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Outline

Logic synthesis
Boolean function representation
Satisfiability and logic synthesis
 Functional dependency
 Functional bi-decomposition

Quantified satisfiability and logic synthesis
Boolean matching
Boolean relation determinization
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Logic Synthesis

D

x y


Given: Functional description of finite-state 
machine F(Q,X,Y,,) where:
Q:  Set of internal states
X:  Input alphabet
Y:  Output alphabet
:  X x Q  Q    (next state function)
:  X x Q  Y    (output function)

Target: Circuit C(G, W) where:
G:   set of circuit components g  {gates, FFs, etc.}
W:  set of wires connecting G



FLOLAC 2011 66

Boolean Function Representation

Logic synthesis translates Boolean 
functions into circuits

We need representations of Boolean 
functions for two reasons:
 to represent and manipulate the actual circuit 

that we are implementing
 to facilitate Boolean reasoning
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Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44
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Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a 

mapping f: Bm  Y, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111}  (characteristic function f1 = x2 )

 off-set (f = 0) 
 E.g. {100, 101}  (characteristic function f0 = x1 x2 )

 don’t-care set (f = d) 
 E.g. {000, 001}  (characteristic function fd = x1 x2 )

 f is an incompletely specified function if the don’t-care set is 
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely 

specified
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Boolean Function
 A Boolean function f: Bn  B over variables 

x1,…,xn maps each Boolean valuation (truth 
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, 
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2
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Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x) 

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1
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Boolean Function
 There are 2n vertices in Bn

 There are 22n
distinct Boolean functions 

 Each subset f1  Bn of vertices in Bn forms a 
distinct Boolean function f with onset f1

x1x2x3 f
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0   1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations
Given two Boolean functions:

f :  Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  from COMPLEMENT operation is defined as
h1 = f0; h0 = f1
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Cofactor and Quantification
Given a Boolean function:

f :  Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi
h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi
h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)
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Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF) 
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and 

weaknesses (no single data structure is best for all 
applications)
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Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued 

functions):
The truth table of a function f : Bn  B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd + 

abcd + abcd + abcd + 
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their 
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1
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Boolean Function Representation
Boolean Formula
 A Boolean formula is defined inductively as an expression 

with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’
|        Boolean constant (true or false)
|        <Boolean variable>
| formula “+” formula (OR operator)
| formula  “” formula (AND operator)
|         formula (complement)

Example
f = (x1  x2) + (x3) + ((x4  (x1)))
typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is 
clear, e.g., f = x1 x2 + x3 + x4 x1
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Boolean Function Representation
Boolean Formula in SOP
 Any function can be represented as a sum-of-

products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form 
(DNF)

Example
 = ab + a’c + bc
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Boolean Function Representation
Boolean Formula in POS
 Any function can be represented as a product-of-

sums (POS), also called conjunctive normal form 
(CNF)
 Dual of the SOP representation

Example 
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be 
converted to SOP using De Morgan’s law and the 
distributive law, and vice versa



FLOLAC 2011 1919

Boolean Function Representation
Binary Decision Diagram
 BDD – a graph 

representation of Boolean 
functions
 A leaf node represents 

constant 0 or 1
 A non-leaf node

represents a decision node 
(multiplexer) controlled by 
some variable

 Can make a BDD 
representation canonical
by imposing the variable 
ordering and reduction 
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root 
node

c+d

d
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Boolean Function Representation
Binary Decision Diagram
 Any Boolean function f can be written in term of 

Shannon expansion 
f = v fv + v fv

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by 

variable v represent two sub-functions fv and fv

v
0 1

f

fv fv
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Boolean Function Representation
Binary Decision Diagram
 Reduced and ordered BDD (ROBDD) is a canonical

Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a 
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce
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Boolean Function Representation
Binary Decision Diagram
 For a Boolean function, 

 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
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Boolean Function Representation
Boolean Network
 A Boolean network is a directed graph C(G,N) 

where G are the gates and N  GG) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G 
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 
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Boolean Function Representation
Boolean Network
 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:
SUPPORT(g) = CONE(g)  I
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}
Every node may have its own function

1

5
3

4
7

8

9
2
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Boolean Function Representation
And-Inverter Graph
 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates 
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f
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Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node 

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning 
 Rarely used in circuit synthesis (due to the asymmetric characteristics 

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning
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Circuit to CNF Conversion
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed 

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit
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Circuit to CNF Conversion
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?
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Circuit to CNF Conversion

Circuit to CNF conversion 
 can be done in linear size (with respect to the 

circuit size) if intermediate variables can be 
introduced

may grow exponentially in size if no 
intermediate variables are allowed
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Propositional Satisfiability
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Normal Forms
 A literal is a variable or its negation
 A clause (cube) is a disjunction (conjunction) of 

literals
 A conjunctive normal form (CNF) is a 

conjunction of clauses; a disjunctive normal 
form (DNF) is a disjunction of cubes

 E.g.,
CNF: (a+b+c)(a+c)(b+d)(a)
(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a
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Satisfiability
 The satisfiability (SAT) problem asks whether a 

given CNF formula can be true under some 
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work 
‘mysteriously’ well on application CNFs with 
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and 

SMT (Satisfiability Modulo Theories) solver development
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SAT Competition

http://www.satcompetition.org/PoS11/
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SAT Solving 
 Ingredients of modern SAT solvers:

 DPLL-style search 
[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal 
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]
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Pre-Modern SAT Procedure
Algorithm DPLL(Φ)
{

while there is a unit clause {l} in Φ
Φ = BCP(Φ, l); 

while there is a pure literal l in Φ
Φ = assign(Φ, l); 

if all clauses of Φ satisfied   return true; 
if Φ has a conflicting clause   return false; 
l := choose_literal(Φ); 
return DPLL(assign(Φ,l))  DPLL(assign(Φ,l));

} 
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DPLL Procedure

Chorological backtrack

E.g. 
a

b

c

0

0

0




1

1

T

~a ~b b ~c c d
{a,e}
{a,b,c}
{c,d}
{a,b,d}
{d,e}
{c,d,e}

~d

~e



~c

~c d



~a ~b



FLOLAC 2011 38

Modern SAT Procedure 
Algorithm CDCL(Φ)
{

while(1)
while there is a unit clause {l} in Φ

Φ = BCP(Φ, l); 
while there is a pure literal l in Φ

Φ = assign(Φ, l); 
if Φ contains no conflicting clause

if all clauses of Φ are satisfied   return true; 
l := choose_literal(Φ); 
assign(Φ,l);

else
if conflict at top decision level   return false; 
analyze_conflict();
undo assignments;
Φ := add_conflict_clause(Φ); 

} 
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Conflict Analysis & Clause Learning
 There can be many learnt 

clauses from a conflict
 Clause learning admits non-

chorological backtrack

 E.g.,
{x10587, x10588, 
x10592}
…
{x10374, x10582, 
x10578, x10373, x10629}
…
{x10646, x9444, x10373, 
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)
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Clause Learning as Resolution
 Resolution of two clauses C1x and C2x:

C1x C2x
C1C2

where x is the pivot variable and C1C2 is the resolvant, 
i.e., C1C2 = x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of 
resolution steps
 Exercise: 

Find a resolution sequence leading to the learnt clause 
{x10374, x10582, x10578, x10373, x10629}
in the previous slides



FLOLAC 2011 41

Resolution
 Resolution is complete for SAT solving

 A CNF formula is unsatisfiable if and only if there exists 
a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()
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SAT Certification

True CNF
Satisfying assignment (model)

Verifiable in linear time

False CNF
Resolution refutation

Potentially of exponential size 
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Craig Interpolation
 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an 
interpolant I of A such that

1.   AI
2.   IB is UNSAT
3.   I refers only to the common 
variables of A and B

BA

I

I is an abstraction of A
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Interpolant and Resolution Proof
 SAT solver may produce the resolution proof of an UNSAT 

CNF 
 For = AB specified, the corresponding interpolant can 

be obtained in time linear in the resolution proof
A B

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]
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Incremental SAT Solving

To solve, in a row, multiple CNF formulae, 
which are similar except for a few clauses, 
can we reuse the learnt clauses? 
What if adding a clause to ?
What if deleting a clause from ?
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Incremental SAT Solving
MiniSat API

 void addClause(Vec<Lit> clause)
 bool solve(Vec<Lit> assumps)
 bool readModel(Var x) − for SAT results
 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit 
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then 
incrementally another SAT-solving executed.

Courtesy of Niklas Een
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SAT & Logic Synthesis
Functional Dependency
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Functional Dependency
f(x) functionally depends on g1(x), 

g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)), 
denoted h(G(x))
Under what condition can function f be 

expressed as some function h over a set 
G={g1,…,gm} of functions ?

 h exists  a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f
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Motivation
Applications of functional dependency
Resynthesis/rewiring
Redundant register removal 
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network
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BDD-Based Computation
BDD-based computation of h

hon = {y  Bm : y = G(x) and f(x) = 1, x  Bn} 
hoff = {y  Bm : y = G(x) and f(x) = 0, x  Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = x.(yG)f

hoff = x.(yG)f
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BDD-Based Computation

Pros
 Exact computation of hon and hoff

Better support for don’t care minimization

Cons
2 image computations for every choice of G
 Inefficient when |G| is large or when there are 

many choices of G
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SAT-Based Computation
h exists 
a,b such that f(a)f(b) and G(a)=G(b),
i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?
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SAT-Based Computation
 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit 
Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

Constraint 
Part

*y1

Assertion 
Constraints

Equality 
Constraints
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SAT-Based Computation
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, y0

*, (yiyi
*) for i =1,…,m

 I is an overapproximation of Img( fon ) and is disjoint from  
Img( foff )

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

*y 1

A B

Img(fon) Img(foff)
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Incremental SAT Solving
 Controlled equality constraints 

(yiyi
*)  (yi  yi

*  i)(yi  yi
*  i) 

with auxiliary variables i

 Fast switch between target and base functions by unit 
assumptions over control variables

 Fast enumeration of different base functions
 Share learned clauses

i = true  ith equality constraint is disabled 
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SAT vs. BDD
 SAT
 Pros

 Detect multiple choices of 
G automatically

 Scalable to large |G|
 Fast enumeration of 

different target functions 
f

 Fast enumeration of 
different base functions G

 Cons
 Single feasible 

implementation of h

 BDD
 Cons

 Detect one choice of G at 
a time

 Limited to small |G|
 Slow enumeration of 

different target functions 
f

 Slow enumeration of 
different base functions G

 Pros
 All possible 

implementations of h
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Practical Evaluation

----3790.6----3673.4--22173013--673529162b22

----3136.3----2924.6--14341950--449020027b21

----3036----2825.7--11671604--449019682b20

----23411040.6----2178184.8--3377164--06642224624b19

----1002842.6----1001414--57239254--53320111241b18

----42161.7----28119.1--23503967--0141530777b17

----225.8----225.8--7931134--04498367b15

----225.2----223.3--2245--22459847b14

422.5170.133812.8170.15336617024121946b12

16411173099.4----21166.5--25694350--24145219407s38584

----32123.1----30270.3--2435016--95163622397s38417

----2778.1164111727176.7--11702026--0172816065s35932

xx227.99482.62223.3x4029079185349785s15850.1

xx2215.37831.42215.6x80219301361906388022s13207.1

149194.6191.7xx194.1201301459x462115597s9234.1

517180.6201.6181.217328339825521792794s5378

MemTimeMemTimeMemTimeMemTime#Dep-B#Dep-S#FF.#Dep-B#Dep-S#FF.#NodesCircuit

BDD (retimed)SAT (retimed)BDD (original)SAT (original)RetimedOriginal

SAT vs. BDD
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Practical Evaluation
circuit size vs. runtime
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Practical Evaluation
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Practical Evaluation
#total input vs. #redundant inputs 
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Practical Evaluation

R2 = 0.861 R2 = 0.8506
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Summary

Functional dependency is computable with 
pure SAT solving (with the help of Craig 
interpolation)

Compared to BDD-based computation, it is 
much scalable to large designs
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SAT & Logic Synthesis
Functional Bi-Decomposition
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Bi-Decomposition

f

fA fB

h

XA XB XC

XBXC

di‐decompose

XA
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Bi-Decomposition
 A variable partition on 

X = {XA|XB|XC} has the 
property: 
 XA , XB , XC are pair-wise 

disjoint, and
 XA∪XB∪XC = X

 If XC = , the 
decomposition is called 
disjoint; otherwise, 
non-disjoint

fA fB

h

XBXCXA
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Bi-Decomposition
We consider OR, AND, XOR bi-decompositions

 These three cases are sufficient to generate any other 
type of bi-decomposition

1001111

0110101

0010110

1000000
a⊕(¬b)a(¬b)a⊕baba+bba
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Motivation

Bi-decomposition breaks a large function 
into a network of smaller functions 
(necessary for FPGA implementation)

Bi-decomposition can be applied to 
restructure logic network for optimization
 It reduces circuit and communication 

complexity and thus simplify physical design
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BDD-Based Computation

Pros
 Exact characterization of don’t cares

Cons
Memory explosion
Decomposability must be checked under a 

fixed variable partition
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OR Bi-Decomposition
 Disjoint decomposition: 

XC = 

 Example
f(a,b,c,d) = (¬a)b+cd

X = {a,b,c,d}={XA|XB}
XA= {a,b}, XB= {c,d} 

f(X) = (¬a)b+cd
= fA(a,b)+fB(c,d)

OR

fBfA

XA XB

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 0 0

fA(XA) 0 1 0 0

fB(XB)

0

0

1

0
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OR Bi-Decomposition
 f(X) can be written as fA(XA)

fB(XB) if and only if, for every 
1-entry in the decomposition 
table, 0-entries cannot appear 
simultaneously in the 
corresponding row and column

 Example
f(1101) = 0 = fA(11) +fB(01)
f(0010) = 0 = fA(00) +fB(10)
f(1110) = 1 = fA(11) +fB(10)??

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 0 0

fB(XB)

0

0

1

0

fA(XA) 0 1 0 0

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 1 0

fB(XB)

?

fA(XA) ?
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SAT-Based OR Decomposition
fA, fB such that  f(X) = fA(XA)  fB(XB) 

⇔ For every 1‐entry, no 0‐entries can appear 
simultaneously in the corresponding row and column 
⇔ f(XA,XB)  ¬f(XA’,XB)  ¬f(XA,XB’) is unsatisfiable

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 1 0

fA(XA) ? ? ? ?

fB(XB)

?

?

?

?

XA

XB

XA’

XB’



FLOLAC 2011 72

SAT-Based OR Decomposition
fA, fB such that  f(X) = fA(XA,XC)  fB(XB,XC) 

⇔ Under every valuation of XC, for every 1‐entry, no 0‐
entries can appear simultaneously in the corresponding 
row and column 
⇔ f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is unsatisfiable

XC=00 XA

XB XC=01 XA

XB XC=10 XA

XB XC=11 XA

XB
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SAT-Based OR Decomposition

fA, fB such that  f(X) = fA(XA,XC)  fB(XB,XC) 
⇔ f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is UNSAT

How to compute fA and fB? How to determine the 
variable partition?
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SAT-Based OR Decomposition
fA Computation

f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is UNSAT

f ff

XA XB

XA’
XB’

XC

1 00

Onset 
of  fA

Offset  
of fA

φA φB
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SAT-Based OR Decomposition
fB Computation

f(XA,XB,XC)  ¬fA(XA,XC)  ¬f(XA’,XB,XC) is UNSAT

fA ff

XA XB XA’XC

1 00Onset 
of  fB

Offset  
of fB

φA
φB
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SAT-Based OR Decomposition
Variable Partition
 A = 
 B = 

f ff

XA XB

XA’
XB’

XC

1 00

f’ f”f
X”

1 00

X X’

(αx,βx) 
=(0,1)

(αx,βx) 
=(1,0)

(αx,βx) 
=(0,0)

(αx, βx) x is belongs to

(0,0) XC

(0,1) XB

(1,0) XA

(1,1) either XA or XB
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SAT-Based OR Decomposition
Variable Partition
Make unit assumption on the control variables with 

MiniSat
 Assume all the control variables are 0
 SAT solver will return a conflict clause consisting of only the control 

variables
 The conflict clause corresponds to a variable partition

 E.g. 
Conflict clause (αx1

+βx1
+αx2

+βx3
) indicates the unit 

assumption αx1
=0,βx1

=0,αx2
=0,andβx3

=0 causes  
unsatisfiability. So x1∈XC, x2∈XB, and x3∈XA



FLOLAC 2011 78

SAT-Based OR Decomposition
Variable Partition

Avoid trivial variable partition
Bi-decomposition trivially holds if XC, XA∪XC, 

or XB∪XC equals X
SAT solver may return a conflict clause that 

consists of all the control variables  ⇒ XC = X
 To avoid trivial partition, in unit assumption we 

specify two distinct variables xa and xb in XA
and XB, respectively, and others in XC initially
To check if a function is bi-decomposable, have to try 

at most C(n,2) iterations
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SAT-Based AND Decomposition
∃fA, fB such that f = fA  fB

⇔ ∃fA, fB such that f = fAfB

 Example
f (a,b,c,d) = (a+¬b+c)(b+c+d)
f (a,b,c,d) = (a)b(c)  (b)c(d)

= fA(a,b,c)  fB (b,c,d) 
fA(a,b,c)= (a+b+c), fB(b,c,d) = (b+c+d)
f(a,b,c,d) = fA(a,b,c)  fB(b,c,d)
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SAT-Based XOR Decomposition
 (1)=(5)⊕(7), (2)=(5)⊕(8),(3)=(6)⊕(7), (4)=(6)⊕(8) 

⇒(1)⊕(4)=(2)⊕(3)
⇒ (1)⊕(2)=(3)⊕(4)
⇒ [(1)≡(2)]∧[(3)≠(4)] UNSAT

XA’ XA

XB\XA 00 01 11 10

00

XB’ 01 (1) (3)

11

XB 10 (2) (4)

fA fB

XOR

XA XBXC

fB(XB)

(7)

(8)

fA(XA) (5) (6)
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SAT-Based XOR Decomposition
 [(1)≡(2)]∧[(3)≠(4)] UNSAT
 ∃fA, fB such that f(X) = fA(XA,XC)⊕fB(XB,XC) ⇔

(f(XA,XB,XC)≡f(XA,XB’,XC))∧(f(XA’,XB,XC)≠f(XA’,XB’,XC) ) 
UNSAT

For every pair of columns (rows), their patterns are either 
complementary or identical to each other

XA,Xc XA’,Xc

XB\XA 00 01 11 10

00

XB,Xc 01 (1) (3)

11

XB’,Xc 10 (2) (4)

≡ ≠

XB\XA 00

00 1

01 0

11 0

10 1

11

1

0

0

1

01

0

1

1

0

10

1

0

0

1
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SAT-Based XOR Decomposition
fA, fB Computation

fA = f(XA,0,XC)
fB = f(0,XB,XC)⊕f(0,0,XC)

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 1

01 0 1 0 0 0

11 0 1 0 0 0

10 1 0 1 1 1

fA(XA,Xc) 1 0 1 1

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 1

01 0 1 0 0 0

11 0 1 0 0 0

10 1 0 1 1 1

fA(XA,Xc) 1 0 1 1

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 0                  

01 0 1 0 0 1

11 0 1 0 0 1

10 1 0 1 1 0                  

fA(XA,Xc) 1 0 1 1
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SAT-Based XOR Decomposition
Variable Partition
 Similar to OR decomposition
 (f(X)≡f(X’))(f(X”)≠f(X”’))

(((xi≡xi”)(xi’≡xi”’))αxi
)

(((xi≡xi’)(xi”≡xi”’))βxi
)

(αxi
, βxi

) Xi belongs to

(0,0) XC

(0,1) XB

(1,0) XA

(1,1) either XA or XB
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Practical Evaluation

OR2-decomposition XOR-decomposition

circuit #in #max #out #dev #slv Time
(sec)

Mem
(Mb)

#dev #slv Time
(sec)

Mem
(Mb)

i2 201 201 1 1 1 1.07 18.6 1 34 2.16 18.59

s6669c 322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87

Dalu 75 75 16 1 26848 352.87 24.14 16 210 26.59 19.68

C880 60 45 26 16 222 8.36 20.72 11 4192 83.08 18.72
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Practical Evaluation

Variable partition

OR decomposition XOR decomposition
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Summary

OR, AND, XOR bi-decomposition can be 
formulated in terms of SAT solving

Variable partitioning can be automated 
along the formulation

SAT-based bi-decomposition is much more 
scalable than BDD-based methods
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Quantified Satisfiability
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Quantified Boolean Formula
 A quantified Boolean formula (QBF) is often 

written in prenex form (with quantifiers placed 
on the left) as

Q1 x1, …, Qn xn. 

for Qi  {, } and  a quantifier-free formula 
 If  is further in CNF, the corresponding QBF is in the 

so-called prenex CNF (PCNF), the most popular QBF 
representation

 Any QBF can be converted to PCNF

prefix matrix
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Quantified Boolean Formula

Quantification order matters in a QBF
A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. ) 

is of level k if there are k quantifier 
alternations (i.e., changing from  to  or 
from  to ) from Q1 to Qi. 
 Example
a b c d e. 
level(a)=0, level(b)=1, level(c)=2, level(d)=2, 
level(e)=3
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Quantified Boolean Formula
Many decision problems can be 

compactly encoded in QBFs

 In theory, QBF solving (QSAT) 
is PSPACE complete
 The more the quantifier 

alternations, the higher the 
complexity in the Polynomial 
Hierarchy

 In practice, solvable QBFs are 
typically of size ~1,000 
variables

P

PSPACE

coNP NP

2 2



FLOLAC 2011 91

QBF Solver
 QBF solver choices

 Data structures for formula representation
 Prenex vs. non-prenex
Normal form vs. non-normal form

 CNF, NNF, BDD, AIG, etc.
 Solving mechanisms

 Search, Q-resolution, Skolemization, quantifier elimination, etc.
 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube 
learning (from a satisfying assignment) are performed
 Example 

a b c d e. (a+c)(a+c)(b+c+e)(b)(c+d+e)(c+e)(d+e)
from 00101, we learn cube abcd (can be further simplified to a)
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QBF Solving
 Example

))()()()()()(( ybabxbxaccybxcybxacyba 

 La,  Ra,
))()()()()(( ybbxcybxcybxcyb  ))()()(( bxbxccybx 

 Lx,  Rx,
))()()()(( ybcybcybcyb  ))()()(( ybbcycyb 

 Ub,  Ub,
))()(( cycycy   Pc,

 Ly,  Ry,
))(( cc )(c

}{true}{ false

 Py,
))()()(( bxbxccbx 

 Uc,
))()(( bxbxbx 

 Lx,  Rx,
)(b ))(( bb

}{true

}{true }{ false









cybxa 

)( ycbxa

)( cbxa

)( cbxa
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Q-Resolution
 Q-resolution on PCNF is similar to resolution on CNF, except that 

the pivots are restricted to existentially quantified variables and 
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally () 
quantified variables whose quantification levels are greater than 
any of the existentially () quantified variables in C1C2
 E.g., 

prefix: a b c d e 
-RED(a+b+c+d) = (a+b) 

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause
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Q-Resolution
 Example (cont’d)

 La,  Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc,  Rc,
}{ false

)( xba 

)( bx 

}{ false
 Lb,  Rb,

}{ false

)( cy  )(a

)( xac 

)(a

)(a

)(a

)( bx )( bxac )( cyxba )( cyba 

)(a

)(a

)(

cybxa  ))()()()()()(( ybabxbxaccybxcybxacyba 
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Skolemization
 Skolemization and Skolem normal form

 Existentially quantified variables are 
replaced with function symbols

 QBF prefix contains only two 
quantification levels 
  function symbols,  variables

 Example

a b c d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

Fb(a) Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 11 1 0 00 0
Skolem functions
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QBF Certification
 QBF certification

 Ensure correctness and, more importantly, provide useful 
information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications 
 False QBF: clause-resolution proof / Herbrand-function (HF) 

countermodel
 HF countermodel is more useful in practical applications 

 Solvers and certificates
 To date, only Skolemization-based solvers (e.g., sKizzo, 

squolem, Ebddres) can provide SFs
 Search-based solvers (e.g., QuBE) are the most popular and 

can be instrumented to provide resolution proofs
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QBF Certification

Solvers and certificates 

Clause resolutionSkolem functionSkolemizationsquolem

Clause resolutionSkolem functionSkolemizationEbddres

-Skolem functionSkolemizationsKizzo

Clause resolutionCube resolutionsearchyQuaffle

Clause resolutionCube resolutionsearchQuBE-cert
False QBFTrue QBF

CertificateAlgorithmSolver



FLOLAC 2011 98

QBF Certification
Incomplete picture of QBF certification

Recent progress
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]
Syntactic to semantic certificate conversion 

Linear time [Balabanov, J, 2011 (ResQu)]

?Clause-resolution proofFalse QBF
Skolem-function modelCube-resolution proofTrue QBF

Semantic CertificateSyntactic Certificate
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QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula 
negation
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ResQu
 A Skolem-function model (Herbrand-function 

countermodel) for a true (false) QBF can be 
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.
 := clause | cube | clause   | cube  
 E.g., 

(a’+b)  ac  (b’+c’)  bc
= ((a’+b)  (ac  ((b’+c’)  bc)))
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ResQu
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ResQu
 Example

 axbyc

7654321 )()()()()()()( ybabxcbxacybxcybxacyba 

8)( ybxa 

 8)( bxa
 10)( bxa

9)(a

10)( ybxa 

9)( xa
11)( xa

11)(a

)(empty

 7)( ba
)2(

)3(

)1(

)4(

)5(
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QBF Certification

Applications of Skolem/Herbrand functions
 Program synthesis
Winning strategy synthesis in two player 

games
 Plan derivation in AI
 Logic synthesis
 ...
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QSAT & Logic Synthesis 
Boolean Matching
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Introduction
 Combinational 

equivalence checking 
(CEC)
 Known input 

correspondence
 coNP-complete
 Well solved in practical 

applications 

… …

x1 x2 xn

f g

y1 y2 yn
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Introduction
 Boolean matching 

 P-equivalence
 Unknown input 

permutation
O(n!) CEC iterations

 NP-equivalence
 Unknown input negation 

and permutation
O(2nn!) CEC iterations

 NPN-equivalence
 Unknown input negation, 

input permutation, and 
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N



N
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Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=
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Introduction
 Motivations

 Theoretically
 Complexity in between 

coNP (for all …) and 
2 (there exists … for all …)
in the Polynomial Hierarchy (PH)
 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism 
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

2 2
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Introduction
 Prior methods

+one/allmostly PCSyesSAT based 
methods

+onemostly PCSyesCanonical-form 
based methods

– ~ ++N/AP/NPmostly CSnoSignature 
based methods

– –onemostly PCSyesSpectral 
methods

ScalabilitySolution 
type

Equivalence 
type

Function 
type

Complete
?

++one/allNPNCS / ISyesBooM
(QBF/SAT-like)

CS: completely specified
IS:  incompletely specified
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BooM: A Fast Boolean Matcher

Features of BooM
General computation framework
 Effective search space reduction techniques

Dynamic learning and abstraction
 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)
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Formulation
 Reduce NPN-equiv to 2 NP-equiv checks

 Matching f and g; matching f and g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

。,x ((fc(x)  gc(。(x)))  (f(x)  g(。(x))))
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Formulation

0-1 matrix representation of 。

 =1

bij  (xj  yi)aij  (xj  yi)

 =1
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Formulation
 Quantified Boolean formula (QBF) for NP-equivalence

 C: cardinality constraint
 A: /\i,j (aij  (yi  xj)) (bij  (yi  xj))

 Look for an assignment to a- and b-variables that satisfies 
C and makes the miter constraint

 = A  (f  g)  fc  gc
unsatisfiable

 Refine C iteratively in a sequence 0, 1, …, k, for i+1

 i through conflict-based learning

a,b,x,y (C  A ((fc  gc)  (f  g))
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BooM Flow
f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping i

SAT?

Solve miter 

SAT?

No match

Match found

Add learned 
clause to i



i characterizes 
all matches

How to compute 
all matches?

Solve i  

i=0

yes

no

i=i+1

no

yes
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NP-Equivalence
Conflict-based Learning

Observation

0       1       1 

。

f g

1       0       1 

1 0

1        0       1 

From SAT 1

≠ How to avoid 
these 6 mappings 

at once?



FLOLAC 2011 116

a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation
( a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33 )

NP-Equivalence
Conflict-based Learning

f g

1 0

。
1 0 1 0 1 1

1 0 1
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NP-Equivalence
Conflict-based Learning
 Proposition:

If f(u)  g(v) with v = 。(u) for some 。 satisfying i, 
then the learned clause \/ij lij for literals
lij = (vi  uj) ? aij : bij
excludes from i the mappings {。 | 。(u) = 。(u)}

 Proposition:
The learned clause prunes n! infeasible mappings

 Proposition:
The refinement process 0, 1, …, k is bounded by 22n

iterations
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NP-Equivalence
Abstraction
 Abstract Boolean matching

 Abstract 
f(x1,…,xk,xk+1,…,xn) to 
f(x1,…,xk,z,…,z) = 
f*(x1,…,xk,z) 

 Match g(y1,…,yn) against 
f*(x1,…,xk,z)

 Infeasible matching 
solutions of f* and g are 
also infeasible for f and g y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N
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NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of 

negation/permutation

Similar cardinality constraints, except for allowing 
multiple y-variables mapped to z

 =1

 =1
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NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is 
valid for concrete model

Simplified matching in reduced Boolean 
space
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P-Equivalence
Conflict-based Learning

 Proposition: 
If f(u)  g(v) with v = (u) for some  satisfying 
i, then the learned clause \/ij lij for literals
lij = (vi=0 and uj=1) ? aij : 
excludes from i the mappings { | (u) = (u)}
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P-Equivalence
Abstraction

Abstraction enforces search in biased truth 
assignments and makes learning strong
 For f* having k support variables, a learned 

clause converted back to the concrete model 
consists of at most (k–1)(n–k+1) literals
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Practical Evaluation
BooM implemented in ABC using MiniSAT
A function is matched against its 

synthesized, and input-permuted/negated 
version
Match individual output functions of MCNC, 

ISCAS, ITC benchmark circuits
717 functions with 10~39 support variables and 

15~2160 AIG nodes
 Time-limit 600 seconds
Baseline preprocessing exploits symmetry, 

unateness, and simulation for initial matching
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Practical Evaluation

(P-equivalence; find all matches)

Learning Abstraction
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Practical Evaluation
P-equivalence NP-equivalence
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Practical Evaluation

(runtime after same preprocessing;
P-equivalence; find one match)

BooM vs. DepQBF
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Conclusions
 BooM, a dedicated decision procedure for Boolean 

matching
 Effective learning and abstraction 

Far faster than state-of-the-art QBF solver
Theoretical upper bound reduced from O(2nn!) to O(22n)

 Empirically exponent ~7 times less for P, ~3 times less for NP
 General computation framework 

Handles NPN-equivalence, incompletely specified functions
Allows easy integration with signature based methods 

 Anticipate BooM to be a common platform for 
other Boolean matching developments and to 
facilitate practical applications
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QSAT & Logic Synthesis 
Relation Determinization
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Relation vs. Function
 Relation R(X, Y)

 Allow one-to-many 
mappings
Can describe non-

deterministic 
behavior

 More generic than 
functions

 Function F(X)
 Disallow one-to-many 

mappings 
Can only describe 

deterministic 
behavior

 A special case of 
relation

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00

11
10
01
00

x1x2 y1y2

f1 x1 x2
f2  x1 x2
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Relation
 Total relation

 Every input element is 
mapped to at least one 
output element

 Partial relation
 Some input element is 

not mapped to any 
output element

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
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Relation

A partial relation can be totalized
Assume that the input element not mapped to 

any output element is a don’t care

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y)  y.  R(X, y)
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Motivation
 Applications of Boolean relation

 In high-level design, Boolean relations can be used to 
describe (nondeterministic) specifications

 In gate-level design, Boolean relations can be used to 
characterize the flexibility of sub-circuits
Boolean relations are more powerful than traditional don’t-

care representations

11
10
01
00

11
10
01
00

x1x2 y1y2

System 
Spec.

x1

x2

y1

y2
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Motivation

Relation determinization
 For hardware implement of a system, we need 

functions rather than relations
Physical realization are deterministic by nature
One input stimulus results in one output response

 To simplify implementation, we can explore 
the flexibilities described by a relation for 
optimization
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Motivation

Example

f1 x1 x2
f2  x1 x2

f1 x2
f2  x1

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00
z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2
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Relation Determinization

Given a nondeterministic Boolean relation 
R(X, Y), how to determinize and extract 
functions from it?

For a deterministic total relation, we can 
uniquely extract the corresponding 
functions
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Relation Determinization

Approaches to relation determinization
 Iterative method (determinize one output at a 

time)
BDD- or SOP-based representation

 Not scalable
 Better optimization 

AIG representation
 Focus on scalability with reasonable optimization 

quality

Non-iterative method (determinize all ouputs
at once)
QBF solving
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Iterative Relation Determinization
 Single-output relation

 For a single-output total relation R(X, y), we derive a 
function f for variable y using interpolation

11
10
01
00

1

0

x1x2 y
I

φBφA

φA  R(X,0)
Minimal care onset of f

φB  R(X,1)
Minimal care offset of f

00

11

 R(X,0) R(X,1) UNSAT

10
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Iterative Relation Determinization

 Multi-output relation
 Two-phase computation:

1. Backward reduction
 Reduce to single-output case 

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)
2. Forward substitution

 Extract functions
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Iterative Relation Determinization

Example

Phase1: (expansion reduction)
y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)
y2.R(3)(X, y1, y2)   → R(2)(X, y1) 

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)
R(3)(X, y1, y2)    → R(3)(X, f1(X), y2)        → y2 = f2 (X)
R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)

f1

X
f2

X
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Non-Iterative Relation Determinization

Solve QBF 
x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to 
the functions we want
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Summary

Relation determinization correspond to 
solving a QBF problem

Iterative and non-iterative methods can 
be applied to extract functions from a 
Boolean relation


