Flolac 2010

Operational Semantics

Solution for Assignment 2: SOS, Due date: July 2

1. Specify the semantics of the construct "repeat S until b" in the style of SOS. The semantics of the repeat-construct is not allowed to rely on the existence of a while-construct in the language.

2. (Exercise 2.21) Non-interference of statements:

Prove that

if
$$\langle S_1, s \rangle = >^k s'$$
 then $\langle S_1, S_2, s \rangle = >^k (S_2, s')$

that is, the execution of S1 is not influenced by the statement following it. (Hint: by induction on the length of derivation sequence)

We do the proof by induction on the length of the derivation sequence.

Base case: k = 0, the property holds as $\langle S_1, \sigma \rangle \to_1^0 \sigma'$ is not a valid transition.

Induction step: we assume that the property holds for $k \leq m$ and prove it for m+1. Thus, we assume $\langle S_1, \sigma \rangle \to_1^{m+1} \sigma'$, which can be written as $\langle S_1, \sigma \rangle \to_1^m \sigma'$ for some intermediate configuration γ . Now we have to make a case distinction depending on whether S_1 was executed in one or in multiple steps.

- 1. γ was obtained by executing S_1 in one step by transition $\langle S_1, \sigma \rangle \to_1 \sigma'$. Using this transition we can construct a derivation tree for transition $\langle S_1; S_2, \sigma \rangle \to_1 \langle S_2, \sigma' \rangle$. (In this case m = 0 and $\gamma = \sigma'$.)
- 2. γ was obtained by completing the first step of the execution of S_1 . In this case we get derivation sequence $\langle S_1, \sigma \rangle \to_1 \langle S_1', \sigma'' \rangle \to_1^m \sigma'$ for some statement S_1' and state σ'' . Using the induction hypothesis on $\langle S_1', \sigma'' \rangle \to_1^m \sigma'$ we get $\langle S_1'; S_2, \sigma'' \rangle \to_1^m \langle S_2, \sigma' \rangle$. Using these results we can construct derivation sequence

$$\langle S_1; S_2, \sigma \rangle \to_1 \langle S'_1; S_2, \sigma'' \rangle \to_1^m \langle S_2, \sigma' \rangle.$$

The validity of the first step is given by the following derivation tree:

$$\frac{\langle S_1, \sigma \rangle \to_1 \langle S_1', \sigma'' \rangle}{\langle S_1; S_2, \sigma \rangle \to_1 \langle S_1'; S_2, \sigma'' \rangle}$$

3. Prove that " S_1 ; (S_2 ; S_3)" and "(S_1 ; S_2); S_3 " are semantically equivalent according to the SOS of While. Note that one direction (\Rightarrow) of proof is good enough. (Hint: by Lemma 2.19 and Exercise 2.21)

Direction \Longrightarrow

Case a: all three sub-statements terminate.

Using Lemma 2.19 we can get derivation sequences $\langle S_1, \sigma \rangle \to_1^* \sigma''$ and $\langle S_2; S_3, \sigma'' \rangle \to_1^* \sigma'$ for some state σ'' . We can apply the lemma again on the second sequence and get $\langle S_2, \sigma'' \rangle \to_1^* \sigma''$ and $\langle S_3, \sigma''' \rangle \to_1^* \sigma'$ for some state σ''' . Using the result of Exercise 16 on sequence $\langle S_1, \sigma \rangle \to_1^* \sigma''$ we get $\langle S_1; S_2, \sigma \rangle \to_1^* \langle S_2, \sigma'' \rangle$. This, combined with sequence $\langle S_2, \sigma'' \rangle \to_1^* \sigma'''$ yields $\langle S_1; S_2, \sigma \rangle \to_1^* \sigma'''$. Using the result of Exercise 16 on this sequence gives $\langle (S_1; S_2); S_3, \sigma \rangle \to_1^* \langle S_3, \sigma''' \rangle$. This, combined with sequence $\langle S_3, \sigma''' \rangle \to_1^* \sigma'$ yields the required sequence $\langle (S_1; S_2); S_3, \sigma \rangle \to_1^* \sigma'$.

Case b: any of the three sub-statements loops.

Since we have a looping statement in sequential composition with other statements, the whole composition will loop. Thus, both S_1 ; $(S_2; S_3)$ and $(S_1; S_2)$; S_3 will loop.

Direction \Leftarrow Analogous.

4. (Extra credit) (Exercise 2.20) Suppose that $(S_1; S_2, s) =>^* (S_2, s')$. Show (an example) that it is not necessarily the case that $(S_1, s) =>^* s'$.

A counter-example is the following statement skip; while true do x:=x+1 end because we can construct the derivation sequence

```
 \begin{split} &\langle \mathtt{skip}; \ \mathtt{while} \ \mathtt{true} \ \mathtt{do} \ \mathtt{x} \colon = \mathtt{x+1} \ \mathtt{end}, \sigma \rangle \to_1 \\ &\langle \mathtt{while} \ \mathtt{true} \ \mathtt{do} \ \mathtt{x} \colon = \mathtt{x+1} \ \mathtt{end}, \sigma [\mathtt{x} \mapsto \sigma(\mathtt{x}) + 1] \rangle \\ &\langle \mathtt{while} \ \mathtt{true} \ \mathtt{do} \ \mathtt{x} \colon = \mathtt{x+1} \ \mathtt{end}, \sigma [\mathtt{x} \mapsto \sigma(\mathtt{x}) + 1] \rangle \end{split}  Thus,  \langle \mathtt{skip}; \ \mathtt{while} \ \mathtt{true} \ \mathtt{do} \ \mathtt{x} \colon = \mathtt{x+1} \ \mathtt{end}, \sigma [\mathtt{x} \mapsto \sigma(\mathtt{x}) + 1] \rangle  holds, but  \langle \mathtt{skip}, \sigma \rangle \to_1^* \sigma [\mathtt{x} \mapsto \sigma(\mathtt{x}) + 1] \ \mathtt{is} \ \mathtt{not} \ \mathtt{a} \ \mathtt{valid} \ \mathtt{sequence}.
```