≠ 0 do Y:=Y£X; X:=X-1 od  
{X=0 Æ Y=n!} 



Example 

 
¨  Look at the facts 

¤  Initially X=0 and Y=1 
¤  Finally X=N and Y=N! 
¤  On each loop both X and Y are increased: X by 1 and Y by X 

¨  An invariant should be Y = X! 
¨  Try to prove the specification using the given invariant 

Example 
{X=0 Æ Y=1}  
while X < N do X:=X+1; Y:=Y£X od  
{Y=N!} 



Example 

 
¨  Look at the facts 

¤  Initially X=0 and Y=1 
¤  Finally X=N and Y=N! 
¤  On each loop both X and Y are increased: X by 1 and Y by X 

¨  An invariant is Y = X!, but not sufficient to prove the results 
¨  At the end need Y = N!, but the Iteration rule only gives ¬ (X<N) 

 
¨  The invariant needed is Y = X! Æ X · N 
¨  At the end, X · N Æ ¬ (X < N)  ) X=N 
¨  Often need to strengthen invariants to get them to work. 

¤  Typical to add thing to “carry along” such as X· N 

Example 
{X=0 Æ Y=1}  
while X < N do X:=X+1; Y:=Y£X od  
{Y=N!} 



Conjunction/Disjunction Rule 

Conjunction Rule 
{P1} S {Q1} {P2} S {Q2} 
{P1 Æ Q1} S {P2 Æ Q2} 

Disjunction Rule 
{P1} S {Q1} {P2} S {Q2} 
{P1 Ç Q1} S {P2 Ç Q2} 



Some Quick Review 

¨  Which of the following is correct? 

Hoare’s Assignment Axiom 
 

{P[E/X]} X:=E {P} 

Hoare’s Assignment Axiom 
 

{P} X:=E {P[E/X]} 



Some Quick Review 

Iteration Rule 
{P Æ B} S {P} 

{P} while B do S od {P Æ¬B} 

Conditional Rule 
{PÆE} S1 {Q} {PÆ¬E} S2 {Q} 
{P} if E then S1 else S2 {Q} 

Consequence Rule 
P) P’ {P’} S {Q’} Q’ ) Q 

{P} S {Q} 

Composition Rule 
{P}S1{R} {R}S2{Q} 

{P}S1;S2{Q} 



Further Studies 

¨  Soundness and completeness proof for the axioms and 
inference rules. 

¨  Richer program constructs: pointers, procedure call, 
arrays, code block  

¨  Automation. E.g., finding loop invariants 


