
FLOLAC 2011 1

Decision Procedures and
Hardware Synthesis

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

FLOLAC 2011 2

Outline

Logic synthesis
Boolean function representation
Satisfiability and logic synthesis
 Functional dependency
 Functional bi-decomposition

Quantified satisfiability and logic synthesis
Boolean matching
Boolean relation determinization

FLOLAC 2011 3

IC Design Flow

HDL spec.

logic
synthesislogic netlist

circuit
netlist

layout /
mask

chip

RTL
synthesis

physical
design

fab.

FLOLAC 2011 4

Logic Synthesis

Logic
Synthesis

Boolean Function
Expression

Optimized
Logic Netlist

FLOLAC 2011 55

Logic Synthesis

D

x y


Given: Functional description of finite-state
machine F(Q,X,Y,,) where:
Q: Set of internal states
X: Input alphabet
Y: Output alphabet
: X x Q  Q (next state function)
: X x Q  Y (output function)

Target: Circuit C(G, W) where:
G: set of circuit components g  {gates, FFs, etc.}
W: set of wires connecting G

FLOLAC 2011 66

Boolean Function Representation

Logic synthesis translates Boolean
functions into circuits

We need representations of Boolean
functions for two reasons:
 to represent and manipulate the actual circuit

that we are implementing
 to facilitate Boolean reasoning

FLOLAC 2011 77

Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44

FLOLAC 2011 88

Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a

mapping f: Bm  Y, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111} (characteristic function f1 = x2)

 off-set (f = 0)
 E.g. {100, 101} (characteristic function f0 = x1 x2)

 don’t-care set (f = d)
 E.g. {000, 001} (characteristic function fd = x1 x2)

 f is an incompletely specified function if the don’t-care set is
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely

specified

FLOLAC 2011 99

Boolean Function
 A Boolean function f: Bn  B over variables

x1,…,xn maps each Boolean valuation (truth
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2

FLOLAC 2011 1010

Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x)

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

FLOLAC 2011 1111

Boolean Function
 There are 2n vertices in Bn

 There are 22n
distinct Boolean functions

 Each subset f1  Bn of vertices in Bn forms a
distinct Boolean function f with onset f1

x1x2x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0  1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

FLOLAC 2011 1212

Boolean Operations
Given two Boolean functions:

f : Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f from COMPLEMENT operation is defined as
h1 = f0; h0 = f1

FLOLAC 2011 1313

Cofactor and Quantification
Given a Boolean function:

f : Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi
h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi
h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

FLOLAC 2011 1414

Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF)
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and

weaknesses (no single data structure is best for all
applications)

FLOLAC 2011 1515

Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued

functions):
The truth table of a function f : Bn  B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd +

abcd + abcd + abcd +
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1

FLOLAC 2011 1616

Boolean Function Representation
Boolean Formula
 A Boolean formula is defined inductively as an expression

with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
|  formula (complement)

Example
f = (x1  x2) + (x3) + ((x4  (x1)))
typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is
clear, e.g., f = x1 x2 + x3 + x4 x1

FLOLAC 2011 1717

Boolean Function Representation
Boolean Formula in SOP
 Any function can be represented as a sum-of-

products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form
(DNF)

Example
 = ab + a’c + bc

FLOLAC 2011 1818

Boolean Function Representation
Boolean Formula in POS
 Any function can be represented as a product-of-

sums (POS), also called conjunctive normal form
(CNF)
 Dual of the SOP representation

Example
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

FLOLAC 2011 1919

Boolean Function Representation
Binary Decision Diagram
 BDD – a graph

representation of Boolean
functions
 A leaf node represents

constant 0 or 1
 A non-leaf node

represents a decision node
(multiplexer) controlled by
some variable

 Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

FLOLAC 2011 2020

Boolean Function Representation
Binary Decision Diagram
 Any Boolean function f can be written in term of

Shannon expansion
f = v fv + v fv

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by

variable v represent two sub-functions fv and fv

v
0 1

f

fv fv

FLOLAC 2011 2121

Boolean Function Representation
Binary Decision Diagram
 Reduced and ordered BDD (ROBDD) is a canonical

Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce

FLOLAC 2011 2222

Boolean Function Representation
Binary Decision Diagram
 For a Boolean function,

 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node

FLOLAC 2011 2323

Boolean Function Representation
Boolean Network
 A Boolean network is a directed graph C(G,N)

where G are the gates and N  GG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

FLOLAC 2011 2424

Boolean Function Representation
Boolean Network
 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:
SUPPORT(g) = CONE(g)  I

FLOLAC 2011 2525

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}
Every node may have its own function

1

5
3

4
7

8

9
2

FLOLAC 2011 2626

Boolean Function Representation
And-Inverter Graph
 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

FLOLAC 2011 2727

Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning
 Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

FLOLAC 2011 2828

Circuit to CNF Conversion
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit

FLOLAC 2011 2929

Circuit to CNF Conversion
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?

FLOLAC 2011 3030

Circuit to CNF Conversion

Circuit to CNF conversion
 can be done in linear size (with respect to the

circuit size) if intermediate variables can be
introduced

may grow exponentially in size if no
intermediate variables are allowed

FLOLAC 2011 31

Propositional Satisfiability

FLOLAC 2011 32

Normal Forms
 A literal is a variable or its negation
 A clause (cube) is a disjunction (conjunction) of

literals
 A conjunctive normal form (CNF) is a

conjunction of clauses; a disjunctive normal
form (DNF) is a disjunction of cubes

 E.g.,
CNF: (a+b+c)(a+c)(b+d)(a)
(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a

FLOLAC 2011 33

Satisfiability
 The satisfiability (SAT) problem asks whether a

given CNF formula can be true under some
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and

SMT (Satisfiability Modulo Theories) solver development

FLOLAC 2011 34

SAT Competition

http://www.satcompetition.org/PoS11/

FLOLAC 2011 35

SAT Solving
 Ingredients of modern SAT solvers:

 DPLL-style search
[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

FLOLAC 2011 36

Pre-Modern SAT Procedure
Algorithm DPLL(Φ)
{

while there is a unit clause {l} in Φ
Φ = BCP(Φ, l);

while there is a pure literal l in Φ
Φ = assign(Φ, l);

if all clauses of Φ satisfied return true;
if Φ has a conflicting clause return false;
l := choose_literal(Φ);
return DPLL(assign(Φ,l))  DPLL(assign(Φ,l));

}

FLOLAC 2011 37

DPLL Procedure

Chorological backtrack

E.g.
a

b

c

0

0

0




1

1

T

~a ~b b ~c c d
{a,e}
{a,b,c}
{c,d}
{a,b,d}
{d,e}
{c,d,e}

~d

~e



~c

~c d



~a ~b

FLOLAC 2011 38

Modern SAT Procedure
Algorithm CDCL(Φ)
{

while(1)
while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);
while there is a pure literal l in Φ

Φ = assign(Φ, l);
if Φ contains no conflicting clause

if all clauses of Φ are satisfied return true;
l := choose_literal(Φ);
assign(Φ,l);

else
if conflict at top decision level return false;
analyze_conflict();
undo assignments;
Φ := add_conflict_clause(Φ);

}

FLOLAC 2011 39

Conflict Analysis & Clause Learning
 There can be many learnt

clauses from a conflict
 Clause learning admits non-

chorological backtrack

 E.g.,
{x10587, x10588,
x10592}
…
{x10374, x10582,
x10578, x10373, x10629}
…
{x10646, x9444, x10373,
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

FLOLAC 2011 40

Clause Learning as Resolution
 Resolution of two clauses C1x and C2x:

C1x C2x
C1C2

where x is the pivot variable and C1C2 is the resolvant,
i.e., C1C2 = x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of
resolution steps
 Exercise:

Find a resolution sequence leading to the learnt clause
{x10374, x10582, x10578, x10373, x10629}
in the previous slides

FLOLAC 2011 41

Resolution
 Resolution is complete for SAT solving

 A CNF formula is unsatisfiable if and only if there exists
a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

FLOLAC 2011 42

SAT Certification

True CNF
Satisfying assignment (model)

Verifiable in linear time

False CNF
Resolution refutation

Potentially of exponential size

FLOLAC 2011 43

Craig Interpolation
 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an
interpolant I of A such that

1. AI
2. IB is UNSAT
3. I refers only to the common
variables of A and B

BA

I

I is an abstraction of A

FLOLAC 2011 44

Interpolant and Resolution Proof
 SAT solver may produce the resolution proof of an UNSAT

CNF 
 For = AB specified, the corresponding interpolant can

be obtained in time linear in the resolution proof
A B

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]

FLOLAC 2011 45

Incremental SAT Solving

To solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?
What if adding a clause to ?
What if deleting a clause from ?

FLOLAC 2011 46

Incremental SAT Solving
MiniSat API

 void addClause(Vec<Lit> clause)
 bool solve(Vec<Lit> assumps)
 bool readModel(Var x) − for SAT results
 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Courtesy of Niklas Een

FLOLAC 2011 47

SAT & Logic Synthesis
Functional Dependency

FLOLAC 2011 48

Functional Dependency
f(x) functionally depends on g1(x),

g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)),
denoted h(G(x))
Under what condition can function f be

expressed as some function h over a set
G={g1,…,gm} of functions ?

 h exists  a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

FLOLAC 2011 49

Motivation
Applications of functional dependency
Resynthesis/rewiring
Redundant register removal
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network

FLOLAC 2011 50

BDD-Based Computation
BDD-based computation of h

hon = {y  Bm : y = G(x) and f(x) = 1, x  Bn}
hoff = {y  Bm : y = G(x) and f(x) = 0, x  Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = x.(yG)f

hoff = x.(yG)f

FLOLAC 2011 51

BDD-Based Computation

Pros
 Exact computation of hon and hoff

Better support for don’t care minimization

Cons
2 image computations for every choice of G
 Inefficient when |G| is large or when there are

many choices of G

FLOLAC 2011 52

SAT-Based Computation
h exists 
a,b such that f(a)f(b) and G(a)=G(b),
i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?

FLOLAC 2011 53

SAT-Based Computation
 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit
Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

Constraint
Part

*y1

Assertion
Constraints

Equality
Constraints

FLOLAC 2011 54

SAT-Based Computation
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, y0

*, (yiyi
*) for i =1,…,m

 I is an overapproximation of Img(fon) and is disjoint from
Img(foff)

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

*y 1

A B

Img(fon) Img(foff)

FLOLAC 2011 55

Incremental SAT Solving
 Controlled equality constraints

(yiyi
*)  (yi  yi

*  i)(yi  yi
*  i)

with auxiliary variables i

 Fast switch between target and base functions by unit
assumptions over control variables

 Fast enumeration of different base functions
 Share learned clauses

i = true  ith equality constraint is disabled

FLOLAC 2011 56

SAT vs. BDD
 SAT
 Pros

 Detect multiple choices of
G automatically

 Scalable to large |G|
 Fast enumeration of

different target functions
f

 Fast enumeration of
different base functions G

 Cons
 Single feasible

implementation of h

 BDD
 Cons

 Detect one choice of G at
a time

 Limited to small |G|
 Slow enumeration of

different target functions
f

 Slow enumeration of
different base functions G

 Pros
 All possible

implementations of h

FLOLAC 2011 57

Practical Evaluation

----3790.6----3673.4--22173013--673529162b22

----3136.3----2924.6--14341950--449020027b21

----3036----2825.7--11671604--449019682b20

----23411040.6----2178184.8--3377164--06642224624b19

----1002842.6----1001414--57239254--53320111241b18

----42161.7----28119.1--23503967--0141530777b17

----225.8----225.8--7931134--04498367b15

----225.2----223.3--2245--22459847b14

422.5170.133812.8170.15336617024121946b12

16411173099.4----21166.5--25694350--24145219407s38584

----32123.1----30270.3--2435016--95163622397s38417

----2778.1164111727176.7--11702026--0172816065s35932

xx227.99482.62223.3x4029079185349785s15850.1

xx2215.37831.42215.6x80219301361906388022s13207.1

149194.6191.7xx194.1201301459x462115597s9234.1

517180.6201.6181.217328339825521792794s5378

MemTimeMemTimeMemTimeMemTime#Dep-B#Dep-S#FF.#Dep-B#Dep-S#FF.#NodesCircuit

BDD (retimed)SAT (retimed)BDD (original)SAT (original)RetimedOriginal

SAT vs. BDD

FLOLAC 2011 58

Practical Evaluation
circuit size vs. runtime

R2 = 0.909

R2 = 0.9664

0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000
Number of nodes (log)

T
im

e
(lo

g)

Original
Retimed

FLOLAC 2011 59

Practical Evaluation

0.001

0.01

0.1

1

10

100

1 50 99
Iteration

Ti
m

e
(lo

g)

b19 (200k nodes) b18 (100k nodes)
b17 (30k nodes) b15 (10k nodes)

Incremental SAT

FLOLAC 2011 60

Practical Evaluation
#total input vs. #redundant inputs

16858
174
68
14
4
2
9
1
6
5
2
2

0
1
2
3
4
5
6
7
8
9

10
11
12

0 50 100 150 200
Number of input variables

N
um

be
r

of
 sp

ur
io

us
 v

ar
ia

bl
es

FLOLAC 2011 61

Practical Evaluation

R2 = 0.861 R2 = 0.8506

1

10

100

1000

10000

1 10 100 1000
Number of variables (log)

In
te

rp
ol

an
t s

iz
e

(lo
g)

Original
Retimed

interpolant size vs. support size

FLOLAC 2011 62

Summary

Functional dependency is computable with
pure SAT solving (with the help of Craig
interpolation)

Compared to BDD-based computation, it is
much scalable to large designs

FLOLAC 2011 63

SAT & Logic Synthesis
Functional Bi-Decomposition

FLOLAC 2011 64

Bi-Decomposition

f

fA fB

h

XA XB XC

XBXC

di‐decompose

XA

FLOLAC 2011 65

Bi-Decomposition
 A variable partition on

X = {XA|XB|XC} has the
property:
 XA , XB , XC are pair-wise

disjoint, and
 XA∪XB∪XC = X

 If XC = , the
decomposition is called
disjoint; otherwise,
non-disjoint

fA fB

h

XBXCXA

FLOLAC 2011 66

Bi-Decomposition
We consider OR, AND, XOR bi-decompositions

 These three cases are sufficient to generate any other
type of bi-decomposition

1001111

0110101

0010110

1000000
a⊕(¬b)a(¬b)a⊕baba+bba

FLOLAC 2011 67

Motivation

Bi-decomposition breaks a large function
into a network of smaller functions
(necessary for FPGA implementation)

Bi-decomposition can be applied to
restructure logic network for optimization
 It reduces circuit and communication

complexity and thus simplify physical design

FLOLAC 2011 68

BDD-Based Computation

Pros
 Exact characterization of don’t cares

Cons
Memory explosion
Decomposability must be checked under a

fixed variable partition

FLOLAC 2011 69

OR Bi-Decomposition
 Disjoint decomposition:

XC = 

 Example
f(a,b,c,d) = (¬a)b+cd

X = {a,b,c,d}={XA|XB}
XA= {a,b}, XB= {c,d}

f(X) = (¬a)b+cd
= fA(a,b)+fB(c,d)

OR

fBfA

XA XB

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 0 0

fA(XA) 0 1 0 0

fB(XB)

0

0

1

0

FLOLAC 2011 70

OR Bi-Decomposition
 f(X) can be written as fA(XA)

fB(XB) if and only if, for every
1-entry in the decomposition
table, 0-entries cannot appear
simultaneously in the
corresponding row and column

 Example
f(1101) = 0 = fA(11) +fB(01)
f(0010) = 0 = fA(00) +fB(10)
f(1110) = 1 = fA(11) +fB(10)??

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 0 0

fB(XB)

0

0

1

0

fA(XA) 0 1 0 0

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 1 0

fB(XB)

?

fA(XA) ?

FLOLAC 2011 71

SAT-Based OR Decomposition
fA, fB such that f(X) = fA(XA)  fB(XB)

⇔ For every 1‐entry, no 0‐entries can appear
simultaneously in the corresponding row and column
⇔ f(XA,XB)  ¬f(XA’,XB)  ¬f(XA,XB’) is unsatisfiable

XB\XA 00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 1 1 1 1

10 0 1 1 0

fA(XA) ? ? ? ?

fB(XB)

?

?

?

?

XA

XB

XA’

XB’

FLOLAC 2011 72

SAT-Based OR Decomposition
fA, fB such that f(X) = fA(XA,XC)  fB(XB,XC)

⇔ Under every valuation of XC, for every 1‐entry, no 0‐
entries can appear simultaneously in the corresponding
row and column
⇔ f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is unsatisfiable

XC=00 XA

XB XC=01 XA

XB XC=10 XA

XB XC=11 XA

XB

FLOLAC 2011 73

SAT-Based OR Decomposition

fA, fB such that f(X) = fA(XA,XC)  fB(XB,XC)
⇔ f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is UNSAT

How to compute fA and fB? How to determine the
variable partition?

FLOLAC 2011 74

SAT-Based OR Decomposition
fA Computation

f(XA,XB,XC)  ¬f(XA’,XB,XC)  ¬f(XA,XB’,XC) is UNSAT

f ff

XA XB

XA’
XB’

XC

1 00

Onset
of fA

Offset
of fA

φA φB

FLOLAC 2011 75

SAT-Based OR Decomposition
fB Computation

f(XA,XB,XC)  ¬fA(XA,XC)  ¬f(XA’,XB,XC) is UNSAT

fA ff

XA XB XA’XC

1 00Onset
of fB

Offset
of fB

φA
φB

FLOLAC 2011 76

SAT-Based OR Decomposition
Variable Partition
 A =
 B =

f ff

XA XB

XA’
XB’

XC

1 00

f’ f”f
X”

1 00

X X’

(αx,βx)
=(0,1)

(αx,βx)
=(1,0)

(αx,βx)
=(0,0)

(αx, βx) x is belongs to

(0,0) XC

(0,1) XB

(1,0) XA

(1,1) either XA or XB

FLOLAC 2011 77

SAT-Based OR Decomposition
Variable Partition
Make unit assumption on the control variables with

MiniSat
 Assume all the control variables are 0
 SAT solver will return a conflict clause consisting of only the control

variables
 The conflict clause corresponds to a variable partition

 E.g.
Conflict clause (αx1

+βx1
+αx2

+βx3
) indicates the unit

assumption αx1
=0,βx1

=0,αx2
=0,andβx3

=0 causes
unsatisfiability. So x1∈XC, x2∈XB, and x3∈XA

FLOLAC 2011 78

SAT-Based OR Decomposition
Variable Partition

Avoid trivial variable partition
Bi-decomposition trivially holds if XC, XA∪XC,

or XB∪XC equals X
SAT solver may return a conflict clause that

consists of all the control variables ⇒ XC = X
 To avoid trivial partition, in unit assumption we

specify two distinct variables xa and xb in XA
and XB, respectively, and others in XC initially
To check if a function is bi-decomposable, have to try

at most C(n,2) iterations

FLOLAC 2011 79

SAT-Based AND Decomposition
∃fA, fB such that f = fA  fB

⇔ ∃fA, fB such that f = fAfB

 Example
f (a,b,c,d) = (a+¬b+c)(b+c+d)
f (a,b,c,d) = (a)b(c)  (b)c(d)

= fA(a,b,c)  fB (b,c,d)
fA(a,b,c)= (a+b+c), fB(b,c,d) = (b+c+d)
f(a,b,c,d) = fA(a,b,c)  fB(b,c,d)

FLOLAC 2011 80

SAT-Based XOR Decomposition
 (1)=(5)⊕(7), (2)=(5)⊕(8),(3)=(6)⊕(7), (4)=(6)⊕(8)

⇒(1)⊕(4)=(2)⊕(3)
⇒ (1)⊕(2)=(3)⊕(4)
⇒ [(1)≡(2)]∧[(3)≠(4)] UNSAT

XA’ XA

XB\XA 00 01 11 10

00

XB’ 01 (1) (3)

11

XB 10 (2) (4)

fA fB

XOR

XA XBXC

fB(XB)

(7)

(8)

fA(XA) (5) (6)

FLOLAC 2011 81

SAT-Based XOR Decomposition
 [(1)≡(2)]∧[(3)≠(4)] UNSAT
 ∃fA, fB such that f(X) = fA(XA,XC)⊕fB(XB,XC) ⇔

(f(XA,XB,XC)≡f(XA,XB’,XC))∧(f(XA’,XB,XC)≠f(XA’,XB’,XC))
UNSAT

For every pair of columns (rows), their patterns are either
complementary or identical to each other

XA,Xc XA’,Xc

XB\XA 00 01 11 10

00

XB,Xc 01 (1) (3)

11

XB’,Xc 10 (2) (4)

≡ ≠

XB\XA 00

00 1

01 0

11 0

10 1

11

1

0

0

1

01

0

1

1

0

10

1

0

0

1

FLOLAC 2011 82

SAT-Based XOR Decomposition
fA, fB Computation

fA = f(XA,0,XC)
fB = f(0,XB,XC)⊕f(0,0,XC)

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 1

01 0 1 0 0 0

11 0 1 0 0 0

10 1 0 1 1 1

fA(XA,Xc) 1 0 1 1

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 1

01 0 1 0 0 0

11 0 1 0 0 0

10 1 0 1 1 1

fA(XA,Xc) 1 0 1 1

Xc

XB\XA 00 01 11 10 fB(XB,Xc)

00 1 0 1 1 0

01 0 1 0 0 1

11 0 1 0 0 1

10 1 0 1 1 0

fA(XA,Xc) 1 0 1 1

FLOLAC 2011 83

SAT-Based XOR Decomposition
Variable Partition
 Similar to OR decomposition
 (f(X)≡f(X’))(f(X”)≠f(X”’))

(((xi≡xi”)(xi’≡xi”’))αxi
)

(((xi≡xi’)(xi”≡xi”’))βxi
)

(αxi
, βxi

) Xi belongs to

(0,0) XC

(0,1) XB

(1,0) XA

(1,1) either XA or XB

FLOLAC 2011 84

Practical Evaluation

OR2-decomposition XOR-decomposition

circuit #in #max #out #dev #slv Time
(sec)

Mem
(Mb)

#dev #slv Time
(sec)

Mem
(Mb)

i2 201 201 1 1 1 1.07 18.6 1 34 2.16 18.59

s6669c 322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87

Dalu 75 75 16 1 26848 352.87 24.14 16 210 26.59 19.68

C880 60 45 26 16 222 8.36 20.72 11 4192 83.08 18.72

FLOLAC 2011 85

Practical Evaluation

Variable partition

OR decomposition XOR decomposition

FLOLAC 2011 86

Summary

OR, AND, XOR bi-decomposition can be
formulated in terms of SAT solving

Variable partitioning can be automated
along the formulation

SAT-based bi-decomposition is much more
scalable than BDD-based methods

FLOLAC 2011 87

Quantified Satisfiability

FLOLAC 2011 88

Quantified Boolean Formula
 A quantified Boolean formula (QBF) is often

written in prenex form (with quantifiers placed
on the left) as

Q1 x1, …, Qn xn. 

for Qi  {, } and  a quantifier-free formula
 If  is further in CNF, the corresponding QBF is in the

so-called prenex CNF (PCNF), the most popular QBF
representation

 Any QBF can be converted to PCNF

prefix matrix

FLOLAC 2011 89

Quantified Boolean Formula

Quantification order matters in a QBF
A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. )

is of level k if there are k quantifier
alternations (i.e., changing from  to  or
from  to ) from Q1 to Qi.
 Example
a b c d e. 
level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

FLOLAC 2011 90

Quantified Boolean Formula
Many decision problems can be

compactly encoded in QBFs

 In theory, QBF solving (QSAT)
is PSPACE complete
 The more the quantifier

alternations, the higher the
complexity in the Polynomial
Hierarchy

 In practice, solvable QBFs are
typically of size ~1,000
variables

P

PSPACE

coNP NP

2 2

FLOLAC 2011 91

QBF Solver
 QBF solver choices

 Data structures for formula representation
 Prenex vs. non-prenex
Normal form vs. non-normal form

 CNF, NNF, BDD, AIG, etc.
 Solving mechanisms

 Search, Q-resolution, Skolemization, quantifier elimination, etc.
 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
 Example

a b c d e. (a+c)(a+c)(b+c+e)(b)(c+d+e)(c+e)(d+e)
from 00101, we learn cube abcd (can be further simplified to a)

FLOLAC 2011 92

QBF Solving
 Example

))()()()()()((ybabxbxaccybxcybxacyba 

 La,  Ra,
))()()()()((ybbxcybxcybxcyb ))()()((bxbxccybx 

 Lx,  Rx,
))()()()((ybcybcybcyb ))()()((ybbcycyb 

 Ub,  Ub,
))()((cycycy   Pc,

 Ly,  Ry,
))((cc)(c

}{true}{ false

 Py,
))()()((bxbxccbx 

 Uc,
))()((bxbxbx 

 Lx,  Rx,
)(b))((bb

}{true

}{true }{ false









cybxa 

)(ycbxa

)(cbxa

)(cbxa

FLOLAC 2011 93

Q-Resolution
 Q-resolution on PCNF is similar to resolution on CNF, except that

the pivots are restricted to existentially quantified variables and
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally ()
quantified variables whose quantification levels are greater than
any of the existentially () quantified variables in C1C2
 E.g.,

prefix: a b c d e
-RED(a+b+c+d) = (a+b)

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause

FLOLAC 2011 94

Q-Resolution
 Example (cont’d)

 La,  Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc,  Rc,
}{ false

)(xba 

)(bx 

}{ false
 Lb,  Rb,

}{ false

)(cy )(a

)(xac 

)(a

)(a

)(a

)(bx )(bxac )(cyxba )(cyba 

)(a

)(a

)(

cybxa ))()()()()()((ybabxbxaccybxcybxacyba 

FLOLAC 2011 95

Skolemization
 Skolemization and Skolem normal form

 Existentially quantified variables are
replaced with function symbols

 QBF prefix contains only two
quantification levels
  function symbols,  variables

 Example

a b c d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

Fb(a) Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 11 1 0 00 0
Skolem functions

FLOLAC 2011 96

QBF Certification
 QBF certification

 Ensure correctness and, more importantly, provide useful
information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications
 False QBF: clause-resolution proof / Herbrand-function (HF)

countermodel
 HF countermodel is more useful in practical applications

 Solvers and certificates
 To date, only Skolemization-based solvers (e.g., sKizzo,

squolem, Ebddres) can provide SFs
 Search-based solvers (e.g., QuBE) are the most popular and

can be instrumented to provide resolution proofs

FLOLAC 2011 97

QBF Certification

Solvers and certificates

Clause resolutionSkolem functionSkolemizationsquolem

Clause resolutionSkolem functionSkolemizationEbddres

-Skolem functionSkolemizationsKizzo

Clause resolutionCube resolutionsearchyQuaffle

Clause resolutionCube resolutionsearchQuBE-cert
False QBFTrue QBF

CertificateAlgorithmSolver

FLOLAC 2011 98

QBF Certification
Incomplete picture of QBF certification

Recent progress
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]
Syntactic to semantic certificate conversion

Linear time [Balabanov, J, 2011 (ResQu)]

?Clause-resolution proofFalse QBF
Skolem-function modelCube-resolution proofTrue QBF

Semantic CertificateSyntactic Certificate

FLOLAC 2011 99

QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula
negation

FLOLAC 2011 100

ResQu
 A Skolem-function model (Herbrand-function

countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.
 := clause | cube | clause   | cube  
 E.g.,

(a’+b)  ac  (b’+c’)  bc
= ((a’+b)  (ac  ((b’+c’)  bc)))

FLOLAC 2011 101

ResQu

FLOLAC 2011 102

ResQu
 Example

 axbyc

7654321)()()()()()()(ybabxcbxacybxcybxacyba 

8)(ybxa 

 8)(bxa
 10)(bxa

9)(a

10)(ybxa 

9)(xa
11)(xa

11)(a

)(empty

 7)(ba
)2(

)3(

)1(

)4(

)5(

FLOLAC 2011 103

QBF Certification

Applications of Skolem/Herbrand functions
 Program synthesis
Winning strategy synthesis in two player

games
 Plan derivation in AI
 Logic synthesis
 ...

FLOLAC 2011 104

QSAT & Logic Synthesis
Boolean Matching

FLOLAC 2011 105

Introduction
 Combinational

equivalence checking
(CEC)
 Known input

correspondence
 coNP-complete
 Well solved in practical

applications

… …

x1 x2 xn

f g

y1 y2 yn

FLOLAC 2011 106

Introduction
 Boolean matching

 P-equivalence
 Unknown input

permutation
O(n!) CEC iterations

 NP-equivalence
 Unknown input negation

and permutation
O(2nn!) CEC iterations

 NPN-equivalence
 Unknown input negation,

input permutation, and
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N



N

FLOLAC 2011 107

Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=

FLOLAC 2011 108

Introduction
 Motivations

 Theoretically
 Complexity in between

coNP (for all …) and
2 (there exists … for all …)
in the Polynomial Hierarchy (PH)
 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

2 2

FLOLAC 2011 109

Introduction
 Prior methods

+one/allmostly PCSyesSAT based
methods

+onemostly PCSyesCanonical-form
based methods

– ~ ++N/AP/NPmostly CSnoSignature
based methods

– –onemostly PCSyesSpectral
methods

ScalabilitySolution
type

Equivalence
type

Function
type

Complete
?

++one/allNPNCS / ISyesBooM
(QBF/SAT-like)

CS: completely specified
IS: incompletely specified

FLOLAC 2011 110

BooM: A Fast Boolean Matcher

Features of BooM
General computation framework
 Effective search space reduction techniques

Dynamic learning and abstraction
 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)

FLOLAC 2011 111

Formulation
 Reduce NPN-equiv to 2 NP-equiv checks

 Matching f and g; matching f and g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

。,x ((fc(x)  gc(。(x)))  (f(x)  g(。(x))))

FLOLAC 2011 112

Formulation

0-1 matrix representation of 。

 =1

bij  (xj  yi)aij  (xj  yi)

 =1

FLOLAC 2011 113

Formulation
 Quantified Boolean formula (QBF) for NP-equivalence

 C: cardinality constraint
 A: /\i,j (aij  (yi  xj)) (bij  (yi  xj))

 Look for an assignment to a- and b-variables that satisfies
C and makes the miter constraint

 = A  (f  g)  fc  gc
unsatisfiable

 Refine C iteratively in a sequence 0, 1, …, k, for i+1

 i through conflict-based learning

a,b,x,y (C  A ((fc  gc)  (f  g))

FLOLAC 2011 114

BooM Flow
f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping i

SAT?

Solve miter 

SAT?

No match

Match found

Add learned
clause to i



i characterizes
all matches

How to compute
all matches?

Solve i  

i=0

yes

no

i=i+1

no

yes

FLOLAC 2011 115

NP-Equivalence
Conflict-based Learning

Observation

0 1 1

。

f g

1 0 1

1 0

1 0 1

From SAT 1

≠ How to avoid
these 6 mappings

at once?

FLOLAC 2011 116

a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation
(a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33)

NP-Equivalence
Conflict-based Learning

f g

1 0

。
1 0 1 0 1 1

1 0 1

FLOLAC 2011 117

NP-Equivalence
Conflict-based Learning
 Proposition:

If f(u)  g(v) with v = 。(u) for some 。 satisfying i,
then the learned clause \/ij lij for literals
lij = (vi  uj) ? aij : bij
excludes from i the mappings {。 | 。(u) = 。(u)}

 Proposition:
The learned clause prunes n! infeasible mappings

 Proposition:
The refinement process 0, 1, …, k is bounded by 22n

iterations

FLOLAC 2011 118

NP-Equivalence
Abstraction
 Abstract Boolean matching

 Abstract
f(x1,…,xk,xk+1,…,xn) to
f(x1,…,xk,z,…,z) =
f*(x1,…,xk,z)

 Match g(y1,…,yn) against
f*(x1,…,xk,z)

 Infeasible matching
solutions of f* and g are
also infeasible for f and g y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N

FLOLAC 2011 119

NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of

negation/permutation

Similar cardinality constraints, except for allowing
multiple y-variables mapped to z

 =1

 =1

FLOLAC 2011 120

NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is
valid for concrete model

Simplified matching in reduced Boolean
space

FLOLAC 2011 121

P-Equivalence
Conflict-based Learning

 Proposition:
If f(u)  g(v) with v = (u) for some  satisfying
i, then the learned clause \/ij lij for literals
lij = (vi=0 and uj=1) ? aij : 
excludes from i the mappings { | (u) = (u)}

FLOLAC 2011 122

P-Equivalence
Abstraction

Abstraction enforces search in biased truth
assignments and makes learning strong
 For f* having k support variables, a learned

clause converted back to the concrete model
consists of at most (k–1)(n–k+1) literals

FLOLAC 2011 123

Practical Evaluation
BooM implemented in ABC using MiniSAT
A function is matched against its

synthesized, and input-permuted/negated
version
Match individual output functions of MCNC,

ISCAS, ITC benchmark circuits
717 functions with 10~39 support variables and

15~2160 AIG nodes
 Time-limit 600 seconds
Baseline preprocessing exploits symmetry,

unateness, and simulation for initial matching

FLOLAC 2011 124

Practical Evaluation

(P-equivalence; find all matches)

Learning Abstraction

FLOLAC 2011 125

Practical Evaluation
P-equivalence NP-equivalence

FLOLAC 2011 126

Practical Evaluation

(runtime after same preprocessing;
P-equivalence; find one match)

BooM vs. DepQBF

FLOLAC 2011 127

Conclusions
 BooM, a dedicated decision procedure for Boolean

matching
 Effective learning and abstraction

Far faster than state-of-the-art QBF solver
Theoretical upper bound reduced from O(2nn!) to O(22n)

 Empirically exponent ~7 times less for P, ~3 times less for NP
 General computation framework

Handles NPN-equivalence, incompletely specified functions
Allows easy integration with signature based methods

 Anticipate BooM to be a common platform for
other Boolean matching developments and to
facilitate practical applications

FLOLAC 2011 128

QSAT & Logic Synthesis
Relation Determinization

FLOLAC 2011 129

Relation vs. Function
 Relation R(X, Y)

 Allow one-to-many
mappings
Can describe non-

deterministic
behavior

 More generic than
functions

 Function F(X)
 Disallow one-to-many

mappings
Can only describe

deterministic
behavior

 A special case of
relation

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00

11
10
01
00

x1x2 y1y2

f1 x1 x2
f2  x1 x2

FLOLAC 2011 130

Relation
 Total relation

 Every input element is
mapped to at least one
output element

 Partial relation
 Some input element is

not mapped to any
output element

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y

FLOLAC 2011 131

Relation

A partial relation can be totalized
Assume that the input element not mapped to

any output element is a don’t care

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y)  y.  R(X, y)

FLOLAC 2011 132

Motivation
 Applications of Boolean relation

 In high-level design, Boolean relations can be used to
describe (nondeterministic) specifications

 In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits
Boolean relations are more powerful than traditional don’t-

care representations

11
10
01
00

11
10
01
00

x1x2 y1y2

System
Spec.

x1

x2

y1

y2

FLOLAC 2011 133

Motivation

Relation determinization
 For hardware implement of a system, we need

functions rather than relations
Physical realization are deterministic by nature
One input stimulus results in one output response

 To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

FLOLAC 2011 134

Motivation

Example

f1 x1 x2
f2  x1 x2

f1 x2
f2  x1

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00
z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2

FLOLAC 2011 135

Relation Determinization

Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract
functions from it?

For a deterministic total relation, we can
uniquely extract the corresponding
functions

FLOLAC 2011 136

Relation Determinization

Approaches to relation determinization
 Iterative method (determinize one output at a

time)
BDD- or SOP-based representation

 Not scalable
 Better optimization

AIG representation
 Focus on scalability with reasonable optimization

quality

Non-iterative method (determinize all ouputs
at once)
QBF solving

FLOLAC 2011 137

Iterative Relation Determinization
 Single-output relation

 For a single-output total relation R(X, y), we derive a
function f for variable y using interpolation

11
10
01
00

1

0

x1x2 y
I

φBφA

φA  R(X,0)
Minimal care onset of f

φB  R(X,1)
Minimal care offset of f

00

11

 R(X,0) R(X,1) UNSAT

10

FLOLAC 2011 138

Iterative Relation Determinization

 Multi-output relation
 Two-phase computation:

1. Backward reduction
 Reduce to single-output case

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)
2. Forward substitution

 Extract functions

FLOLAC 2011 139

Iterative Relation Determinization

Example

Phase1: (expansion reduction)
y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)
y2.R(3)(X, y1, y2) → R(2)(X, y1)

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)
R(3)(X, y1, y2) → R(3)(X, f1(X), y2) → y2 = f2 (X)
R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)

f1

X
f2

X

FLOLAC 2011 140

Non-Iterative Relation Determinization

Solve QBF
x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to
the functions we want

FLOLAC 2011 141

Summary

Relation determinization correspond to
solving a QBF problem

Iterative and non-iterative methods can
be applied to extract functions from a
Boolean relation

