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Logic Synthesis

Given: Functional description of finite-state
X —> Al y machine F(Q,X,Y,d8,\) where:

o Q: Set of internal states

X: Input alphabet

Y: Output alphabet

d0: XX Q —> Q (next state function)
D A XX Q—=Y (output function)

.k

Target: Circuit C(G, W) where:
> ° G: setof circuit components g € {gates, FFs, etc.}
Ii W: set of wires connecting G
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Boolean Function Representation

COLogic synthesis translates Boolean
functions INnto circuits

[0We need representations of Boolean
functions for two reasons:

M to represent and manipulate the actual circuit
that we are implementing

¥ to facilitate Boolean reasoning
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Boolean Space

={0,1}
> = {0,13x{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

OB
OB

BO

Bl

TP

B3

B4
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Boolean Function

[0 A Boolean function f over input variables: X;, X,, ..., X.,, IS &
mapping /: B™ - Y, where B = {0,1} and Y = {0,1,d}
® E.g.

B The output value of f(X,, X,, X3), say, partitions B™ into three sets:
O on-set (f=1)
= E.g. {010, 011, 110, 111} (characteristic function f* = x, )
O off-set (= 0)
= E.g. {100, 101} (characteristic function © = x; =X, )
0 don’t-care set (= d)
= E.g. {000, 001} (characteristic function 4 = —x, —X, )

O fis an If the don’t-care set is
nonempty. Otherwise, fis a

B Unless otherwise said, a Boolean function is meant to be completely
specified

FLOLAC 2011 8



Boolean Function

[0 A Boolean function f: B" — B over variables
X4q,...,X, Mmaps each Boolean valuation (truth
assignment) in B"to O or 1

Example
f(x,,%,) with f(0,0) = 0O, f(0,1) = 1, f(1,0) = 1,
f(1,1) =0

X
H
~|o
ol || x
N
><
N
—
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Boolean Function

[0 Onset of f, denoted as 1, is f1={v € B" | f(v)=1}

W If f1 = B", fis a tautology
[0 Offset of f, denoted as 0, is = {v € B" | f(v)=0}%}

W If fO = B", fis unsatisfiable. Otherwise, f is satisfiable.
u

[0 Boolean functions f and g are equivalent if Yve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

0 A literal is a Boolean variable x or its negation X' (or X, —X)
In a Boolean formula

f(X1, X, X3) = X f(Xl’ Xy, X3) - Y1

X3 Xq

/%, /%,

FLOLAC 2011 10



Boolean Function

1 There are 2" vertices In B"
n . . .
1 There are 22 distinct Boolean functions

B Each subset f1 = B" of vertices in B" forms a
distinct Boolean function f with onset f1

X X Xg
000 1
001
010 1
. 100
1 =1
A’z 101
X 110 1
111
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Boolean Operations

Given two Boolean functions:
f: B> B
g:B"—>B

0 h=1fAgfrom AND operation is defined as
ht=flng!; h®=B"\ ht

O h=fvgfrom OR operation is defined as
ht=flug!; h®=B"\ ht

O h =—f from COMPLEMENT operation is defined as
hi = f0: ho = f1

FLOLAC 2011
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Cofactor and Quantification

Given a Boolean function:

O

f : B" —» B, with the input variable (X;,X5,...,X,...,X;)

Positive cofactor
h = f, is defined as h = f(X{,X,,...,1,...,X,)

Negative cofactor
h =f_, is defined as h = f(xX,X,,...,0,...,X,))

Existential quantification

h = dx;. f is defined as h = f(X{,Xs,...,0,...,X;) Vv f(X{,X5,...

Universal quantification

h = Vx,. f is defined as h = f(X{,X5,...,0,...,X;,) A T(X{,X5,...

Boolean difference

h = of/0x; is defined as h = f(X;,X5,...,0,...,X,) ® f(X{,X5,...

FLOLAC 2011
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Boolean Function Representation

[0 Some common representations:
B Truth table
B Boolean formula
0 SOP (sum-of-products, or called disjunctive normal form, DNF)
0 POS (product-of-sums, or called conjunctive normal form, CNF)
® BDD (binary decision diagram)
B Boolean network (consists of nodes and wires)

[0 Generic Boolean network

= Network of nodes with generic functional representations or even
subcircuits

] Specialized Boolean network
= Network of nodes with SOPs (PLAS)
= And-Inv Graph (AIG)

0 Why different representations?

® Different representations have their own strengths and
weaknesses (no single data structure is best for all
applications)

FLOLAC 2011 14



Boolean Function Representation

Truth Table

0 Truth table (function table for multi-valued
functions):

The truth table of a function f : B" > B is a
tabulation of its value at each of the 2"
vertices of B".

In other words the truth table lists all mintems

Example: f = a’b’'c’'d + a’'b’cd + a’bc’'d +
ab’'c’'d + ab’cd + abc'd +
abcd’ + abcd

The truth table representation is

If two functions are the equal, then their
canonical representations are isomorphic.

FLOLAC 2011
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abcd

0000

0001
0010
0011
0100
0101
0110
0111

OCOPRFRPOPRFRORO|I=H

10
11
12
13
14
15

abcd

1000 O

1001
1010
1011
1100
1101
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Boolean Function Representation
Boolean Formula

0 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula )’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

f= (X, X,) + (Xg) + =(=(Xy - (5X)))
typically “-” is omitted and ‘(‘, /)’ are omitted when the operator priority is
clear, e.9., f = X; X, + X5 + X, =X,

FLOLAC 2011 16



Boolean Function Representation
Boolean Formula in SOP

0 Any function can be represented as a
, also called (a cube
IS a product term), or

Example
@ =ab + a'’c + bc

FLOLAC 2011 17



Boolean Function Representation
Boolean Formula in POS

0 Any function can be represented as a
, also called

® Dual of the SOP representation

Example
¢ = (a+b'+c) (a'+b+c) (a+b'+c’) (a+b+c)

] Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

FLOLAC 2011 18



Boolean Function Representation
Binary Decision Diagram

[0 BDD — a graph
representation of Boolean
functions

® A leaf node represents
constant O or 1

B A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

B Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

FLOLAC 2011
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Boolean Function Representation
Binary Decision Diagram

0 Any Boolean function f can be written in term of
Shannon expansion
f=vf,+-vi
B Positive cofactor: f. = f(Xq,....x=1,..., X,)
B Negative cofactor: f . =

[0 BDD is a compressed Shannon cofactor tree:

¥ The two children of a node with function f controlled by
variable v represent two sub-functions f, and f_,

FLOLAC 2011 20



Boolean Function Representation
Binary Decision Diagram

[0 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

[l cofactor variables are in the same order along all paths
Xi <X <X <..<X
1 2 3 n

CJany node with two identical children is removed
0 two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function
f
a ordered -
g © (a<c<b)

,
|l ’
/
&

b <
ST\, 0 1 2
1

FLOLAC 2011
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Boolean Function Representation
Binary Decision Diagram

[0 For a Boolean function,
B ROBDD is unique with respect to a given variable ordering
®m Different orderings may result in different ROBDD structures

+— f=ab+a'ct+bC'd — S

FLOLAC 2011 0 1 22



Boolean Function Representation
Boolean Network

[0 A Boolean network is a directed graph C(G,N)
where G are the gates and N c (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designhated:
1 G
OcG

| "0 =Y

Each gate g Is assigned a Boolean function f,
which computes the output of the gate Iin tefms

of its inputs.

FLOLAC 2011 23



Boolean Function Representation
Boolean Network

0 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(9) = {9’ | (d’,9) € N} (N: the set of nets)

0 The fanout FO(g) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9") € N}

[0 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

[0 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N |

FLOLAC 2011 24



Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4} O
FO(6) = {7,9}

CONE(6) ={1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

FLOLAC 2011 25



Boolean Function Representation

And-Inverter Graph

0 AND-INVERTER graphs (AIGS)
vertices: 2-input AND gates

edges: interconnects with (optional) dots representing INVs

[0 Hash table to identify and reuse structurally isomorphic
circuits

DD

ST
} * >; gj>0/©<0//0\9
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Boolean Function Representation

O

O

Truth table

@ Canonical

B Useful in representing small functions
SOP

® Useful in two-level logic optimization, and in representing local node
functions in a Boolean network

POS
B Useful in SAT solving and Boolean reasoning

B Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)
ROBDD
B Canonical
B Useful in Boolean reasoning
Boolean network
® Useful in multi-level logic optimization
AlG
B Useful in multi-level logic optimization and Boolean reasoning

FLOLAC 2011
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Circuit to CNF Conversion

0 Naive conversion of circuit to CNF:
B Multiply out expressions of circuit until two level structure

B Example: y =X,®X, ®X, @
] circuit size is linear in the number of variables

o = SO

[0 generated chess-board Karnaugh map
[0 CNF (or DNF) formula has 21 terms (exponential in #vars)

0 Better approach:
B Introduce one variable per circuit vertex
® Formulate the circuit as a conjunction of constraints imposed
on the vertex values by the gates
B Uses more variables but size of formula is linear in the size of

the circuit

FLOLAC 2011 28



Circuit to CNF Conversion

[0 Example
B Single gate:
a AND

O e =) (ma+-b+o)@+ )b + )
b

@ Circuit of connected gates:

@D— (-1 +2+4)A+ -4)(-2 + -4)
© (-2 + =3 + 5)(2 + =5)(3 + =5)
§§@<: D70 ED 54 346)(u2 + 26)(3 + _6)
®* (=4 + =5 + 7)(4 + —7)(5 + —7)
(5+ 6 + 8)(-5 + =-8)(-6 + —-8)
(7 + 8 + 9)(~7 + =9)(-8 + —-9)

(9)

FLOLAC 2011 29
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Circuit to CNF Conversion

CICircuit to CNF conversion

M can be done in linear size (with respect to the
circuit size) if intermediate variables can be
Introduced

¥ may grow exponentially in size if no
InNntermediate variables are allowed

FLOLAC 2011 30
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Normal Forms

0 A literal is a variable or its negation

[0 A clause (cube) is a disjunction (conjunction) of
literals

0 A conjunctive normal form (CNF) is a

conjunction of clauses; a disjunctive normal
form (DNF) iIs a disjunction of cubes

mEg.,

CNF: (a+—-b+c)(a+-c)(b+d)(—-a)
0 (—a) is a unit clause, d is a pure literal
DNF: a—-bc + a—-c + bd + —a

FLOLAC 2011 32



Satistiability

[0 The satisfiability (SAT) problem asks whether a
given CNF formula can be true under some
assignment to the variables

O In theory, SAT is intractable
B The first shown NP-complete problem [Cook, 1971]

[l In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and —1,000,000 clauses

¥ It enables various applications, and inspires QBF and
SMT (Satisfiability Modulo Theories) solver development

FLOLAC 2011 33



SAT Competition

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 : ; ; :

T
Limmat 02 m]

- . 7 o . @

Tz - 7 T
]

CPU Time (in seconds)

1000

300

600

400

200

Zchaft 02 O

Berkmin 561 02 F

Forklift 03

Siege 03 ™

Zchaff 04 ’ 3 ]

SatELite 05 " L -

Minisat 2.0 06 . r.'f

Picosat 07

Rsat 07

Minisat 2.1 08

Precosat 09

Glucose 09 _ " .

Clasp 09 + :

Cryptominisat 10 m

Lingeling 10 ‘ y

Minisat 2.2 10 i
iy

20 40 60 80 100 120 140 160

Number of problems solved

180

http://www.satcompetition.org/PoS11/

FLOLAC 2011

34



SAT Solving

[0 Ingredients of modern SAT solvers:
B DPLL-style search
0 [Davis, Putnam, Logemann, Loveland, 1962]

® Conflict-driven clause learning (CDCL)
0 [Marques-Silva, Sakallah, 1996 ]

B Boolean constraint propagation (BCP) with two-literal
watch

0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 ]
® Decision heuristics using variable activity
0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 ]

B Restart
® Preprocessing

B Support for incremental solving
Cl[Een, Sorensson, 2003 ]
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Pre-Modern SAT Procedure

Algorithm DPLL(D)

{
while there 1s a unit clause {1} In O
O = BCP(D, D);
while there 1s a pure literal I In O
O = assign(o, 1);
1T all clauses of ® satisfied return true;
iIf © has a conflicting clause return false;
I := choose literal(®);
return DPLL(assign(®,—-1)) v DPLL(assign(d,1));
}

FLOLAC 2011
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DPLIL Procedure

[0Chorological backtrack
—~al| |—b
o<
CE.g. é@ géD
D
~a —b b
{—a,e} H B N
{a,b,—c} O O W
{c,—d} HEn
{a,b,d} [J [ W
{d.e} O O
{C’d1_'e} D D D

FLOLAC 2011
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Modern SAT Procedure

Algorithm CDCL( D)

{

while(l)
while there 1s a unit clause {lI} In O

O = BCP(D, D);
while there 1s a pure literal I In O
O = assign(o, 1);
iIT & contains no conflicting clause
iIT all clauses of ® are satisfied
I := choose literal(®);
assign(o,);
else
1T conflict at top decision level
analyze conflict();
undo assignments;
O := add _conflict clause(d);

FLOLAC 2011
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Conftlict Analysis & Clause Learning

0 There can be many learnt
clauses from a conflict

0 Clause learning admits non- = (T
chorological backtrack

O E.g.,
{—x10587, —x10588, &
—x10592} B 5

{-x10374, —x10582, ©
—x10578, —x10373, —x10629}

{x10646, x9444, —x10373,
—x10635, —x10637}

Box: decision node
Oval: implication node
Inside: literal (decision level)

Courtesy of Niklas Een
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Clause Learning as Resolution

O Resolution of two clauses C,vx and C,v—xX:

C,vX C,ov—X
C,vC,

where X is the pivot variable and C,vC, is the resolvant,
l.e., C,;vC, = IX.(C,vX)(C,v—=X)

0 A learnt clause can be obtained from a sequence of
resolution steps

W Exercise:
Find a resolution sequence leading to the learnt clause

{—x10374, —x10582, —x10578, —x10373, —x10629}
In the previous slides

FLOLAC 2011 40



Resolution

[0 Resolution is complete for SAT solving

B A CNF formula is unsatisfiable if and only if there exists
a resolution sequence leading to the empty clause

B Example (a\/bf/c) (ﬁz%vc) (ﬁbvﬁd)(ﬁﬂc) (CYd)
(bvc) (d)
(c\v\;:d)
(Q"é)
0

FLOLAC 2011 41



SAT Certification

CITrue CNF

W Satisfying assignment (model)
CIVerifiable In linear time

ClFalse CNF

¥ Resolution refutation
ClPotentially of exponential size

FLOLAC 2011

42



Craig Interpolation

[ [Craig Interpolation Thm, 1957]

If AAB is UNSAT for formulae A
and B, there exists an
Interpolant I of A such that

1. A=>I
2. IAB is UNSAT

3. I refers only to the common
variables of A and B

FLOLAC 2011
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Interpolant and Resolution Proot

[0 SAT solver may produce the resolution proof of an UNSAT
CNF o

O For o= o Ay Specified, the corresponding interpolant can
be obtained in time linear in the resolution proof

(0N Op
N N

(avbve)(-ave) (Gbv—d)(-c)(evd)  (bve)(©)(1)(1)(L)

7’

N L’ , , N ’
N ’ ’ ’ \ ’
N ’ ’ ’ \ ’
~ ’ ’ 7 N7
N7 ’ / N7

4 ’
/ 4
vC . ’
, ’
/
R ./ / ’
A ’ ’ ’
N 7 ’ /
AN 7’ /7 ’
~ 7 ’

7’
A 7’ Vi 7/
N 7 7 7
A4 / ’
’ ’
’ ’ —
\/_| 4 ’
4 7 —
’ ’
N ’ ’
N ’ ,
AN ’ ’
\ 4 ’

N ’
N ’
N/

N
( \)
N
N
N
N
N

[McMillan, 2003]
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Incremental SAT Solving

COTo solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?
® What if adding a clause to ¢?
B What if deleting a clause from ¢?
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Incremental SAT Solving

O MiniSat API
¥ void addClause(Vec<Lit> clause)
¥ bool solve(Vec<Lit> assumps)
¥ bool readModel(Var x) — for SAT results
¥ bool assumpUsed(Lit p) — for UNSAT results

® The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

B More clauses can be added after solve() returns, then
iIncrementally another SAT-solving executed.

Courtesy of Niklas Een
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SAT & Logic Synthesis

Functional Dependency




Functional Dependency

Of(x) functionally depends on g;(x),

9ao(X), ... gm(X) If £(x) = h(gy(x), go(X), ..., gn(X)),
denoted h(6(x))

B Under what condition can function f be
expressed as some function h over a set
G={g,,...9,} Of functions ?

® h exists < 7a,b such that f(a)=f(b) and 6(a)=6(b)

i.e., G is more distinguishing than f

FLOLAC 2011 48



Motivation

O Applications of functional dependency

¥ Resynthesis/rewiring

¥ Redundant register removal

B BDD minimization

M Verification reduction
N ...

Boolean Network

P

FLOLAC 2011

O target function
O base functions
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BDD-Based Computation

CO0BDD-based computation of h
hon ={y e B": y = 6(x) and f(x) =1, x € B"}
hoff = {y € Bm: y = 6(x) and f(x) = 0, x  Br}

f(x)=1

f(x)=0

FLOLAC 2011
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hoff = 3x.(y=6)A—f
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BDD-Based Computation

COPros
B Exact computation of ho" and hoff
M Better support for don’t care minimization

C0Cons
B 2 image computations for every choice of 6

B Inefficient when |G| is large or when there are
many choices of G

FLOLAC 2011 51



SAT-Based Computation

[Oh exists <
Aa,b such that f(a)=f(b) and 6(a)=6(b),
i.e., (F()ZfF(XDA(G(x)=6(x)) is UNSAT

OHow to derive h? How to select G?

FLOLAC 2011 52



SAT-Based Computation

O (f(x)=f (X )A(G(X)=6(x")) is UNSAT
T e .
éziiltigizts 1 anstrgints _ O Constraint
J ~~~~~~ / ‘ \[ Part
Yo V1Yo oo Y Vi Vs o Im Ve Giru
i DFN,, DFN, ;
i ] | . -
\ Xl _X,'2 xn xl x2 xn Y.

-

~N—_——— e —
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SAT-Based Computation

Clause set A: Cyrnons Yo

Clause set B: Cypnors, — Yo . (YY) fori=1,..m

I is an overapproximation of Img( for) and is disjoint from
Img( foff)

I only refers to y;,..., y,,

Therefore, I corresponds to a feasible implementation of h

oo OO0

* S
X1 X,

FLOLAC 2011 54



Incremental SAT Solving

] Controlled equality constraints
(Y=Y = (Gyivyr voadlyv =y vooy)
with auxiliary variables o,
o; = true = ith equality constraint is disabled

B Fast switch between target and base functions by unit
assumptions over control variables

B Fast enumeration of different base functions
B Share learned clauses

FLOLAC 2011 55



SAT vs. BDD

O SAT

® Pros

[ Detect multiple choices of
G automatically

] Scalable to large |G|

] Fast enumeration of
different target functions

0 Fast enumeration of
different base functions G

B Cons

1 Single feasible
implementation of h

O BDD

B Cons

[0 Detect one choice of G at
a time

[ Limited to small |G|

] Slow enumeration of
different target functions

0 Slow enumeration of
different base functions G

® Pros

1 All possible
implementations of h

FLOLAC 2011 56



Practical Evaluation

|
SAT vs. BDD

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem
$5378 2794 179 52 25 398 283 173 1.2 18 1.6 20 0.6 18 7 51
$9234.1 5597 211 46 X 459 301 201 41 19 X X 1.7 19 194.6 149
513207.1 8022 638 190 136 1930 802 X 15.6 22 314 78 15.3 22 X X
$15850.1 9785 534 18 9 907 402 X 23.3 22 82.6 94 7.9 22 X X
$35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --
$38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --
$38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164
b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 25 42
b14 9847 245 2 - 245 2 -- 3.3 22 -- -- 5.2 22 - --
b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --
b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --
b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --
b19 224624 6642 0 - 7164 337 -- 8184.8 217 -- -- 11040.6 234 - --
b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --
b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --
b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

FLOLAC 2011
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Practical Evaluation

circuit size vs. runtime
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2 _
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Practical Evaluation

Incremental SAT

100 ‘
——Db19 (200k nodes) —— b18 (100k nodes)
——bl17 (30k nodes) —— b15 (10k nodes)
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£ 01
|_
0.001 ‘ ‘
1 50 99
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Practical Evaluation

#total input vs. #redundant inputs
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Practical Evaluation

interpolant size vs. support size

10000 .

3 1000 -
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€ 100 -
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1 10 100
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Summary

CIFunctional dependency is computable with
pure SAT solving (with the help of Craig
Interpolation)

CO0Compared to BDD-based computation, it is
much scalable to large designs
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SAT & Logic Synthesis

Functional Bi-Decomposition I




Bi-Decomposition
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Bi-Decomposition

0 A variable partition on
X = {XA1 Xzl X} has the
property:

m X, , Xg, Xcare pair-wise
disjoint, and
X, UXgUX: =X

OIf X = 9, the
decomposition is called
disjoint; otherwise,
non-disjoint

FLOLAC 2011




Bi-Decomposition

[0 We consider OR, AND, XOR bi-decompositions

B These three cases are sufficient to generate any other
type of bi-decomposition

a b a+b ab adb a(-b) aod(-b)
0 0 0 0 0 0 1
0 1 1 0 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0) 0) 1
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Motivation

C0Bi-decomposition breaks a large function
Into a network of smaller functions
(necessary for FPGA implementation)

[0 Bi-decomposition can be applied to
restructure logic network for optimization

¥ It reduces circuit and commmunication
complexity and thus simplify physical design
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BDD-Based Computation

CIPros
B Exact characterization of don’t cares

CdCons

B Memory explosion

B Decomposability must be checked under a
fixed variable partition

FLOLAC 2011
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OR Bi-Decomposition

] Disjoint decomposition:
Xe =

[0 Example
f(a,b,c,d) = (-a)b+cd

X = {a7b’C’d}:{XAIXB}
X,= {a,b}, Xz= {c,d}

f(X) = (-~a)b+cd
= f(a,b)+fz(c,d)

X5\X

00
01
11
10

£AXA)
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OR Bi-Decomposition

O f(X) can be written as f,(X,)v
fs(Xg) if and only if, for every
1-entry in the decomposition
table, O-entries cannot appear
simultaneously in the
corresponding row and column

0 Example
f(1101) = 0 = f,(11) +f;(01)
f(0010) = 0 = 1,(00) +f;(10)
f(1110) = 1 = f,(11) +f;,(10)?7?
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SAT-Based OR Decomposition

L1 3f,, f; such that f(X) =f,(X,) v f5(X,)
& For every 1-entry, no O-entries can appear
simultaneously in the corresponding row and column
< fIX,Xg) A =X, X5) A=f(X,Xg') is unsatisfiable

XX
X;\X, 00 01 11 10  f£(Xp)
00 0 1 0 0 ?
s or o 1 [l o ?
B : 1 1 2 ?
x, 10 [0 1 8 o ?
XD 2 2 2 2
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SAT-Based OR Decomposition

[13f,, f, such that f(X) = £,(X,,X) v f5(X,X,)

& Under every valuation of X, for every 1-entry, no O-
entries can appear simultaneously in the corresponding
row and column

< fIX, Xg X ) A =fIX, X, X ) A =f(X, XS, X ) is unsatisfiable

X=00 X,
Xg X=01 X,
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SAT-Based OR Decomposition

L3f,, f; such that f(X) = f,(X,,X) v f5(Xg5X,)
E X, X X ) A ~FXS, X X ) A =FIX, X5, X ) is UNSAT

O How to compute f, and f;? How to determine the
variable partition?
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SAT-Based OR Decomposition
t, Computation

Df(XA,XB,XC) A A —-f(XA,XB',XC) IS UNSAT
1 0 0 )
Onset / \ PB Offset
of f, of f,
) @,
o (@

X4 Xg Xe
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SAT-Based OR Decomposition
t, Computation

OAX, X5 X) A A =f(X,", Xy X,) is UNSAT

PB
P ff:
O
o

o o

o

(=]

XA XB XC )(A,
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SAT-Based OR Decomposition
Variable Partition

005 = F(0) A~F(X) A\ ((0 = 2 v ay,) S oS
D (PB — _If(XH) A\ /\((333 — CC;,) V 5$?,) 01) Xg
(1,0) Xa

(1,2) either X, or Xg

MM

A

( 0(46, O/o; ) X, Xg X.
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SAT-Based OR Decomposition
Variable Partition

1 Make unit assumption on the control variables with
MiniSat
B Assume all the control variables are O

M SAT solver will return a conflict clause consisting of only the control
variables

B The conflict clause corresponds to a variable partition
CIE.g.

Conflict clause (o, + B, +a, + 55 «,) indicates the unit

assumption a, =0, 5, =0, a, =0,and ,8X3=O causes
unsatisfiability. So X4 ElXC, X, & Xg, and x; € X,
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SAT-Based OR Decomposition
Variable Partition

CJAvoid trivial variable partition

B Bi-decomposition trivially holds if X, X,UX,
or XgUX. equals X

W SAT solver may return a conflict clause that
consists of all the control variables = X, = X

¥ To avoid trivial partition, Iin unit assumption we
specify two distinct variables x, and x, in X,
and Xg, respectively, and others in X. initially

C0To check if a function is bi-decomposable, have to try
at most C(n,2) iterations
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SAT-Based AND Decomposition

O 3f,, f, such that f = f, A f,
= EIfA, fB such that —f = _IfA\/_IfB

0 Example
f (a,b,c,d) = (a+-b+c)(b+-c+d)
—f (a,b,c,d) = (—wa)b(-c) v (=b)c(—d)
= —f,(a,b,c) v —fg (b,c,d)
f,(a,b,c)= (a+-b+c), f3(b,c,d) = (b+-c+d)
f(a,b,c,d) = f,(a,b,c) A fg(b,c,d)
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SAT-Based XOR Decomposition

0 (1)=(5)D(7), (2)=(5)D(8),(3)=(6) B(7), (4)=(6) D (8)

=(1)D(4)=(2)D(3)

= (1)D(2)=(3)D(4)

= [(1)=(2)] \[(3) # (4)] UNSAT

X\X,,
00
Xy 01
11
X 10

fa(Xa)

X,
00

(1)

(2)
(5)

01

XA
11

(3)

(4)
(6)

~ XOR

10 fy(Xp) : :

(8)
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SAT-Based XOR Decomposition

O [(1)=(2)IA[(3)#(4)] UNSAT
O 3f,, f, such that f(X) = f,(X,,Xo) ®fs(Xg,Xo) ©

(F(Xp: X5, X)) =F(Xa X", X)) A (FXLT X, X)) (XL, X6, X))
UNSAT

For every pair of columns (rows), their patterns are either
complementary or identical to each other
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SAT-Based XOR Decomposition
f,, fg Computation

Of, = f(X,,0,X,)
CIf, = f(0,X,,X ) Df(0,0,X,)

X \X, £ (Xg,X.)
00 - 0 1 1 0
01 0 1 0 0 1
11 0 1 0 0 1
10 1 0 1 1 0
BOGX) 1 0 1 1
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SAT-Based XOR Decomposition
Variable Partition

0 Similar to OR decomposition
O (fOO) =TtCX))AECT) A TCX)) A
((G=XDAXG =X v a xi)/\

((=XDAK =XV B xi)

(ay, By) X; belongs to

(0,0) Xc
(0,1) X
(1,0) X,

(1,1) either X, or X;

FLOLAC 2011
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Practical Evaluation

|| | | oR2-decomposition | XOR-decomposition ___|

circuit #in #max #Hout #Hdev #Hslv Time Mem #dev #Hslv  Time Mem
(sec) (Mb) (sec) (Mb)
201 201 1 1 1 1.07 186 1 34 2.16 18.59
322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87
75 75 e 26848 352.87 24.14 16 210 26.59  19.68
60 45 25 |as |22z 8.36 20.72 11 4192 83.08  18.72
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IXa - Xbl / IXI

Practical Evaluation

|
Variable partition
OR decomposition XOR decomposition
1.0 I | I I 1.0 - | I | |
08T % - 08 L .
)%O%%( X
Xe B —
T X w4 >
0.6 KX = O - 206 ~ K O\ -
X KKK ) =
OBIRT KN 2 BN
04 /X\X X e ' X KON
41 X ¢ O\ 4 = 04L X -
X e ; ! x s
X XX G X % = X ¥ XX
% X
X
v X 02 X SE N s
XX XX TXX R
e,
x%m.
™ 040 | l | W
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
IXcl/XI IXcl/XI
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Summary

COJOR, AND, XOR bi-decomposition can be
formulated in terms of SAT solving

CIVariable partitioning can be automated
along the formulation

[0SAT-based bi-decomposition is much more
scalable than BDD-based methods
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Quantified Boolean Formula

0 A quantified Boolean formula (QBF) iIs often
written in prenex form (with quantifiers placed
on the left) as

Q1 Xqy «-vy Qp Xp- @

for Q; € {V, 3} and ¢ a quantifier-free formula

H If ¢ Is further in CNF, the corresponding QBF is in the
so-called prenex CNF (PCNF), the most popular QBF
representation

® Any QBF can be converted to PCNF
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Quantified Boolean Formula

CQuantification order matters in a QBF

OA variable x; In (Qq X4,..., Q; Xi,..., Qy X,,- ©)
IS of level k if there are k quantifier
alternations (i.e., changing from V to 3 or
from 3 to V) from Q; to Q..

B Example
va db Vc vd 3Je. ¢
level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3
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Quantified Boolean Formula

[0 Many decision problems can be
compactly encoded in QBFs

] In theory, QBF solving (QSAT)
Is PSPACE complete

B The more the quantifier
alternations, the higher the
complexity in the Polynomial
Hierarchy

PSPACE

[0 In practice, solvable QBFs are
typically of size —1,000
variables
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QBF Solver

0 QBF solver choices
® Data structures for formula representation

0 Prenex vs. non-prenex

0 Normal form vs. non-normal form
= CNF, NNF, BDD, AIG, etc.

B Solving mechanisms
[0 Search, Q-resolution, Skolemization, quantifier elimination, etc.
B Preprocessing techniques

[0 Standard approach

B Search-based PCNF formula solving (similar to SAT)

0 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
= Example
va db dc vd Je. (a+c)(—a+-c)(b+-c+e)(-b)(c+d+-e)(—c+e)(—d+e)
from 00101, we learn cube —a—bc—d (can be further simplified to —a)
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QBF Solving

[0 Example S
HanﬂbeHC (a+b+y+c)a+x+b+y+c)(x+b)(y+c)(c+a+x+b)(x+b)(a+b+y)
L)
B ) ] (—
<a,L> <a,R>
(b+y+c)x+b+y+c)x+b)(y+c)(x+b)(b+ ) (x+b)(y+c)(c+x+b)(x+b)
B ) \V <y,P>
<xL> <xR> (x+b)(c)(c+x+b)(x+b)
O+y+c)o+y+c)O)y+c)b+y)  (b+y+c)(y+c)b)b+y)
<c,U>
<b,U > <b,U > (x+b)(x+b)(x +b)
(y+ )+ (+0) <ol
4 — )V
V 7 {true} (axbc) < X_,L > <xR>
< y,é)> <y,R> (0) (b)(0)
(c)(c (c) —
= {true} (aXbC) { false}
{false} {true} (axbyc)
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(Q-Resolution

O Q-resolution on PCNF is similar to resolution on CNF, except that

the pivots are restricted to existentially quantified variables and
the additional rule of V-reduction

V-RED(C,vC,)

where operator V-RED removes from C,vC, the universally (V)
quantified variables whose quantification levels are greater than

any of the existentially (3) quantified variables in C,vC,
® E.g.,

prefix: Va 3b vc vd Je
V-RED(a+b+c+d) = (a+b)

0 Q-resolution is complete for QBF solving

B A PCNF formula is unsatisfiable if and only if there exists a Q-
resolution sequence leading to the empty clause
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(Q-Resolution

[0 Example (cont’'d)

daVxAbVydc (a+b+y+c)a+rx+b+y+c)(x+b)(y+c)c+a+x+b)(x+b)(a+b+y)

(L)

B _

<a,L> (a)

A

<x,L> (a)

B A

(x+5) <b,U > (a)

B A

<y,L> |(a+b+x)

_’L / \ _
;szlse; (a+b+y+c) Efz’lfe; (a+b+x+y+c)

FLOLAC 2011

e A

<a,R> (a)

A

<y, P> (5)

_ )

(v+o)| <e,U> |(a)

)

<XR> ey atx)

<bL>[=——= _b/<b’R>\_E
{faise} (c+a+x+b) {false} (x+b)
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Skolemization

] Skolemization and Skolem normal form

B Existentially quantified variables are
replaced with function symbols

B QBF prefix contains only two
quantification levels

] 3 function symbols, V variables

0 Example
vYa db Vc 3d.
(-a+—-b)(-b+—-c+-d)(—b+c+d)(a+b+c)
Skolem functions @
0011011011110000

EIFb(a) JF4(a,c) Va vc.
(—|a+—|Fb)(—|Fb+—|C+—|Fd)(—lFb+C+Fd)(a+Fb+c)
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QBF Certification

0 QBF certification

B Ensure correctness and, more importantly, provide useful
information
® Certificates

0 True QBF: term-resolution proof / Skolem-function (SF) model
= SF model is more useful in practical applications

[l False QBF: clause-resolution proof / Herbrand-function (HF)
countermodel

= HF countermodel is more useful in practical applications

] Solvers and certificates

B To date, only Skolemization-based solvers (e.g., sKizzo,
squolem, Ebddres) can provide SFs

W Search-based solvers (e.g., QuBE) are the most popular and
can be instrumented to provide resolution proofs
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QBF Certification

1Solvers and certificates
Solver Algorithm Certificate
True QBF False QBF
Ebddres Skolemization | Skolem function Clause resolution
sKizzo Skolemization | Skolem function -
squolem Skolemization | Skolem function Clause resolution
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QBF Certification

O Incomplete picture of QBF certification

True QBF

Cube-resolution proof

Skolem-function model

False QBF

Clause-resolution proof

?

[0Recent progress

B Herbrand-function countermodel
Cl[Balabanov, J, 2011

W Syntactic to semantic certificate conversion
ClLinear time [Balabanov, J, 2011 1
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QBF Certification

CUnified QBF certification

True QBF

Cube resolution proof

Skolem function
(model)

formula
negation

False QBF

Clause resolution proof

Herbrand function
(countermodel)
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ResQu

0 A Skolem-function model (Herbrand-function
countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

O A Right-First-And-Or (RFAO) formula
IS recursively defined as follows.

¢ := clause | cube | clause A ¢ | cube v ¢
®E.qg.,
(a+b) A ac v (b'+c’) A bc
= ((@+b) A (ac v ((b'+c’) A bc)))
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ResQu

Countermodel construct
input: a false QBF @ and its clause-resolution DAG G (Viz, Err)
output: a countermodel in RFAO formulas
begin
01 foreach universal variable x of @
02 RFAO_node_array[x] := (;
03 foreach vertex v of G in topological order

04 if v.clause resulted from V-reduction on w.clause, i.e., (u,v) € En
05 v.cube := —(v.clause);

06 foreach universal variable x reduced from wu.clause to get v.clause
07 if & appears as positive literal in u.clause

08 push v.clause to RFAO_node_array [2];

09 else if x appears as negative literal in u.clause

10 push v.cube to RFAO_node_array [x];

11 if v.clause is the empty clause

12 foreach universal variable x of @

13 simplify RFAO_node_array [x];

14 return RFAO_node_array’s:

end
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ResQu

|
0 Example
B Javx3dbvydc
(a+b+y+c)(a+x+b+y+c),(x+b),(y+c),(a+x+b+c) (x+b) (a+b+ y),
Ny lo
. A L . —_
(a+x+b+y), (a+x+b+y), (a+b),,
el L@
(a+x+\b)8+ (a+x+b)10+ (). [ U[]
N K 1 2 [ Y [r-u.br){ﬁh)]
(a+x)g (a+x)

(3) J/ 1 y e T | cube(ab),

\I/ (5) 2 (1 v L'h;.u.w(a +x + f))}
(a)9+ B

(a)ll—i- I | cube(ab),
/ : [ clause(a) ] Y- L-.!.’a.u.@ﬁ(a. + 2+ b)}

[ cube(ab),
4. 1| clause(a) y: | clause(a + x + b),

(empt'y) | [ [ ( }] : _rtubr‘(u:rﬁ}‘k ’

[ cube(ab),

5 i [('!u?}sr'(a)‘} y: | clause(a + x +b),

FLOLAC 2011

e cube(a)

L cube(axb)
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QBF Certification

[l Applications of Skolem/Herbrand functions
® Program synthesis

¥ Winning strategy synthesis in two player
games

M Plan derivation in Al
¥ Logic synthesis
H...
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QSAT & Logic Synthests
Boolean Matching I




Introduction

[0 Combinational
equivalence checking
(CEC)

® Known input
correspondence

@ coNP-complete

® Well solved in practical
applications

yl y2 yn
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Introduction

[0 Boolean matching

® P-equivalence

0 Unknown input
permutation

O O(n!') CEC iterations
® NP-equivalence

0 Unknown input negation
and permutation

0 O(2"n!) CEC iterations

B NPN-equivalence
0 Unknown input negation,

input permutation, and ®
: ¢ P N
output negation T
0 O(2"+1n!) CEC iterations T \%
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Introduction

: (H
X1 Xo Xg YF@

X1 Xy X3

CODExample
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Introduction

0 Motivations

B Theoretically
O Complexity in between
CONP and
2
in the Polynomial Hierarchy (PH)
= Special candidate to test PH collapse

0 Known as Boolean congruence/isomorphism
dating back to the 19t century

® Practically

0 Broad applications
= Library binding
= FPGA technology mapping
= Detection of generalized symmetry
= Logic verification
= Design debugging/rectification
= Functional engineering change order

0 Intensively studied over the last two decades

FLOLAC 2011
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Introduction

] Prior methods

Complete | Function | Equivalence | Solution | Scalability

? type type type

Spectral yes CS mostly P one - -
methods
Signature no mostly CS P/NP N/A -~ ++
based methods
Canonical-form yes CS mostly P one +
based methods
SAT based yes CS mostly P one/all +
methods
BooM yes CS/ IS NPN one/all ++
(QBF/SAT-like)

FLOLAC 2011

CS: completely specified
IS: incompletely specified
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BooM: A Fast Boolean Matcher

[0Features of BooM
® General computation framework

W Effective search space reduction techniques
CODynamic learning and abstraction

® Theoretical SAT-iteration upper-bound:

O(22n)
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Formulation

[0 Reduce NPN-equiv to 2 NP-equiv checks
B Matching f and g; matching f and —g

[0 2nd order formula of NP-equivalence
v e, VX ((T.(X) A gc(v ° n(X))) = (F(X) = g(v ° n(x))))

m f, and g, are the care conditions of f and g, respectively

[0 Need 1storder formula instead for SAT solving
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Formulation

[00-1 matrix representation of ve nt

1 r1 X2 X2 cr Tn  Tn
yi flonn bu| a2 bz --- ain binf\ X =1
Y2 a21 b21 a22 622 T a2n b2n
Yn \aﬂn,l bni| Gn2 bn2z -+ ann  ban )
2. =1
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Formulation

0 Quantified Boolean formula (QBF) for NP-equivalence
1a,3b, VX, VY (¢c A ¢a A((Te A 9c) = (F=0))

B ¢.: cardinality constraint
B ooa: I\ (85 = (Y = X)) (by = (Y = X))

[0 Look for an assignment to a- and b-variables that satisfies
oc and makes the miter constraint

¥ =oun (F=Q) AT AQ,
unsatisfiable

OO0 Refine o iteratively in a sequence ®©, o, ..., ®®, for o+
= @V through conflict-based learning
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BooM Flow

Preprocess
How to compute (sig., abs.)
all matches? i=0

= _ i=i+1
Solve " A ¥ <
w Add learned
clause to oM
A
®" characterizes
all matches

Solve miter ¥

yes
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NP-Equivalence
Contlict-based Learning

C1Observation

1 How to avoid
these 6 mappings
at once?
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NP-Equivalence
Contlict-based Learning

ClLearnt clause generation
(a;; V by, Va; Vb, Vay, Vb,V 31 vV 32 \ 33)
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NP-Equivalence
Contlict-based Learning

0 Proposition:

If f(u) # g(v) with v = v - (u) for some v - © satisfying @V,
then the learned clause V/; |;; for literals

l; = (v # U;)) ? @ b
excludes from @ the mappings {v - 7' | v' e n'(u) = v - t(u)}

0 Proposition:
The learned clause prunes n! infeasible mappings

[0 Proposition:

The refinement process ®©, L, ..., ®% js bounded by 22"
Iiterations
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NP-Equivalence
Abstraction

[0 Abstract Boolean matching

B Abstract
Xy, s X Xpeiq 0+ -9 X)) O
f(Xy5.. 0 X02,...,2) =
(X, 5 X 2)

® Match g(y,,...,Y,) against
f*(X15.3 X5 2)

® Infeasible matching
solutions of f* and g are
also infeasible for f and g

Y1 YiYk+1Yn
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NP-Equivalence
Abstraction

0 Abstract Boolean matching

B Similar matrix representation of
negation/permutation

xi —x] - X X % —Z
Y1 /(111 bi1 oo a1g bk a1(k+1) bl(k+1) Z =1
Y2 a1 ba1| -+ a  box A2(k+1) b2(k:+1)
Yn \anl bni| *++ ank  bnk An(k+1) bn(k+1)
2. =1

CSimilar cardinality constraints, except for allowing
multiple y-variables mapped to z
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NP-Equivalence
Abstraction

[OUsed for preprocessing

ClInformation learned for abstract model i1s
valid for concrete model

O Simplified matching in reduced Boolean
space
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P-Equivalence
Contlict-based Learning

] Proposition:

If f(u) = g(v) with v = n(u) for some =n satisfying
®®, then the learned clause \/;; |;; for literals

l; = (viy=0 and u;=1) ? g; : &
excludes from ®® the mappings {7’ | ©'(u) = n(u)}
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P-Equivalence
Abstraction

Ll Abstraction enforces search in biased truth
assignments and makes learning strong

® For f* having k support variables, a learned
clause converted back to the concrete model
consists of at most (k-1)(n—k+1) literals
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Practical Evaluation

CO0BooM implemented in ABC using MIniSAT

A function iIs matched against its
synthesized, and input-permuted/negated
version

B Match individual output functions of MCNC,
ISCAS, ITC benchmark circuits

0717 functions with 10—39 support variables and
15—~2160 AIG nodes

B Time-limit 600 seconds

M Baseline preprocessing exploits symmetry,
unateness, and simulation for initial matching
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Practical Evaluation

600

L)
(=]
(=]

=]
o
o

Runtime (sec.) — without learning
N w
[=} (=]
o o

Learning

A

B

500

400

N,

i

Runtime (sec.) — without abstraction
X

0 100 200

Runtime (sec.) — with learning

300

400 500 600 0 100 200

(P-equivalence; find all matches)

FLOLAC 2011

Runtime (sec.) — with abstraction

Abstraction
600 MESSS—%< <
KX
300
200 /
i | X
300 400 500 600
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Time (sec.)

Practical Evaluation

P-equivalence

6000
-c-one sol
5000 - -—=-one sol, learn
~“~one sol, learn, abs R
4000 —<all sol I :
——all sol, learn I
-@-all sol, learn, abs

300 350 400 450 500 550
#Functions

Time (sec.)

NP-equivalence

12000

10000 -

8000 -

6000 -

4000 -

FLOLAC 2011

——-one sol

-—=-one sol, learn
-*~one sol, learn, abs
—<all sol

——all sol, learn
-eo-all sol, learn, abs

51 101 151
#Functions
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Practical Evaluation

Runtime (sec.) — depqgbf

600

500

4
400 -

300

200

100

BooM vs. DepQBF

LKL <

X

100 200 300 400 500 600
Runtime (sec.) — BooM

FLOLAC 2011

(runtime after same preprocessing;
P-equivalence; find one match)
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Conclusions

[0 BooM, a dedicated decision procedure for Boolean
matching
W Effective learning and abstraction

Ol Far faster than state-of-the-art QBF solver

0 Theoretical upper bound reduced from O(2"n!) to O(22")
= Empirically exponent —7 times less for P, —3 times less for NP

B General computation framework
[0Handles NPN-equivalence, incompletely specified functions
1 Allows easy integration with signature based methods

] Anticipate BooM to be a common platform for
other Boolean matching developments and to
facilitate practical applications
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QSAT & Logic Synthests

Relation Determinization I




Relation vs. Function

[0 Relation R(X, Y)

® Allow one-to-many
mappings
CICan describe non-
deterministic

behavior
B More generic than
functions
X1X2 ViV
00 00
01 01
10 10
11 11

FLOLAC 2011

0 Function F(X)

® Disallow one-to-many
mappings
C0Can only describe

deterministic
behavior

B A special case of
relation

XX ViV

00 00

01 % 01 =%

104 _»10 P70
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Relation

] Total relation

B Every input element is
mapped to at least one
output element

A
01 0
10
11 L

1l Partial relation

B Some input element is
not mapped to any
output element

W
01 0
10
11 1
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Relation

A partial relation can be totalized

B Assume that the input element not mapped to
any output element is a don’t care

Partial relation Total relation
XX Y xdgz Y
00
01 0 Totalize > 01 0
10 10
11 1 11 1

X, y) =R(X, y) v Vy. = R(X y)
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Motivation

] Applications of Boolean relation

® In high-level design, Boolean relations can be used to
describe (nhondeterministic) specifications

¥ In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits

C0Boolean relations are more powerful than traditional don’t-
care representations

XX ViV

00 00
T B 01 01
Yo BERE 10 10

11 11
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Motivation

CIRelation determinization

® For hardware implement of a system, we need
functions rather than relations
CIPhysical realization are deterministic by nature
C0One input stimulus results in one output response

® To simplify implementation, we can explore
the flexibilities described by a relation for
optimization
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Motivation

CODExample
X N\ Vg z
v E 1) >
y2|>° D—ZZ
Jr=x,x,
ng—lx]ﬁxz
XX ViV Z12;
00 00 00
01 01 01
10 10 10

11 11 11
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Relation Determinization

C1Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract
functions from It?

COFor a deterministic total relation, we can
uniquely extract the corresponding
functions
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Relation Determinization

C0Approaches to relation determinization

¥ [terative method (determinize one output at a
time)
COBDD- or SOP-based representation

= Not scalable
= Better optimization

CIAIG representation
= Focus on scalability with reasonable optimization

quality
® Non-iterative method (determinize all ouputs
at once)
C0QBF solving
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[terative Relation Determinization

] Single-output relation

B For a single-output total relation R(X, y), we derive a
function f for variable y using interpolation

XiX2 Y — R(X,0)A—=R(X,1) UNSAT
00
01 : P p
10 1 ®/0
11 \
pp. =R 1)
@, = R(X0) Minimal care offset of f

Minimal care onset of f
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[terative Relation Determinization

0 Multi-output relation

B Two-phase computation:

1. Backward reduction
® Reduce to single-output case

RX yp s ¥,) = Yy oo, Iy RAX Yy oo 1))
2. Forward substitution
B Extract functions
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[terative Relation Determinization

CODExample

R

2

Y3

Phasel: (expansion reduction)

W3 RX v, ¥y, V) = ROKX, y, v)
3)’2-R(3)(X YY) — R(Z)(X )

Phase?2:

RO(X, y,) =y, =X
RIX y,v) —=RIX[1(X),y)  —=y,=L
R(X, y;, vy, v3) = R(X, f1(X), [5(X), yo) = y; = f3(X)
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Non-Iterative Relation Determinization

[0Solve QBF
VX, VX,, AV, 3V, RO, X, Vi oo V)

W The Skolem functions of variables y,, ..., y, correspond to
the functions we want
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Summary

[JRelation determinization correspond to
solving a QBF problem

Cllterative and non-iterative methods can
be applied to extract functions from a
Boolean relation

FLOLAC 2011 141



