Decision Procedures and
Hardware Synthesis

Jie-Hong Roland Jiang P

AN/

Department of Electrical Engineering
National Taiwan University

FLOLAC 2011

Outline

COLogic synthesis
[0Boolean function representation

[Satisfiability and logic synthesis
¥ Functional dependency
¥ Functional bi-decomposition

CQuantified satisfiability and logic synthesis
¥ Boolean matching
W Boolean relation determinization

FLOLAC 2011

IC Design Flow

RTL
synthesis

circuit
netlist

layouitd/
ask

FLOLAC 2011 3

Logic Synthesis

Boolean Function
Expression

Optimized
: Logic Netlist
Logic

Synthesis

FLOLAC 2011

Logic Synthesis

Given: Functional description of finite-state
X —> Al y machine F(Q,X,Y,d8,\) where:

o Q: Set of internal states

X: Input alphabet

Y: Output alphabet

d0: XX Q —> Q (next state function)
D A XX Q—=Y (output function)

.k

Target: Circuit C(G, W) where:
> ° G: setof circuit components g € {gates, FFs, etc.}
Ii W: set of wires connecting G

FLOLAC 2011 5

Boolean Function Representation

COLogic synthesis translates Boolean
functions INnto circuits

[0We need representations of Boolean
functions for two reasons:

M to represent and manipulate the actual circuit
that we are implementing

¥ to facilitate Boolean reasoning

FLOLAC 2011

Boolean Space

={0,1}
> = {0,13x{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

OB
OB

BO

Bl

TP

B3

B4

FLOLAC 2011

Boolean Function

[0 A Boolean function f over input variables: X;, X,, ..., X.,, IS &
mapping /: B™ - Y, where B = {0,1} and Y = {0,1,d}
® E.g.

B The output value of f(X,, X,, X3), say, partitions B™ into three sets:
O on-set (f=1)
= E.g. {010, 011, 110, 111} (characteristic function f* = x,)
O off-set (= 0)
= E.g. {100, 101} (characteristic function © = x; =X,)
0 don’t-care set (= d)
= E.g. {000, 001} (characteristic function 4 = —x, —X,)

O fis an If the don’t-care set is
nonempty. Otherwise, fis a

B Unless otherwise said, a Boolean function is meant to be completely
specified

FLOLAC 2011 8

Boolean Function

[0 A Boolean function f: B" — B over variables
X4q,...,X, Mmaps each Boolean valuation (truth
assignment) in B"to O or 1

Example
f(x,,%,) with f(0,0) = 0O, f(0,1) = 1, f(1,0) = 1,
f(1,1) =0

X
H
~|o
ol || x
N
><
N
—

FLOLAC 2011

Boolean Function

[0 Onset of f, denoted as 1, is f1={v € B" | f(v)=1}

W If f1 = B", fis a tautology
[0 Offset of f, denoted as 0, is = {v € B" | f(v)=0}%}

W If fO = B", fis unsatisfiable. Otherwise, f is satisfiable.
u

[0 Boolean functions f and g are equivalent if Yve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

0 A literal is a Boolean variable x or its negation X' (or X, —X)
In a Boolean formula

f(X1, X, X3) = X f(Xl’ Xy, X3) - Y1

X3 Xq

/%, /%,

FLOLAC 2011 10

Boolean Function

1 There are 2" vertices In B"
n . . .
1 There are 22 distinct Boolean functions

B Each subset f1 = B" of vertices in B" forms a
distinct Boolean function f with onset f1

X X Xg
000 1
001
010 1
. 100
1 =1
A’z 101
X 110 1
111

FLOLAC 2011 11

Boolean Operations

Given two Boolean functions:
f: B> B
g:B"—>B

0 h=1fAgfrom AND operation is defined as
ht=flng!; h®=B"\ ht

O h=fvgfrom OR operation is defined as
ht=flug!; h®=B"\ ht

O h =—f from COMPLEMENT operation is defined as
hi = f0: ho = f1

FLOLAC 2011

12

Cofactor and Quantification

Given a Boolean function:

O

f : B" —» B, with the input variable (X;,X5,...,X,...,X;)

Positive cofactor
h = f, is defined as h = f(X{,X,,...,1,...,X,)

Negative cofactor
h =f_, is defined as h = f(xX,X,,...,0,...,X,))

Existential quantification

h = dx;. f is defined as h = f(X{,Xs,...,0,...,X;) Vv f(X{,X5,...

Universal quantification

h = Vx,. f is defined as h = f(X{,X5,...,0,...,X;,) A T(X{,X5,...

Boolean difference

h = of/0x; is defined as h = f(X;,X5,...,0,...,X,) ® f(X{,X5,...

FLOLAC 2011

Xn)
Xn)
Xn)
13

Boolean Function Representation

[0 Some common representations:
B Truth table
B Boolean formula
0 SOP (sum-of-products, or called disjunctive normal form, DNF)
0 POS (product-of-sums, or called conjunctive normal form, CNF)
® BDD (binary decision diagram)
B Boolean network (consists of nodes and wires)

[0 Generic Boolean network

= Network of nodes with generic functional representations or even
subcircuits

] Specialized Boolean network
= Network of nodes with SOPs (PLAS)
= And-Inv Graph (AIG)

0 Why different representations?

® Different representations have their own strengths and
weaknesses (no single data structure is best for all
applications)

FLOLAC 2011 14

Boolean Function Representation

Truth Table

0 Truth table (function table for multi-valued
functions):

The truth table of a function f : B" > B is a
tabulation of its value at each of the 2"
vertices of B".

In other words the truth table lists all mintems

Example: f = a’b’'c’'d + a’'b’cd + a’bc’'d +
ab’'c’'d + ab’cd + abc'd +
abcd’ + abcd

The truth table representation is

If two functions are the equal, then their
canonical representations are isomorphic.

FLOLAC 2011

~N~No o h~WNPEO

abcd

0000

0001
0010
0011
0100
0101
0110
0111

OCOPRFRPOPRFRORO|I=H

10
11
12
13
14
15

abcd

1000 O

1001
1010
1011
1100
1101
1110
1111

15

PR PR OROR Ol|l=

Boolean Function Representation
Boolean Formula

0 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula)’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

f= (X, X,) + (Xg) + =(=(Xy - (5X)))
typically “-” is omitted and ‘(‘, /)’ are omitted when the operator priority is
clear, e.9., f = X; X, + X5 + X, =X,

FLOLAC 2011 16

Boolean Function Representation
Boolean Formula in SOP

0 Any function can be represented as a
, also called (a cube
IS a product term), or

Example
@ =ab + a'’c + bc

FLOLAC 2011 17

Boolean Function Representation
Boolean Formula in POS

0 Any function can be represented as a
, also called

® Dual of the SOP representation

Example
¢ = (a+b'+c) (a'+b+c) (a+b'+c’) (a+b+c)

] Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

FLOLAC 2011 18

Boolean Function Representation
Binary Decision Diagram

[0 BDD — a graph
representation of Boolean
functions

® A leaf node represents
constant O or 1

B A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

B Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

FLOLAC 2011

f = ab+a’c+a’bd

root I
a

node

19

Boolean Function Representation
Binary Decision Diagram

0 Any Boolean function f can be written in term of
Shannon expansion
f=vf,+-vi
B Positive cofactor: f. = f(Xq,....x=1,..., X,)
B Negative cofactor: f . =

[0 BDD is a compressed Shannon cofactor tree:

¥ The two children of a node with function f controlled by
variable v represent two sub-functions f, and f_,

FLOLAC 2011 20

Boolean Function Representation
Binary Decision Diagram

[0 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

[l cofactor variables are in the same order along all paths
Xi <X <X <..<X
1 2 3 n

CJany node with two identical children is removed
0 two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function
f
a ordered -
g © (a<c<b)

,
|l ’
/
&

b <
ST\, 0 1 2
1

FLOLAC 2011

21

not a f
ordered (> b
> b reduce \

1

Boolean Function Representation
Binary Decision Diagram

[0 For a Boolean function,
B ROBDD is unique with respect to a given variable ordering
®m Different orderings may result in different ROBDD structures

+— f=ab+a'ct+bC'd — S

FLOLAC 2011 0 1 22

Boolean Function Representation
Boolean Network

[0 A Boolean network is a directed graph C(G,N)
where G are the gates and N c (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designhated:
1 G
OcG

| "0 =Y

Each gate g Is assigned a Boolean function f,
which computes the output of the gate Iin tefms

of its inputs.

FLOLAC 2011 23

Boolean Function Representation
Boolean Network

0 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(9) = {9’ | (d’,9) € N} (N: the set of nets)

0 The fanout FO(g) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9") € N}

[0 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

[0 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N |

FLOLAC 2011 24

Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4} O
FO(6) = {7,9}

CONE(6) ={1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

FLOLAC 2011 25

Boolean Function Representation

And-Inverter Graph

0 AND-INVERTER graphs (AIGS)
vertices: 2-input AND gates

edges: interconnects with (optional) dots representing INVs

[0 Hash table to identify and reuse structurally isomorphic
circuits

DD

ST
} * >; gj>0/©<0//0\9

FLOLAC 2011 26

Boolean Function Representation

O

O

Truth table

@ Canonical

B Useful in representing small functions
SOP

® Useful in two-level logic optimization, and in representing local node
functions in a Boolean network

POS
B Useful in SAT solving and Boolean reasoning

B Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)
ROBDD
B Canonical
B Useful in Boolean reasoning
Boolean network
® Useful in multi-level logic optimization
AlG
B Useful in multi-level logic optimization and Boolean reasoning

FLOLAC 2011

27

Circuit to CNF Conversion

0 Naive conversion of circuit to CNF:
B Multiply out expressions of circuit until two level structure

B Example: y =X,®X, ®X, @
] circuit size is linear in the number of variables

o = SO

[0 generated chess-board Karnaugh map
[0 CNF (or DNF) formula has 21 terms (exponential in #vars)

0 Better approach:
B Introduce one variable per circuit vertex
® Formulate the circuit as a conjunction of constraints imposed
on the vertex values by the gates
B Uses more variables but size of formula is linear in the size of

the circuit

FLOLAC 2011 28

Circuit to CNF Conversion

[0 Example
B Single gate:
a AND

O e =) (ma+-b+o)@+)b +)
b

@ Circuit of connected gates:

@D— (-1 +2+4)A+ -4)(-2 + -4)
© (-2 + =3 + 5)(2 + =5)(3 + =5)
§§@<: D70 ED 54 346)(u2 + 26)(3 + _6)
®* (=4 + =5 + 7)(4 + —7)(5 + —7)
(5+ 6 + 8)(-5 + =-8)(-6 + —-8)
(7 + 8 + 9)(~7 + =9)(-8 + —-9)

(9)

FLOLAC 2011 29

Is output always O ?

Justify to “1”

Circuit to CNF Conversion

CICircuit to CNF conversion

M can be done in linear size (with respect to the
circuit size) if intermediate variables can be
Introduced

¥ may grow exponentially in size if no
InNntermediate variables are allowed

FLOLAC 2011 30

Propositional Satistiability g

LLLLLLLLLL

Normal Forms

0 A literal is a variable or its negation

[0 A clause (cube) is a disjunction (conjunction) of
literals

0 A conjunctive normal form (CNF) is a

conjunction of clauses; a disjunctive normal
form (DNF) iIs a disjunction of cubes

mEg.,

CNF: (a+—-b+c)(a+-c)(b+d)(—-a)
0 (—a) is a unit clause, d is a pure literal
DNF: a—-bc + a—-c + bd + —a

FLOLAC 2011 32

Satistiability

[0 The satisfiability (SAT) problem asks whether a
given CNF formula can be true under some
assignment to the variables

O In theory, SAT is intractable
B The first shown NP-complete problem [Cook, 1971]

[l In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and —1,000,000 clauses

¥ It enables various applications, and inspires QBF and
SMT (Satisfiability Modulo Theories) solver development

FLOLAC 2011 33

SAT Competition

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 : ; ; :

T
Limmat 02 m]

- . 7 o . @

Tz - 7 T
]

CPU Time (in seconds)

1000

300

600

400

200

Zchaft 02 O

Berkmin 561 02 F

Forklift 03

Siege 03 ™

Zchaff 04 ’ 3]

SatELite 05 " L -

Minisat 2.0 06 . r.'f

Picosat 07

Rsat 07

Minisat 2.1 08

Precosat 09

Glucose 09 _ " .

Clasp 09 + :

Cryptominisat 10 m

Lingeling 10 ‘ y

Minisat 2.2 10 i
iy

20 40 60 80 100 120 140 160

Number of problems solved

180

http://www.satcompetition.org/PoS11/

FLOLAC 2011

34

SAT Solving

[0 Ingredients of modern SAT solvers:
B DPLL-style search
0 [Davis, Putnam, Logemann, Loveland, 1962]

® Conflict-driven clause learning (CDCL)
0 [Marques-Silva, Sakallah, 1996]

B Boolean constraint propagation (BCP) with two-literal
watch

0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001]
® Decision heuristics using variable activity
0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001]

B Restart
® Preprocessing

B Support for incremental solving
Cl[Een, Sorensson, 2003]

FLOLAC 2011 35

Pre-Modern SAT Procedure

Algorithm DPLL(D)

{
while there 1s a unit clause {1} In O
O = BCP(D, D);
while there 1s a pure literal I In O
O = assign(o, 1);
1T all clauses of ® satisfied return true;
iIf © has a conflicting clause return false;
I := choose literal(®);
return DPLL(assign(®,—-1)) v DPLL(assign(d,1));
}

FLOLAC 2011

36

DPLIL Procedure

[0Chorological backtrack
—~al| |—b
o<
CE.g. é@ géD
D
~a —b b
{—a,e} H B N
{a,b,—c} O O W
{c,—d} HEn
{a,b,d} [J [W
{d.e} O O
{C’d1_'e} D D D

FLOLAC 2011

OmEEOEE!
ECOEEENE-C

Y

Modern SAT Procedure

Algorithm CDCL(D)

{

while(l)
while there 1s a unit clause {lI} In O

O = BCP(D, D);
while there 1s a pure literal I In O
O = assign(o, 1);
iIT & contains no conflicting clause
iIT all clauses of ® are satisfied
I := choose literal(®);
assign(o,);
else
1T conflict at top decision level
analyze conflict();
undo assignments;
O := add _conflict clause(d);

FLOLAC 2011

return true;

return false;

38

Conftlict Analysis & Clause Learning

0 There can be many learnt
clauses from a conflict

0 Clause learning admits non- = (T
chorological backtrack

O E.g.,
{—x10587, —x10588, &
—x10592} B 5

{-x10374, —x10582, ©
—x10578, —x10373, —x10629}

{x10646, x9444, —x10373,
—x10635, —x10637}

Box: decision node
Oval: implication node
Inside: literal (decision level)

Courtesy of Niklas Een

FLOLAC 2011 39

Clause Learning as Resolution

O Resolution of two clauses C,vx and C,v—xX:

C,vX C,ov—X
C,vC,

where X is the pivot variable and C,vC, is the resolvant,
l.e., C,;vC, = IX.(C,vX)(C,v—=X)

0 A learnt clause can be obtained from a sequence of
resolution steps

W Exercise:
Find a resolution sequence leading to the learnt clause

{—x10374, —x10582, —x10578, —x10373, —x10629}
In the previous slides

FLOLAC 2011 40

Resolution

[0 Resolution is complete for SAT solving

B A CNF formula is unsatisfiable if and only if there exists
a resolution sequence leading to the empty clause

B Example (a\/bf/c) (ﬁz%vc) (ﬁbvﬁd)(ﬁﬂc) (CYd)
(bvc) (d)
(c\v\;:d)
(Q"é)
0

FLOLAC 2011 41

SAT Certification

CITrue CNF

W Satisfying assignment (model)
CIVerifiable In linear time

ClFalse CNF

¥ Resolution refutation
ClPotentially of exponential size

FLOLAC 2011

42

Craig Interpolation

[[Craig Interpolation Thm, 1957]

If AAB is UNSAT for formulae A
and B, there exists an
Interpolant I of A such that

1. A=>I
2. IAB is UNSAT

3. I refers only to the common
variables of A and B

FLOLAC 2011

43

Interpolant and Resolution Proot

[0 SAT solver may produce the resolution proof of an UNSAT
CNF o

O For o= o Ay Specified, the corresponding interpolant can
be obtained in time linear in the resolution proof

(0N Op
N N

(avbve)(-ave) (Gbv—d)(-c)(evd) (bve)(©)(1)(1)(L)

7’

N L’ , , N ’
N ’ ’ ’ \ ’
N ’ ’ ’ \ ’
~ ’ ’ 7 N7
N7 ’ / N7

4 ’
/ 4
vC . ’
, ’
/
R ./ / ’
A ’ ’ ’
N 7 ’ /
AN 7’ /7 ’
~ 7 ’

7’
A 7’ Vi 7/
N 7 7 7
A4 / ’
’ ’
’ ’ —
\/_| 4 ’
4 7 —
’ ’
N ’ ’
N ’ ,
AN ’ ’
\ 4 ’

N ’
N ’
N/

N
(\)
N
N
N
N
N

[McMillan, 2003]

0O FLOLAC 2011 44

Incremental SAT Solving

COTo solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?
® What if adding a clause to ¢?
B What if deleting a clause from ¢?

FLOLAC 2011 45

Incremental SAT Solving

O MiniSat API
¥ void addClause(Vec<Lit> clause)
¥ bool solve(Vec<Lit> assumps)
¥ bool readModel(Var x) — for SAT results
¥ bool assumpUsed(Lit p) — for UNSAT results

® The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

B More clauses can be added after solve() returns, then
iIncrementally another SAT-solving executed.

Courtesy of Niklas Een

FLOLAC 2011 46

SAT & Logic Synthesis

Functional Dependency

Functional Dependency

Of(x) functionally depends on g;(x),

9ao(X), ... gm(X) If £(x) = h(gy(x), go(X), ..., gn(X)),
denoted h(6(x))

B Under what condition can function f be
expressed as some function h over a set
G={g,,...9,} Of functions ?

® h exists < 7a,b such that f(a)=f(b) and 6(a)=6(b)

i.e., G is more distinguishing than f

FLOLAC 2011 48

Motivation

O Applications of functional dependency

¥ Resynthesis/rewiring

¥ Redundant register removal

B BDD minimization

M Verification reduction
N ...

Boolean Network

P

FLOLAC 2011

O target function
O base functions

49

BDD-Based Computation

CO0BDD-based computation of h
hon ={y e B": y = 6(x) and f(x) =1, x € B"}
hoff = {y € Bm: y = 6(x) and f(x) = 0, x Br}

f(x)=1

f(x)=0

FLOLAC 2011

hon = 3x.(y=G)Af

hoff = 3x.(y=6)A—f

50

BDD-Based Computation

COPros
B Exact computation of ho" and hoff
M Better support for don’t care minimization

C0Cons
B 2 image computations for every choice of 6

B Inefficient when |G| is large or when there are
many choices of G

FLOLAC 2011 51

SAT-Based Computation

[Oh exists <
Aa,b such that f(a)=f(b) and 6(a)=6(b),
i.e., (F()ZfF(XDA(G(x)=6(x)) is UNSAT

OHow to derive h? How to select G?

FLOLAC 2011 52

SAT-Based Computation

O (f(x)=f (X)A(G(X)=6(x")) is UNSAT
T e .
éziiltigizts 1 anstrgints _ O Constraint
J ~~~~~~ / ‘ \[Part
Yo V1Yo oo Y Vi Vs o Im Ve Giru
i DFN,, DFN, ;
i] | . -
\ Xl _X,'2 xn xl x2 xn Y.

-

~N—_——— e —

FLOLAC 2011 53

SAT-Based Computation

Clause set A: Cyrnons Yo

Clause set B: Cypnors, — Yo . (YY) fori=1,..m

I is an overapproximation of Img(for) and is disjoint from
Img(foff)

I only refers to y;,..., y,,

Therefore, I corresponds to a feasible implementation of h

oo OO0

* S
X1 X,

FLOLAC 2011 54

Incremental SAT Solving

] Controlled equality constraints
(Y=Y = (Gyivyr voadlyv =y vooy)
with auxiliary variables o,
o; = true = ith equality constraint is disabled

B Fast switch between target and base functions by unit
assumptions over control variables

B Fast enumeration of different base functions
B Share learned clauses

FLOLAC 2011 55

SAT vs. BDD

O SAT

® Pros

[Detect multiple choices of
G automatically

] Scalable to large |G|

] Fast enumeration of
different target functions

0 Fast enumeration of
different base functions G

B Cons

1 Single feasible
implementation of h

O BDD

B Cons

[0 Detect one choice of G at
a time

[Limited to small |G|

] Slow enumeration of
different target functions

0 Slow enumeration of
different base functions G

® Pros

1 All possible
implementations of h

FLOLAC 2011 56

Practical Evaluation

|
SAT vs. BDD

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem
$5378 2794 179 52 25 398 283 173 1.2 18 1.6 20 0.6 18 7 51
$9234.1 5597 211 46 X 459 301 201 41 19 X X 1.7 19 194.6 149
513207.1 8022 638 190 136 1930 802 X 15.6 22 314 78 15.3 22 X X
$15850.1 9785 534 18 9 907 402 X 23.3 22 82.6 94 7.9 22 X X
$35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --
$38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --
$38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164
b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 25 42
b14 9847 245 2 - 245 2 -- 3.3 22 -- -- 5.2 22 - --
b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --
b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --
b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --
b19 224624 6642 0 - 7164 337 -- 8184.8 217 -- -- 11040.6 234 - --
b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --
b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --
b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

FLOLAC 2011

57

Practical Evaluation

circuit size vs. runtime

100000
2 _
10000 | R? = 0.9664
1000 - R?=0.909
=)
S 100 -
(D)
£ 10 -
- il () .
1 A Original
0.1 - ® Retimed
0.01 I I I
100 1000 10000 100000 1000000

Number of nodes (log)

FLOLAC 2011

Practical Evaluation

Incremental SAT

100 ‘
——Db19 (200k nodes) —— b18 (100k nodes)
——bl17 (30k nodes) —— b15 (10k nodes)
10 -
1 -
=)
o
P
£ 01
|_
0.001 ‘ ‘
1 50 99
Iteration

FLOLAC 2011

59

Practical Evaluation

#total input vs. #redundant inputs

12
811 o0 2
< 10 . & 2
'% 9 —ee o 5
> 8| e o e 6
o 7 < 1
5 6 | eeeee . 9
> 5 o S 2
S 4 ee o * 4
S 3 |eeemwe o e 14
T 2 lomamesr o0 wn o 68
2 1 (e ammmn ane oo * 174

0 emm———— @ s ® & @ ws 10858 |

0 50 100 150

Number of input variables

FLOLAC 2011

60

Practical Evaluation

interpolant size vs. support size

10000 .

3 1000 -

8 R? = 0.8506
(9p]

€ 100 -

(qv]

S

o

£ 10 s Original

* Retimed

1 10 100
Number of variables (log)

FLOLAC 2011

1000

61

Summary

CIFunctional dependency is computable with
pure SAT solving (with the help of Craig
Interpolation)

CO0Compared to BDD-based computation, it is
much scalable to large designs

FLOLAC 2011 62

SAT & Logic Synthesis

Functional Bi-Decomposition I

Bi-Decomposition

FLOLAC 2011 64

Bi-Decomposition

0 A variable partition on
X = {XA1 Xzl X} has the
property:

m X, , Xg, Xcare pair-wise
disjoint, and
X, UXgUX: =X

OIf X = 9, the
decomposition is called
disjoint; otherwise,
non-disjoint

FLOLAC 2011

Bi-Decomposition

[0 We consider OR, AND, XOR bi-decompositions

B These three cases are sufficient to generate any other
type of bi-decomposition

a b a+b ab adb a(-b) aod(-b)
0 0 0 0 0 0 1
0 1 1 0 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0) 0) 1

FLOLAC 2011 66

Motivation

C0Bi-decomposition breaks a large function
Into a network of smaller functions
(necessary for FPGA implementation)

[0 Bi-decomposition can be applied to
restructure logic network for optimization

¥ It reduces circuit and commmunication
complexity and thus simplify physical design

FLOLAC 2011 67

BDD-Based Computation

CIPros
B Exact characterization of don’t cares

CdCons

B Memory explosion

B Decomposability must be checked under a
fixed variable partition

FLOLAC 2011

68

OR Bi-Decomposition

] Disjoint decomposition:
Xe =

[0 Example
f(a,b,c,d) = (-a)b+cd

X = {a7b’C’d}:{XAIXB}
X,= {a,b}, Xz= {c,d}

f(X) = (-~a)b+cd
= f(a,b)+fz(c,d)

X5\X

00
01
11
10

£AXA)

FLOLAC 2011

0

o +—» O

|

:

E?Q

Xa

e S R T =

0
0
1
0

0

f
Xg

00 01 11 10

0
0
1
0

0

© +r»r O O

75 Xe)

69

OR Bi-Decomposition

O f(X) can be written as f,(X,)v
fs(Xg) if and only if, for every
1-entry in the decomposition
table, O-entries cannot appear
simultaneously in the
corresponding row and column

0 Example
f(1101) = 0 = f,(11) +f;(01)
f(0010) = 0 = 1,(00) +f;(10)
f(1110) = 1 = f,(11) +f;,(10)?7?

FLOLAC 2011 70

SAT-Based OR Decomposition

L1 3f,, f; such that f(X) =f,(X,) v f5(X,)
& For every 1-entry, no O-entries can appear
simultaneously in the corresponding row and column
< fIX,Xg) A =X, X5) A=f(X,Xg') is unsatisfiable

XX
X;\X, 00 01 11 10 f£(Xp)
00 0 1 0 0 ?
s or o 1 [l o ?
B : 1 1 2 ?
x, 10 [0 1 8 o ?
XD 2 2 2 2

FLOLAC 2011 71

SAT-Based OR Decomposition

[13f,, f, such that f(X) = £,(X,,X) v f5(X,X,)

& Under every valuation of X, for every 1-entry, no O-
entries can appear simultaneously in the corresponding
row and column

< fIX, Xg X) A =fIX, X, X) A =f(X, XS, X) is unsatisfiable

X=00 X,
Xg X=01 X,

FLOLAC 2011 72

SAT-Based OR Decomposition

L3f,, f; such that f(X) = f,(X,,X) v f5(Xg5X,)
E X, X X) A ~FXS, X X) A =FIX, X5, X) is UNSAT

O How to compute f, and f;? How to determine the
variable partition?

FLOLAC 2011 73

SAT-Based OR Decomposition
t, Computation

Df(XA,XB,XC) A A —-f(XA,XB',XC) IS UNSAT
1 0 0)
Onset / \ PB Offset
of f, of f,
) @,
o (@

X4 Xg Xe

FLOLAC 2011 74

SAT-Based OR Decomposition
t, Computation

OAX, X5 X) A A =f(X,", Xy X,) is UNSAT

PB
P ff:
O
o

o o

o

(=]

XA XB XC)(A,

FLOLAC 2011 75

SAT-Based OR Decomposition
Variable Partition

005 = F(0) A~F(X) A\ ((0 = 2 v ay,) S oS
D (PB — _If(XH) A\ /\((333 — CC;,) V 5$?,) 01) Xg
(1,0) Xa

(1,2) either X, or Xg

MM

A

(0(46, O/o;) X, Xg X.

FLOLAC 2011 76

SAT-Based OR Decomposition
Variable Partition

1 Make unit assumption on the control variables with
MiniSat
B Assume all the control variables are O

M SAT solver will return a conflict clause consisting of only the control
variables

B The conflict clause corresponds to a variable partition
CIE.g.

Conflict clause (o, + B, +a, + 55 «,) indicates the unit

assumption a, =0, 5, =0, a, =0,and ,8X3=O causes
unsatisfiability. So X4 ElXC, X, & Xg, and x; € X,

FLOLAC 2011 77

SAT-Based OR Decomposition
Variable Partition

CJAvoid trivial variable partition

B Bi-decomposition trivially holds if X, X,UX,
or XgUX. equals X

W SAT solver may return a conflict clause that
consists of all the control variables = X, = X

¥ To avoid trivial partition, Iin unit assumption we
specify two distinct variables x, and x, in X,
and Xg, respectively, and others in X. initially

C0To check if a function is bi-decomposable, have to try
at most C(n,2) iterations

FLOLAC 2011 78

SAT-Based AND Decomposition

O 3f,, f, such that f = f, A f,
= EIfA, fB such that —f = _IfA\/_IfB

0 Example
f (a,b,c,d) = (a+-b+c)(b+-c+d)
—f (a,b,c,d) = (—wa)b(-c) v (=b)c(—d)
= —f,(a,b,c) v —fg (b,c,d)
f,(a,b,c)= (a+-b+c), f3(b,c,d) = (b+-c+d)
f(a,b,c,d) = f,(a,b,c) A fg(b,c,d)

FLOLAC 2011 79

SAT-Based XOR Decomposition

0 (1)=(5)D(7), (2)=(5)D(8),(3)=(6) B(7), (4)=(6) D (8)

=(1)D(4)=(2)D(3)

= (1)D(2)=(3)D(4)

= [(1)=(2)] \[(3) # (4)] UNSAT

X\X,,
00
Xy 01
11
X 10

fa(Xa)

X,
00

(1)

(2)
(5)

01

XA
11

(3)

(4)
(6)

~ XOR

10 fy(Xp) : :

(8)

FLOLAC 2011 80

SAT-Based XOR Decomposition

O [(1)=(2)IA[(3)#(4)] UNSAT
O 3f,, f, such that f(X) = f,(X,,Xo) ®fs(Xg,Xo) ©

(F(Xp: X5, X)) =F(Xa X", X)) A (FXLT X, X)) (XL, X6, X))
UNSAT

For every pair of columns (rows), their patterns are either
complementary or identical to each other

FLOLAC 2011 81

SAT-Based XOR Decomposition
f,, fg Computation

Of, = f(X,,0,X,)
CIf, = f(0,X,,X) Df(0,0,X,)

X \X, £ (Xg,X.)
00 - 0 1 1 0
01 0 1 0 0 1
11 0 1 0 0 1
10 1 0 1 1 0
BOGX) 1 0 1 1

FLOLAC 2011

SAT-Based XOR Decomposition
Variable Partition

0 Similar to OR decomposition
O (fOO) =TtCX))AECT) A TCX)) A
((G=XDAXG =X v a xi)/\

((=XDAK =XV B xi)

(ay, By) X; belongs to

(0,0) Xc
(0,1) X
(1,0) X,

(1,1) either X, or X;

FLOLAC 2011

83

Practical Evaluation

|| | | oR2-decomposition | XOR-decomposition ___|

circuit #in #max #Hout #Hdev #Hslv Time Mem #dev #Hslv Time Mem
(sec) (Mb) (sec) (Mb)
201 201 1 1 1 1.07 186 1 34 2.16 18.59
322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87
75 75 e 26848 352.87 24.14 16 210 26.59 19.68
60 45 25 |as |22z 8.36 20.72 11 4192 83.08 18.72

FLOLAC 2011 84

IXa - Xbl / IXI

Practical Evaluation

|
Variable partition
OR decomposition XOR decomposition
1.0 I | I I 1.0 - | I | |
08T % - 08 L .
)%O%%(X
Xe B —
T X w4 >
0.6 KX = O - 206 ~ K O\ -
X KKK) =
OBIRT KN 2 BN
04 /X\X X e ' X KON
41 X ¢ O\ 4 = 04L X -
X e ; ! x s
X XX G X % = X ¥ XX
% X
X
v X 02 X SE N s
XX XX TXX R
e,
x%m.
™ 040 | l | W
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
IXcl/XI IXcl/XI
FLOLAC 2011 85

Summary

COJOR, AND, XOR bi-decomposition can be
formulated in terms of SAT solving

CIVariable partitioning can be automated
along the formulation

[0SAT-based bi-decomposition is much more
scalable than BDD-based methods

FLOLAC 2011 86

Quantitied Satistiability

LLLLLLLLLL

Quantified Boolean Formula

0 A quantified Boolean formula (QBF) iIs often
written in prenex form (with quantifiers placed
on the left) as

Q1 Xqy «-vy Qp Xp- @

for Q; € {V, 3} and ¢ a quantifier-free formula

H If ¢ Is further in CNF, the corresponding QBF is in the
so-called prenex CNF (PCNF), the most popular QBF
representation

® Any QBF can be converted to PCNF

FLOLAC 2011 88

Quantified Boolean Formula

CQuantification order matters in a QBF

OA variable x; In (Qq X4,..., Q; Xi,..., Qy X,,- ©)
IS of level k if there are k quantifier
alternations (i.e., changing from V to 3 or
from 3 to V) from Q; to Q..

B Example
va db Vc vd 3Je. ¢
level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

FLOLAC 2011 89

Quantified Boolean Formula

[0 Many decision problems can be
compactly encoded in QBFs

] In theory, QBF solving (QSAT)
Is PSPACE complete

B The more the quantifier
alternations, the higher the
complexity in the Polynomial
Hierarchy

PSPACE

[0 In practice, solvable QBFs are
typically of size —1,000
variables

FLOLAC 2011 90

QBF Solver

0 QBF solver choices
® Data structures for formula representation

0 Prenex vs. non-prenex

0 Normal form vs. non-normal form
= CNF, NNF, BDD, AIG, etc.

B Solving mechanisms
[0 Search, Q-resolution, Skolemization, quantifier elimination, etc.
B Preprocessing techniques

[0 Standard approach

B Search-based PCNF formula solving (similar to SAT)

0 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
= Example
va db dc vd Je. (a+c)(—a+-c)(b+-c+e)(-b)(c+d+-e)(—c+e)(—d+e)
from 00101, we learn cube —a—bc—d (can be further simplified to —a)

FLOLAC 2011 91

QBF Solving

[0 Example S
HanﬂbeHC (a+b+y+c)a+x+b+y+c)(x+b)(y+c)(c+a+x+b)(x+b)(a+b+y)
L)
B)] (—
<a,L> <a,R>
(b+y+c)x+b+y+c)x+b)(y+c)(x+b)(b+) (x+b)(y+c)(c+x+b)(x+b)
B) \V <y,P>
<xL> <xR> (x+b)(c)(c+x+b)(x+b)
O+y+c)o+y+c)O)y+c)b+y) (b+y+c)(y+c)b)b+y)
<c,U>
<b,U > <b,U > (x+b)(x+b)(x +b)
(y+)+ (+0) <ol
4 —)V
V 7 {true} (axbc) < X_,L > <xR>
< y,é)> <y,R> (0) (b)(0)
(c)(c (c) —
= {true} (aXbC) { false}
{false} {true} (axbyc)

FLOLAC 2011 92

(Q-Resolution

O Q-resolution on PCNF is similar to resolution on CNF, except that

the pivots are restricted to existentially quantified variables and
the additional rule of V-reduction

V-RED(C,vC,)

where operator V-RED removes from C,vC, the universally (V)
quantified variables whose quantification levels are greater than

any of the existentially (3) quantified variables in C,vC,
® E.g.,

prefix: Va 3b vc vd Je
V-RED(a+b+c+d) = (a+b)

0 Q-resolution is complete for QBF solving

B A PCNF formula is unsatisfiable if and only if there exists a Q-
resolution sequence leading to the empty clause

FLOLAC 2011 93

(Q-Resolution

[0 Example (cont’'d)

daVxAbVydc (a+b+y+c)a+rx+b+y+c)(x+b)(y+c)c+a+x+b)(x+b)(a+b+y)

(L)

B _

<a,L> (a)

A

<x,L> (a)

B A

(x+5) <b,U > (a)

B A

<y,L> |(a+b+x)

_’L / \ _
;szlse; (a+b+y+c) Efz’lfe; (a+b+x+y+c)

FLOLAC 2011

e A

<a,R> (a)

A

<y, P> (5)

_)

(v+o)| <e,U> |(a)

)

<XR> ey atx)

<bL>[=——= _b/<b’R>_E
{faise} (c+a+x+b) {false} (x+b)
94

Skolemization

] Skolemization and Skolem normal form

B Existentially quantified variables are
replaced with function symbols

B QBF prefix contains only two
quantification levels

] 3 function symbols, V variables

0 Example
vYa db Vc 3d.
(-a+—-b)(-b+—-c+-d)(—b+c+d)(a+b+c)
Skolem functions @
0011011011110000

EIFb(a) JF4(a,c) Va vc.
(—|a+—|Fb)(—|Fb+—|C+—|Fd)(—lFb+C+Fd)(a+Fb+c)

FLOLAC 2011 95

QBF Certification

0 QBF certification

B Ensure correctness and, more importantly, provide useful
information
® Certificates

0 True QBF: term-resolution proof / Skolem-function (SF) model
= SF model is more useful in practical applications

[l False QBF: clause-resolution proof / Herbrand-function (HF)
countermodel

= HF countermodel is more useful in practical applications

] Solvers and certificates

B To date, only Skolemization-based solvers (e.g., sKizzo,
squolem, Ebddres) can provide SFs

W Search-based solvers (e.g., QuBE) are the most popular and
can be instrumented to provide resolution proofs

FLOLAC 2011 96

QBF Certification

1Solvers and certificates
Solver Algorithm Certificate
True QBF False QBF
Ebddres Skolemization | Skolem function Clause resolution
sKizzo Skolemization | Skolem function -
squolem Skolemization | Skolem function Clause resolution

FLOLAC 2011 97

QBF Certification

O Incomplete picture of QBF certification

True QBF

Cube-resolution proof

Skolem-function model

False QBF

Clause-resolution proof

?

[0Recent progress

B Herbrand-function countermodel
Cl[Balabanov, J, 2011

W Syntactic to semantic certificate conversion
ClLinear time [Balabanov, J, 2011 1

FLOLAC 2011

QBF Certification

CUnified QBF certification

True QBF

Cube resolution proof

Skolem function
(model)

formula
negation

False QBF

Clause resolution proof

Herbrand function
(countermodel)

FLOLAC 2011 99

ResQu

0 A Skolem-function model (Herbrand-function
countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

O A Right-First-And-Or (RFAO) formula
IS recursively defined as follows.

¢ := clause | cube | clause A ¢ | cube v ¢
®E.qg.,
(a+b) A ac v (b'+c’) A bc
= ((@+b) A (ac v ((b'+c’) A bc)))

FLOLAC 2011 100

ResQu

Countermodel construct
input: a false QBF @ and its clause-resolution DAG G (Viz, Err)
output: a countermodel in RFAO formulas
begin
01 foreach universal variable x of @
02 RFAO_node_array[x] := (;
03 foreach vertex v of G in topological order

04 if v.clause resulted from V-reduction on w.clause, i.e., (u,v) € En
05 v.cube := —(v.clause);

06 foreach universal variable x reduced from wu.clause to get v.clause
07 if & appears as positive literal in u.clause

08 push v.clause to RFAO_node_array [2];

09 else if x appears as negative literal in u.clause

10 push v.cube to RFAO_node_array [x];

11 if v.clause is the empty clause

12 foreach universal variable x of @

13 simplify RFAO_node_array [x];

14 return RFAO_node_array’s:

end

FLOLAC 2011 101

ResQu

|
0 Example
B Javx3dbvydc
(a+b+y+c)(a+x+b+y+c),(x+b),(y+c),(a+x+b+c) (x+b) (a+b+ y),
Ny lo
. A L . —_
(a+x+b+y), (a+x+b+y), (a+b),,
el L@
(a+x+\b)8+ (a+x+b)10+ (). [U[]
N K 1 2 [Y [r-u.br){ﬁh)]
(a+x)g (a+x)

(3) J/ 1 y e T | cube(ab),

\I/ (5) 2 (1 v L'h;.u.w(a +x + f))}
(a)9+ B

(a)ll—i- I | cube(ab),
/ : [clause(a)] Y- L-.!.’a.u.@ﬁ(a. + 2+ b)}

[cube(ab),
4. 1| clause(a) y: | clause(a + x + b),

(empt'y) | [[(}] : _rtubr‘(u:rﬁ}‘k ’

[cube(ab),

5 i [('!u?}sr'(a)‘} y: | clause(a + x +b),

FLOLAC 2011

e cube(a)

L cube(axb)

102

QBF Certification

[l Applications of Skolem/Herbrand functions
® Program synthesis

¥ Winning strategy synthesis in two player
games

M Plan derivation in Al
¥ Logic synthesis
H...

FLOLAC 2011 103

QSAT & Logic Synthests
Boolean Matching I

Introduction

[0 Combinational
equivalence checking
(CEC)

® Known input
correspondence

@ coNP-complete

® Well solved in practical
applications

yl y2 yn

FLOLAC 2011 105

Introduction

[0 Boolean matching

® P-equivalence

0 Unknown input
permutation

O O(n!') CEC iterations
® NP-equivalence

0 Unknown input negation
and permutation

0 O(2"n!) CEC iterations

B NPN-equivalence
0 Unknown input negation,

input permutation, and ®
: ¢ P N
output negation T
0 O(2"+1n!) CEC iterations T \%

FLOLAC 2011 106

Introduction

: (H
X1 Xo Xg YF@

X1 Xy X3

CODExample

FLOLAC 2011 107

Introduction

0 Motivations

B Theoretically
O Complexity in between
CONP and
2
in the Polynomial Hierarchy (PH)
= Special candidate to test PH collapse

0 Known as Boolean congruence/isomorphism
dating back to the 19t century

® Practically

0 Broad applications
= Library binding
= FPGA technology mapping
= Detection of generalized symmetry
= Logic verification
= Design debugging/rectification
= Functional engineering change order

0 Intensively studied over the last two decades

FLOLAC 2011

PSPACE

108

Introduction

] Prior methods

Complete | Function | Equivalence | Solution | Scalability

? type type type

Spectral yes CS mostly P one - -
methods
Signature no mostly CS P/NP N/A -~ ++
based methods
Canonical-form yes CS mostly P one +
based methods
SAT based yes CS mostly P one/all +
methods
BooM yes CS/ IS NPN one/all ++
(QBF/SAT-like)

FLOLAC 2011

CS: completely specified
IS: incompletely specified

109

BooM: A Fast Boolean Matcher

[0Features of BooM
® General computation framework

W Effective search space reduction techniques
CODynamic learning and abstraction

® Theoretical SAT-iteration upper-bound:

O(22n)

FLOLAC 2011 110

Formulation

[0 Reduce NPN-equiv to 2 NP-equiv checks
B Matching f and g; matching f and —g

[0 2nd order formula of NP-equivalence
v e, VX ((T.(X) A gc(v ° n(X))) = (F(X) = g(v ° n(x))))

m f, and g, are the care conditions of f and g, respectively

[0 Need 1storder formula instead for SAT solving

FLOLAC 2011 111

Formulation

[00-1 matrix representation of ve nt

1 r1 X2 X2 cr Tn Tn
yi flonn bu| a2 bz --- ain binf\ X =1
Y2 a21 b21 a22 622 T a2n b2n
Yn \aﬂn,l bni| Gn2 bn2z -+ ann ban)
2. =1

FLOLAC 2011 112

Formulation

0 Quantified Boolean formula (QBF) for NP-equivalence
1a,3b, VX, VY (¢c A ¢a A((Te A 9c) = (F=0))

B ¢.: cardinality constraint
B ooa: I\ (85 = (Y = X)) (by = (Y = X))

[0 Look for an assignment to a- and b-variables that satisfies
oc and makes the miter constraint

¥ =oun (F=Q) AT AQ,
unsatisfiable

OO0 Refine o iteratively in a sequence ®©, o, ..., ®®, for o+
= @V through conflict-based learning

FLOLAC 2011 113

BooM Flow

Preprocess
How to compute (sig., abs.)
all matches? i=0

= _ i=i+1
Solve " A ¥ <
w Add learned
clause to oM
A
®" characterizes
all matches

Solve miter ¥

yes

FLOLAC 2011 114

NP-Equivalence
Contlict-based Learning

C1Observation

1 How to avoid
these 6 mappings
at once?

FLOLAC 2011 115

NP-Equivalence
Contlict-based Learning

ClLearnt clause generation
(a;; V by, Va; Vb, Vay, Vb,V 31 vV 32 \ 33)

FLOLAC 2011 116

NP-Equivalence
Contlict-based Learning

0 Proposition:

If f(u) # g(v) with v = v - (u) for some v - © satisfying @V,
then the learned clause V/; |;; for literals

l; = (v # U;)) ? @ b
excludes from @ the mappings {v - 7' | v' e n'(u) = v - t(u)}

0 Proposition:
The learned clause prunes n! infeasible mappings

[0 Proposition:

The refinement process ®©, L, ..., ®% js bounded by 22"
Iiterations

FLOLAC 2011 117

NP-Equivalence
Abstraction

[0 Abstract Boolean matching

B Abstract
Xy, s X Xpeiq 0+ -9 X)) O
f(Xy5.. 0 X02,...,2) =
(X, 5 X 2)

® Match g(y,,...,Y,) against
f*(X15.3 X5 2)

® Infeasible matching
solutions of f* and g are
also infeasible for f and g

Y1 YiYk+1Yn

FLOLAC 2011 118

NP-Equivalence
Abstraction

0 Abstract Boolean matching

B Similar matrix representation of
negation/permutation

xi —x] - X X % —Z
Y1 /(111 bi1 oo a1g bk a1(k+1) bl(k+1) Z =1
Y2 a1 ba1| -+ a box A2(k+1) b2(k:+1)
Yn \anl bni| *++ ank bnk An(k+1) bn(k+1)
2. =1

CSimilar cardinality constraints, except for allowing
multiple y-variables mapped to z

FLOLAC 2011 119

NP-Equivalence
Abstraction

[OUsed for preprocessing

ClInformation learned for abstract model i1s
valid for concrete model

O Simplified matching in reduced Boolean
space

FLOLAC 2011 120

P-Equivalence
Contlict-based Learning

] Proposition:

If f(u) = g(v) with v = n(u) for some =n satisfying
®®, then the learned clause \/;; |;; for literals

l; = (viy=0 and u;=1) ? g; : &
excludes from ®® the mappings {7’ | ©'(u) = n(u)}

FLOLAC 2011 121

P-Equivalence
Abstraction

Ll Abstraction enforces search in biased truth
assignments and makes learning strong

® For f* having k support variables, a learned
clause converted back to the concrete model
consists of at most (k-1)(n—k+1) literals

FLOLAC 2011 122

Practical Evaluation

CO0BooM implemented in ABC using MIniSAT

A function iIs matched against its
synthesized, and input-permuted/negated
version

B Match individual output functions of MCNC,
ISCAS, ITC benchmark circuits

0717 functions with 10—39 support variables and
15—~2160 AIG nodes

B Time-limit 600 seconds

M Baseline preprocessing exploits symmetry,
unateness, and simulation for initial matching

FLOLAC 2011 123

Practical Evaluation

600

L)
(=]
(=]

=]
o
o

Runtime (sec.) — without learning
N w
[=} (=]
o o

Learning

A

B

500

400

N,

i

Runtime (sec.) — without abstraction
X

0 100 200

Runtime (sec.) — with learning

300

400 500 600 0 100 200

(P-equivalence; find all matches)

FLOLAC 2011

Runtime (sec.) — with abstraction

Abstraction
600 MESSS—%< <
KX
300
200 /
i | X
300 400 500 600

124

Time (sec.)

Practical Evaluation

P-equivalence

6000
-c-one sol
5000 - -—=-one sol, learn
~“~one sol, learn, abs R
4000 —<all sol I :
——all sol, learn I
-@-all sol, learn, abs

300 350 400 450 500 550
#Functions

Time (sec.)

NP-equivalence

12000

10000 -

8000 -

6000 -

4000 -

FLOLAC 2011

——-one sol

-—=-one sol, learn
-*~one sol, learn, abs
—<all sol

——all sol, learn
-eo-all sol, learn, abs

51 101 151
#Functions

125

Practical Evaluation

Runtime (sec.) — depqgbf

600

500

4
400 -

300

200

100

BooM vs. DepQBF

LKL <

X

100 200 300 400 500 600
Runtime (sec.) — BooM

FLOLAC 2011

(runtime after same preprocessing;
P-equivalence; find one match)

126

Conclusions

[0 BooM, a dedicated decision procedure for Boolean
matching
W Effective learning and abstraction

Ol Far faster than state-of-the-art QBF solver

0 Theoretical upper bound reduced from O(2"n!) to O(22")
= Empirically exponent —7 times less for P, —3 times less for NP

B General computation framework
[0Handles NPN-equivalence, incompletely specified functions
1 Allows easy integration with signature based methods

] Anticipate BooM to be a common platform for
other Boolean matching developments and to
facilitate practical applications

FLOLAC 2011 127

QSAT & Logic Synthests

Relation Determinization I

Relation vs. Function

[0 Relation R(X, Y)

® Allow one-to-many
mappings
CICan describe non-
deterministic

behavior
B More generic than
functions
X1X2 ViV
00 00
01 01
10 10
11 11

FLOLAC 2011

0 Function F(X)

® Disallow one-to-many
mappings
C0Can only describe

deterministic
behavior

B A special case of
relation

XX ViV

00 00

01 % 01 =%

104 _»10 P70

129

Relation

] Total relation

B Every input element is
mapped to at least one
output element

A
01 0
10
11 L

1l Partial relation

B Some input element is
not mapped to any
output element

W
01 0
10
11 1

FLOLAC 2011 130

Relation

A partial relation can be totalized

B Assume that the input element not mapped to
any output element is a don’t care

Partial relation Total relation
XX Y xdgz Y
00
01 0 Totalize > 01 0
10 10
11 1 11 1

X, y) =R(X, y) v Vy. = R(X y)

FLOLAC 2011 131

Motivation

] Applications of Boolean relation

® In high-level design, Boolean relations can be used to
describe (nhondeterministic) specifications

¥ In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits

C0Boolean relations are more powerful than traditional don’t-
care representations

XX ViV

00 00
T B 01 01
Yo BERE 10 10

11 11

FLOLAC 2011 132

Motivation

CIRelation determinization

® For hardware implement of a system, we need
functions rather than relations
CIPhysical realization are deterministic by nature
C0One input stimulus results in one output response

® To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

FLOLAC 2011 133

Motivation

CODExample
X N\ Vg z
v E 1) >
y2|>° D—ZZ
Jr=x,x,
ng—lx]ﬁxz
XX ViV Z12;
00 00 00
01 01 01
10 10 10

11 11 11

FLOLAC 2011

134

Relation Determinization

C1Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract
functions from It?

COFor a deterministic total relation, we can
uniquely extract the corresponding
functions

FLOLAC 2011 135

Relation Determinization

C0Approaches to relation determinization

¥ [terative method (determinize one output at a
time)
COBDD- or SOP-based representation

= Not scalable
= Better optimization

CIAIG representation
= Focus on scalability with reasonable optimization

quality
® Non-iterative method (determinize all ouputs
at once)
C0QBF solving

FLOLAC 2011 136

[terative Relation Determinization

] Single-output relation

B For a single-output total relation R(X, y), we derive a
function f for variable y using interpolation

XiX2 Y — R(X,0)A—=R(X,1) UNSAT
00
01 : P p
10 1 ®/0
11 \
pp. =R 1)
@, = R(X0) Minimal care offset of f

Minimal care onset of f

FLOLAC 2011 137

[terative Relation Determinization

0 Multi-output relation

B Two-phase computation:

1. Backward reduction
® Reduce to single-output case

RX yp s ¥,) = Yy oo, Iy RAX Yy oo 1))
2. Forward substitution
B Extract functions

FLOLAC 2011 138

[terative Relation Determinization

CODExample

R

2

Y3

Phasel: (expansion reduction)

W3 RX v, ¥y, V) = ROKX, y, v)
3)’2-R(3)(X YY) — R(Z)(X)

Phase?2:

RO(X, y,) =y, =X
RIX y,v) —=RIX[1(X),y) —=y,=L
R(X, y;, vy, v3) = R(X, f1(X), [5(X), yo) = y; = f3(X)

FLOLAC 2011 139

Non-Iterative Relation Determinization

[0Solve QBF
VX, VX,, AV, 3V, RO, X, Vi oo V)

W The Skolem functions of variables y,, ..., y, correspond to
the functions we want

FLOLAC 2011 140

Summary

[JRelation determinization correspond to
solving a QBF problem

Cllterative and non-iterative methods can
be applied to extract functions from a
Boolean relation

FLOLAC 2011 141

