APOLAA

2010

Intro. to Operational Semantics

Kung Chen
National Chengchi University, Taiwan

2010 Formosan Summer School of Logic,
Language and Computation

OP semantics

SRS
Agenda szom

* Overview: What and Why of Formal Semantics
» Operational Semantics for While

— Natural Semantics (Big-step)

— Structured Operational Semantics (SOS, Small-step)
» Extensions of While

— Abortion

— Non-determinism and Parallelism

— Procedures and Blocks

OP semantics

Describing Programs Q’X;(jlff@

« Syntax: what sequences of characters
constitute programs? Grammars, lexers,
parsers, automata theory.

« Semantics: what does a program
mean (do)? When are two programs
equivalent? When does a program
satisfy its specification?

OP semantics

Semantics: What does a SPOL4
program do? 2010

* Hard to get it right!

- What does the following C statement print
if "x==1"7?

printf (“sd %d\n”, x++, ++x);

« Canwe replace “f (x)+f (x)” with
\\Z*f(X) //?

OP semantics

What does a program mean? Q’X;%Jff@

» Compile and run
— Implementation dependencies
— Not useful for reasoning

* Informal Semantics (Reference manual)
— Natural language description of PL

* Formal Semantics

— Description in terms of notation with formally
understood meaning

OP semantics

GPLAo

Why Not Informal Semantics? 2010

» An extract from the Algol 60 report:

“Finally the procedure body, modified as above, is
inserted in place of the procedure statement and
executed. If a procedure is called from a place outside
the scope of any nonlocal quantity of the procedure body,
the conflicts between the identifiers inserted through this
process of body replacement and the identifiers whose
declarations are valid at the place of the procedure
statement or function designator will be avoided through
Suitable systematic changes of the latter identifiers.”

OP semantics

Why Formal Semantics? Q’X;%Jff@

e precise specification of software (and hardware)
e facilitate reasoning about systems; testing may reveal errors but not

their absence

e help in understanding subtle details and ambiguities in apparently
clear defining documents (otherwise discovered late — e.g. by
implementors; bad situation when an implementation must be

treated as language definition)
e subject to mathematical methods e.g. proving programs correct

e form the basis for prototype implementations, e.g. interpreters and

compilers; and for software tools

OP semantics 7

GPLAo

Styles of Formal Semantics 2010

Denotational: a program’s meaning is given
abstractly as an element of some
mathematical structure (some kind of set).

——>Operational: a program’s meaning is given in
terms of the steps of computation the
program makes when you run it.

Axiomatic: a program’s meaning is given
indirectly in terms of the collection of
properties it satisfies; these properties are
defined via a collection of axioms and rules.

OP semantics 8

Operational Semantics

APOLAA

2010

y:=1
while 2"(z =1) do (y:=zxy;z:=2 — 1)

First we assign 1 to y, then we test whether
z is 1 or not. If it is then we stop and
otherwise we update y to be the product of
x and the previous value of y and then we
decrement x by one. Now we test whether
the new value of xz is 1 or not - --

Two kinds of operational semantics:
e Natural Semantics

e Structural Operational Semantics

OP semantics

Denotational Semantics

GPLAo

2010

y =1
while 7(z =1) do (y:=zx*y;z:=x — 1)

The program computes a partial function
from states to states: the final state will
be equal to the initial state except that the
value of z will be 1 and the value of y will
be equal to the factorial of the value of =
in the initial state.

Twe kinds of denotational semantics:
e Direct Style Semantics

e Continuation Style Semantics

APOLAA

Axiomatic Semantics 2010

y:=1
while 7(z=1) do (y:=z*xy;2 =2 — 1)

If £ = n holds before the program is exe-
cuted then 4y = n! will hold when the exe-
cution terminates (if it terminates)

Two kinds of axiomatic semantics:
e Partial Correctness

e Total Correctness

OP semantics

Which approach? Q@%@

Programming Language

l e natural semantics
e structural operational semantics
Semantics e direct style denotational semantics

e continuation style denotational se-
mantics

e partial correctness axiomatic seman-
tics

e total correctness axiomatic semantics

OP semantics

] e . 30
Selection criteria Q’zolff@

e constructs of the language | |® what is the semantics used for
— imperative — understanding the language
— verification of programs

— prototyping

— compiler construction

— functional
— concurrent/parallel
— object oriented

o — program analysis
— non-deterministic

OP semantics

This Course Unit Q’%%%f@

* Is based on the first three chapters of the book:

— Semantics with Applications: an Appetizer, by Nielson
& Nielson

» Uses a simple imperative language: While
to introduce operational semantics

* There will be some mathematics along the way:
» mathematical induction; and
« Structural induction.

OP semantics

Example Language: While Q’X;(j?f@

A simple imperative language without procedures.
S = x:=a | skip | S1;:5

X
| if b then S| else 59
| while b do S

|

repeat S until b

*And some extensions of While

OP semantics

: - QPLAn
Operational Semantics 2010
Real World Abstract Machine
Program Input Function Initial
9 P Configuration
............................. >l
Intermediate
Transition Configuration
RUIeS >7
Intermediate
. Configuration
........................... >
Answer Output Function Final
Configuration

Source: D. Evans OP semantics 16

Operational Semantics @ﬁﬂf@

Operational semantics works with configurations of the form

{(control, data).

control — “where are we”, data — the values of program variables.

Roughly:

control may be absent (final configuration).

Structural Operational Semantics
Sequences of configurations, conf; = confs = ---.

(Small step semantics.)

Natural Semantics (big step semantics)

(control, data) — data’ in one step.

v seindiucs

3.0
Approach Qyzo%f@

concrete LL(1)/LALR(1) grammar
syntax concrete syntax trees
!
(— abstract syntactic categories
syntax abstract syntax trees

semantics semantic categories
semantic definitions

OP semantics

Acknowledgement Q’@%@

» Most of the following slides are taken from

— Slides by Prof. Hannie Riis Nielson:
Introduction to Semantics

— Slides by Prof. Ralf Lammel: Programming
Paradigms and Formal Semantics

OP semantics

GPLAo

2010

Syntax of While

OP semantics 20

. . SPL4H
Syntactic Categories 2010
» Numerals »n <€ Num Hot further
> Variables »x € Var specified
» Arithmetic expressions > a € AExp

a = nl|alar+a|ar*xar|ar—a
» Boolean expressions » b e BEXp

b = true|false|a;=ay|a; <ay|—-b|b Aby
» Statements » S e Stm

S u= x:=a|skip| 5;Sy|1if b then S; else S

| while bdo S| repeat S until b

21

Hanne Riis Mielson OP semantics

GPLAo

Abstract vs. Concrete Syntax 2010

» Abstract Syntax a=n|x
focusses on the structure of |a, +a,
expressions, statements, etc | a; *a,
and ignores the scanning and
parsing aspects of the syntax

» Concrete Syntax

. . A=T+A|T
deals with scanning and To=F*T|F
parsing aspects Fi=N|X[(A)
N: digit*

X: letter (digit | letter)*

Hanne Riis Mielson OP semantics 22

\
= 0
Example: x+(5%y) a:=njx Q’zollﬁfl@
la, +a,
E
» Abstract syntax: la; *a,

— formalises the allowable parse trees

— we use parentheses to disambiguate the syntax
— we introduce defaults as e.g. * binds closer than +

a

*

a

‘ //]\- /E \ I||

X a a

y
defauIE | | | write
x+ 57y 5 y o x 5 (x+5)*y
Hanne Riis Nielson OP semantics 23

Example: x+(5*y) @oo

2010

» Concrete syntax
— parantheses disambiguate the syntax

— the grammar captures aspects like the precedence
and associativity rules

A
A=T+A|T T + A
Ti=F*T|F | T
Fa=N|X|(A N
IX](A) EoF
X N F
X 5 |
y)(
Hanne Riis Mielson OP semantics 24

Other Ambiguities QR0

2010

S = xz:=ua|skip| S.; S| if b then S| else 55
| while bdo S

X=1y=2;2:=3 fx<ythenx:=1;,y:=2elsex:=3;y =4

Xx=1,(y=2,z:=3) fx<ythen(x =1,y =2)elsex =3,y =4
(x=1,y=2),z:=3 fx<ythenx:=1,y =2else (x=3;y:=4)
while x <ydox =x+1;y:=0

while x <y do (X :==x+1;y :=0)

Hanne Riis Mielson OP semantics 25

Example Programs @oo

2010

» factorial program:

— if x = n initially then y= n/ when the program
terminates

-y = 1; while —(x=1) do (y:=y*X; x:=x-1)

» power function: Exercise 1.2

—ifx=nandy = minitially then z = n™when the
program terminates

— write the program in the while language

Hanne Riis Mielson OP semantics 26

13

APOLAA

2010

Semantics of Expressions

Note: Not really an OP approach;
Semantics of Statements will be formulated in

an OP way.
OP semantics 27
3.0
Memory Model: State szo%f@
variables semantic
» the value of x+5*y N ﬁz'n‘ﬁirs
depends on the values
) X 2
of the variables x and y p
» these are determined by y
the current state z 0

» operations on states:
the value of x+5*y is 22:

lookup in a state: s

update a state: s’ = s[y +— n] A [x+5*y]s = s(x)+5*s(y)
, sx ifr#y =2+5%4
s x= -
n if v =y =22
Hanne Riis Nielson OP semantics 28

14

Semantic Functions Q’X;?Jff@

» 4. AExp — (State — Z)

for each arithmetic expression a and each
state s the function determines the value
(a number) A[a]s of a

» B: BExp — (State — T)

for each boolean expression b and each
state s the function determines the value
(true or false) @[b]s of b

i 29
Hanne Riis Mielson OP semantics

A: AExp — (State — 2) Fon

one clause for each of N:Num — Z
- the different forms of from numerals (syntax)
arithmetic expressions to numbers (semantics)
© Aln]s — M)l
Alz]s = sz
— Alai[H az]s = Alai]s[+\.Alaz]s
Al aq oJs = Alai]s [as]s
. AJal\—/az]s = Ala]s\— Afas]s
symbols semantic
of syntax operators

Hanne Riis Mielson

OP semantics 30

15

APOLAA

(B: BExp — (State = T) | “a10

Bltrue]s
B[false]s

Bla = as]s

Bla, < a]s

B[b]s

BIIb] A b-z]S

Hanne Riis Nielson

I

=R

-
-+

S B

=

S =

(truth values)

one clause
for each of
the different
forms of
boolean
expressions

if B(b,]s — tt and B[bs]s = tt
if Blbi]s = ff or B[bs]s = ff

OP semantics

31

The rules of the game

GPLAo

2010

»the syntactic category is specified by giving
— the basic elements

— the composite elements; these have a unique
decomposition into their immediate constituents

a = ap+ az | a1 x az | a; — az
b == [true|false|a1=a2|a15a2]| b | by A by

Hanne Riiz Mielson

OP semantics

32

16

The rules of the game

APOLAA

2010

» The semantics is then defined by a compositional

definition of a function:

— there is a semantic clause for each of the basic elements

of the syntactic category

— there is a semantic clause for each of the ways for
constructing composite elements; the clause is defined in
terms of the semantics for the immediate constituents of

the elements 4,5 = Nr]
Alz]s = sz
Alay + az]s = Alai]s + Alas]s
Alar x az]s = Afai]s % Afas]s
Hanne Riis Mielson Alay — az]ls = Alai]s — Afeq]s

OP semantics

basic
elements

.~ composite

elements

33

A simple result

GPLAo

2010

»\We want to formalise the fact that the value
of an arithmetic expression only depends
on the values of the variables occurring in it

~ Definition: FV(a) is the set of free

variables in the arithmetic expression a

FV(n) = 9

V) = {z)

FV(ap + a2) = FV(ay) UFV(as)

FV(a; » a3) = FVia)UFV(ay)

FV(ay — a3) = FV(a;) UFV(ay)
Hanne Riis Mielson OP semantics

34

17

APOLAA

A simple result and its proof 2010

»Lemma: Assume that s and s’ are states
satisfying s(x) = s’(x) for all x in FV(a).
Then [a]s = 4[a]s’.

» Proof: by Structural Induction

—casen
— case X
—case a; + a,
—case a, *a,
—case a, - a,
Hanne Riis Nielson OP semantics 35
Structural Induction Q’X;%%f@

To prove a property of all the elements of the syntactic category do the
following:

e Prove that the property holds for all the basis elements of the syntactic

category.

e Prove that the property holds for all the composite elements of the
syntactic category: Assume that the property holds for all the immediate

constituents of the element — this is called the induction hypothesis —

and prove that it also holds for the element itself.

Hanne Riis Nielson . 36
OP semantics

A substitution result Q’X;%Jff@

»We want to formalise the fact that a
substitution within an expression can be
mimicked by a similar change of the state.

» Definition: Replacing all occurrences of y
within a with a,:

n|y—aq) = n

_ ag itz =1y
alyraol B z fxty
(a1 + ax)ly—ae] = {ar|y—eao]) + (az]y—ad])
{ay * ax)[i—ae, = {aq[y—rao]) * {az[y—ao))
(a1 — a)ly—a0] = {aily—ag]) — (az|y—ao))

Hanne Riis Mielson OP semantics 37
A substitution result and its SPLYH
proof 2010

»Lemma: Let
v ifrx=y
(sly—=v]) = = .
s ifxty

»then for all states s
Alaly—ai]]s = Ala](s[y—Alao]s])

’ P rOOf: Exercise 1.13

Hanne Riiz Mielson OP semantics 38

APOLAA

2010

Semantics of Statements

OP semantics

39

Updating the states

GPLAo

2010

» An aSSignment state before X
updates the state executing
Z = x+5%y Yy
» general formulation:
(r :=a, s) — slz—A[a]s] <tate after «
\ y executing
/ ' z 1= x+5"y
state before state after
executing executing
X=da X=da
Hanne Riis Nielsen OP semantics

22

40

20

Two kinds of semantics Q’X;%Jff@

> Natural semantics (NS)

— given a statement and a state in which it has
to be executed, what is the resulting state
(if it exists)? (Big-step)

» Structural operational semantics (SOS)

— given a statement and a state in which it has
to be executed, what is the next step of the
computation (if it exists)? (Small-step)

Hanne Riis MNielson OP semantics 4

i 5.0
Natural semantics Q/zo%f@
» the result of executing » the result of
the assignment x ;= ain executing the skip
the state sis the state s statement in the
updated such that x gets state sis simply
the value of a the state s
(r := a, sy — s[z—~>A[a]s] (skip, s} — s
Axiom schemas:
they can be instantiated for
particular choices of x, a and s o 4o

21

i 30
Natural semantics Q’zollﬂf@

» the result of executing S;; S, from the state s is
obtained by first executing the S, from s to
obtain its resulting state s’ and then to execute
S, from that state to obtain its resulting state s”
and that will be the resulting state for S;; S,

a rule with
- two premises

(§1, 8) = &', (8, 5" — 8"+ land

_ - one conclusion
($1;80, 8) = 8"

Hanne Riis Mielson OP semantics 43

Building a derivation szo%f@
e (skip, s) — ¢ (z 1= a, s) — s[z—>Ala]s]
l | e
instances (skip, s9) — $So (x:=x+1, s0) > sp[x—1]

\the state that
is as sp except

that x is 1
{skip, o) = Sp, {x 1= x+1, 55} — so[x—1]
(skip: X := x+1, sg) — so[x—1]
instance of rule: ’ , ;
the premises are {S1,8) = ¢, (Sa, 8") > s
Hanne Riis MNielson SatlSﬂed (SI;SQ) 5} — S” 26

OP semantics 44

22

i 30
Natural semantics /{{720]1::41@

» The result of executing if b then S, else S, from
state s depends on the value of b in state s:
— If it is tt then the result is the resulting state of S,
— If it is ff then the result is the resulting state of S,

(81, 8) = ¢ side
{if b then S, else Sy,) > & conditions
(82, 3) — S' /
if Blb]s =1
{if b then 9, else 9., s) —» &' must be

computable
i 30
Natural semantics Qyzo%f@

» The result of executing while b do S from state s
depends on the value of b in state s:

— If itis tt then we first execute S from s to obtain its
resulting state s’ and then repeat the execution of
while b do S but from s’ in order to obtain its resulting
state s” which then will be the overall resulting state

— If itis ff then the resulting state is simply s

(§,s) » s, (while bdo S, s} > &"
(while bdo §, s) — 5"

{while b do S, s) — sQf B[b]s = ff cor?;ci’gons
46

it B[b]s = tt

Hanne Riis Mielson OP semantics

23

Summary: natural semantics

APOLAA

2010
{w:=a, s) — slxv Afa]s]
(skip, s} — s
{Sl L5y g’ <52) .H’:.\ — g
<5‘1; aSg . .‘-v') — gff
(51, 8) = & if B[b]s = tt
) 5 =
{(if b then S| else S5, 5) — s’
52, 8) — & if B[b]s = fF
(if b then S| else 53, s) — &'
(§.s) — s {(whilebdo S, s') — s i B[b]s = tt
(while bdo S, s) — &” C
(while bdo S, s) — s if B[b]s = fF
47

OP semantics

3.0
Example Q/zo%f@

Si(y) =1, §i(x) =

. S=3S8
Factotial, x== 03
{Y::Y*x‘ 832) 562 (x=x-1, -‘62,\- 61
{y:=yx; xi=x—1, 532) 351 {while —{z=1) do (y:=y*x; =%x—1), 5¢1)— 34

{y:=y*X, 312) 523 {x:=x—1, 823} 323

{yi=y*x; xi=x—1, s13) =510 {while —{x=1) de (y:=y*x; T:=x—1), $32) 551

{y==1, 8)—=s13 {while —{x=1) do (y:=y#*x; x:=x—1), 513)— a1

(y:==1; while ~(x=1) do (y:=y#x; x:=x—1), 8)—sg,

48

Hanne Riis Mielson OP semantics

24

- Q,'\\,DM@
Exercise 2010

» Consider the statement
z:=0; whiley=xdo (z:=2z+1; X 1= Xx-y)
Construct a derivation tree for the

statement when executed in a state where
X has the value 17 and y has the value 5.

OP semantics 49

GPLAo

2010

Terminology

OP semantics 50

25

] i 30
Derivation trees Q’zollﬂf@

» When we use the axioms and rules to derive a
transition (S,s) — s’ we obtain a derivation tree:
— the root of the tree is (S,s) — 8’
— the leaves of the tree are instances of the axioms
— the internal nodes of the tree are the conclusions of
instances of the rules; they have the corresponding
instances of their premises as immediate sons
» The execution of S from s
— terminates if there is a state s’ such that (S,s) —» &’
— loops if there is no state s’ such that (S,s) — s’

i 51
Hanne Riis Nielson OP semantics

: $PL4o
Exercise 2010

» Consider the following statements
—while = (x=1)do (y := y*X; X == x-1)
—while 1 = xdo (y ;= y*X; x :=x-1)
— while true do skip
For each statement determine whether or
not it always terminates or it always loops.

Argue for your answer using the axioms
and rules of the NS.

Hanne Riis MNielson OP semantics 52

26

. . 5.0
Semantic equivalence Q’zolffl@

~ Definition: Two statements S, and S, are
semantically equivalent if for all states s
and s’

(S4,8) > s’ifand only if (S,,8) > ¢’

»Lemma: while b do S and if b then (S;
while b do S) else skip are semantically

equivalent
: 10
Property of the Semantics ~ “5..C
Lemma [2.5] The statement

while b do .S
i pemantically equivalent to
if b then (S5; while b do 5) else skip.

Proof Part |: (¥) = (*¥)
Part Il: (%) = (¥)

{while b do S, 5} — 5" (*)

(if b then (S; while b do S) else skip, s) — 3" (**)

© Ralf Lammel, 2009-2010 unless noted otherwise

OP semantics 54

27

Lemma 2.5: while b do S and 3.0
if b then (S; while b do S) else skip % Lo

: . 2010
are semantically equivalent
Proof part 1:
Assume
(8, s)—s" {(while bdo S, s')—¢" Blb]s = tt
{while bdo §, s) —+ s -’
~
v
7’
/
v
”
P s {8, s)—s' {while b do 5, s")—¢"
”
P s {S;whilebdo S, s) —+ s”
7’
{if b then (; while b do S) else skip, 5) — s”
Hanne Riis Nielsen OP semantics 55
Lemma 2.5: while b do S and A 0L4A
if b then (S; while b do S) else skip 2010
are semantically equivalent
Assume
B [b]s = ff
{while bdo §, s} — s
” Proof part 2:
s=s” must , ”
be the case ”
”
’ s s=s” must
” . 0 be the case
P (skip, 8)—s
”
”
»7 (if b then (S; while b do S) else skip, s) — "

56

Hanne Riis Mielson OP semantics

28

- Q,'\\,QM@
Exercise 2010

»Prove that (S;; S,); S;and S;; (S,; S;) are
semantically equivalent

Hanne Riis Mielson OP semantics 57

GPLAo

2010

Proof principles for
natural semantics

OP semantics 58

29

P i 30
Deterministic semantics Q’zolff@

» Definition: the natural semantics is
deterministic if for all statements S and
states s, s’and s”

(S, s) —+ s and (S, s) —» s imply s’ = "

» Lemma: the natural semantics of the while
language is deterministic

» Proof: by induction on the shape of the
derivation tree f

OP semantics

Induction on the shape of A OL4A
derivation trees 2010

To prove a property of all the derivation trees of a natural semantics do the
following:

e Prove that the property holds for all the simple derivation trees by showing

that it holds for the axioms of the transition system.

e Prove that the property holds for all composite derivation trees: For each
rule assume that the property holds for its premises — this is called the
induction hypothesis — and prove that it also holds for the conclusion of

the rule provided that the conditions of the rule are satisfied.

OP semantics

Why not induction on the @O
structure of programs? 2010

*Because the semantics for While-statement is
self-referential.

(S, sy — &, (while b do §, s} — §"

if B[b]s = tt
(while bdo §, s) — 5"
Hanne Riis MNielson OP semantics 61
Induction of the shape of SPLYH
derivation trees: P(.) holds 2010

(I) Axioms: induction base
(Il)Inference rules

4) (3

P< = >

\. J \ J

P(<S, s>=>5s)

OP semantics 62

31

Induction of the shape of QA PL4YA
derivation trees: P(.) holds 2010

several premises (nz0)

3

computable
side condition

» |If we have derivation trees that matches the premises
and if the side condition is fulfilled

» then we can construct a derivation tree for the
conclusion

OP semantics 63

Proof of Determinacy Q’Xﬁ%@

The case [comp,s): Assume that
(S1:8y, s)—s

holds hecause
(81, s)—sp and {Sy, s9)—s'

for some sy. The only rule that could be applied to give {S;:55, s)—s" is [compy
so there is a state s, such that

(81, 8)—s; and {Sy, 51)—s"

The induction hypothesis can be applied to the premise (S, s)—sg and from
(S, s)—s; we get sg = s1. Similarly, the induction hypothesis can be applied to
the premise (S, so)—s" and from (Sy, sg)—s" we get s' = 5" as required.

OP semantics 64

32

Summary: Natural semantics %zom
simple (x:=a,s) — sz Ala]s]
derivation . .
trees (skip. s) — s
' ((S1.5) =8 (Sh.8)—s"
(S1: 859, s} — &

i (Agl 3 ‘3) — ,‘)I . -
composite (if b then S| else Sy. s) — &' L LR
derivation g .
trees {(S2,8) — & -

. f B[b]s = ff

i (if b then Sy else Sy. s) — &' it Bl

(5 5% —= 5 1 S .5 — 5
(S. s) - \Whlle-‘{) do S, :; 5" B[U]s = t

: _ (while bdo S, s) — s

s L (uhilebdo 8, 5) — s if B[b]s —

OP semantics 65
AP
Summary 2010

* Summary: Big-step operational semantics
+ Models relations between syntax, states, values.
+ Uses deduction rules (conclusion, premises).
+ Computations are derivation trees.
* Prepping: “‘Semantics with applications”
+ Chapter | and Chapter 2.1
* Outlook:
+ Small-step semantics
+ More properties and proofs
+ Language extensions of While

19 66

© Ralf Lammel, 2009-2010 unless noted otherwise 29

33

Homework ks

2010

The exercise session today:
Natural Semantics
for
the repeat construct

S = a:=al|skip|S;5; | if b then 51 else 5
| =wirtFeb-do=5| repeat S until b

OP semantics 67

Homework o

2010

» Specify the semantics of the construct
repeat S until b

The specification is not allowed to rely on
the existence of the while construct in the
language.

Prove that repeat S until b is semantically

equivalent to S; if b then skip else (repeat S
until b) (Optional)

OP semantics 68

34

APOLAA

2010

Programming Exercise

Code Skelton in ML will be provided

OP semantics

69

Goal

2010

GPLAo

while

initial

program \ / state

improves your
understanding
of the axioms
and rules and

resulting
state

Hanne Riis Mielson

interpreter for

of While

OP semantics

Natural Semantics

what they say /\

error
messages

70

35

Syntax of While in ML

APOLAA

2010

each syntactic type
. type VAR
category gives
rise to a data datatype
type
datatype
datatype

= string

= string

AEXP = Num of
| var of
| Add of
| Mult of
| sub of

BEXP = tt
| £f
\

STM = Ass of
| skip
\

NUM
VAR

AEXP * AEXP
AEXP * AEXP
AEXP * AEXP

VAR

* AEXP

Example: y =y " x

becomes Ass ("y", Mult

OP semantics

(Va]_‘ "Y"r Var |IXII)"]

71

Expressions

GPLAo

2010
Expressions Al =
Alz]s = s«
State =Var— Z
Alay +as]s = Afay]s + Afas]s
N:Num — 2
- Alay *as]s = Afag]s « AJas]s
A: AExp — (State — Z)
B: BExp — (State —» T) Al —aels = Alnls - Al
type STATE = VAR -> int
each semantic (* N : NUM -> int =*)
function gives
rise to a SML fun N n = valof (Int.fromString n)
function
(* A: AEXP -> STATE -> int *)
fun A (Num n) s =Nn
| B (var x) s = 5 X
| A (rdd (al,a2)) s = A al s + A az s
A
Hanne Riis Nielson | 72

36

Natural Semantics Q’X;(jlff@

the transition relation

‘ i gives rise to a function
L/l U A in SML — why does that
s work, by the way?

(ekip. 5) —

(S1,8) — &

- - - if B[b[s = tt
(if b then 5, else S5, s) — &'
(Sh 5) — &
- — — if B[b]s=fF
(if b then 5, else Sy . s) — &'
- . , datatype CONFIG
(§,5) — &' (whilebdo S, &) yp

if B[W]s = tt = Inter of STM * STATE

(while bdo &, &) — & X
| Final of STATE

(whilebdo S, s) — s i Bb]s = &

fun update x a 5 = ...

fun NS (Inter ((Ass (x,a)), s)) = Final ...
| NS (Inter (skip, s)) = Final s
| Ns ..
OP semantics 73
- $PL4n
Exercise 2010

» Complete the SML implementation

» Test the implementations on programs like
—y: =1, while=(x=1)do(y:=y*x;x:=x-1)
—z:=0;whiley =xdo (z:=z+1; x := x-y)

— while = (x =1) do (y := y*x; x := x-1)
— while 1 =xdo (y = y*™x; x:=x-1)

— while true do skip

using a number of different states

» Extend the implementation to include the
repeat construct

OP semantics 74

37

x=1 letx=1in...

x(1).
’X(7) x.set(1)

Programming Paradigms and Formal Semantics

Small-Step Operational Semantics

Ralf LAmmel

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Structured operational semantics: describe how
the individual steps of the computation take place.

Transition system: (I, T, =)

o I'={(S,s) | S € While, s € State}

U State

e T = State

e = C {(9,s)| S € While, s € State}
x I

Two typical transitions:

e the computation has not been com-
pleted after one step of computation:
(S,8) = (9,9

e the computation is completed after
one step of computation:
(S,s) = ¢

© Ralf Lammel, 2009-2010 unless noted otherwise 2

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

SOS (statements)

[asSs0s] (z = a, 8) = s[z—A[a]s]
[skipsos) (skip, 8) = s
<Sla 5) = < 'la 5'>
[compy,]
(81;S9, s) = (87;52, §")
(81, s) = ¢
[compZ] ,
(Sl;SQ, 5) = <SQ, S)
[if2] (if b then S; else Sy, s) = (S, s) if B[b]s = tt
[iff] (if b then S; else Sy, s) = (S, s) if B[b]s = ff
[whilegos] (while b do S, s) =
(if b then (5; while b do S) else skip, s)
© Ralf Lammel, 2009-2010 unless noted otherwise 3
2010546513028

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

llustration of transitions

(z:=xx:=7y);y =z,)
= (x:=7y; ¥ := z, So[z—5])

Derivation sequence

= (y == z, (s0[z—5])[x—T])

(many transitions) = (sufs5]) o T) [y

(z := x, 8p) = So[z—5]

Derivation tree
(z:=x;x =7y, so) = (x =y, so[z—5])

(for each single step)

(z=xx:=7y);y =2, 8) = (x:=y;y =z, s[z—5])

© Ralf Lammel, 2009-2010 unless noted otherwise 4

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Statement execution

* Start configuration: statement §, state s

* Execution ...
+ terminates iff there is a finite derivation sequence starting from <S;s?
+ loops iff there is an infinite derivation sequence starting from <S$,s>

+ terminates successfully if <Ss> =* s’ for some s’

© Ralf Lammel, 2009-2010 unless noted otherwise 5

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Big-step style

(S1, 8) = &, (89, ') = &
(S1;52, s) — "

[compyg]

Small-step style

(51, s) = (51, ')

[compg]
oo (S1;89, s) = (8;59, ')
) (S1, s) = ¢
[Compsos] '
<81;SQ, S> = <SQ, S>
© Ralf Lammel, 2009-2010 unless noted otherwise 6

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Properties of the semantics

Lemma [2.19] If (Si;5,5) =" s" then
there exists s’, k1 and ky such that

(Sy,5) =k &,
(Sy,8") =2 " and
k =k + ko

Proof We proceed by induction on the number k.

Proof by induction on the length of

derivation sequences

© Ralf Lammel, 2009-2010 unless noted otherwise 7

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Induction on the Length of Derivation Sequences

1: Prove that the property holds for all derivation sequences of length 0.

2: Prove that the property holds for all other derivation sequences: Assume
that the property holds for all derivation sequences of length at most k
(this is called the induction hypothesis) and show that it holds for deriva-
tion sequences of length k+1.

© Ralf Lammel, 2009-2010 unless noted otherwise 8

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Lemma 2.19 If (§,;95, s) =% s” then there exists a state s’ and natural numbers
k; and ky such that (S, s) =¥ s’ and (S5, §') =** 5" where k = k; +k,.

Proof: The proof is by induction on the number k, that is by induction on the
length of the derivation sequence (5;;5, s) =¥ s".

If k = 0 then the result holds vacuously.

For the induction step we assume that the lemma holds for k < ko and we shall
prove it for kg+1. So assume that

(81;8, s) =kotl g
This means that the derivation sequence can be written as
<Sl;S2, S) = #ko s"

for some configuration v. Now one of two cases applies depending on which of the
two rules [compg] and [comp?] was used to obtain (S;52, s) = 7.

© Ralf Lammel, 2009-2010 unless noted otherwise 9

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

s 1ol
17 <S 1y S> < 1S >
In the first case where [comp,] is used we have

(81382, 5) = (8182, s') <Sl;52, 3> = < 11;52, SI>

because
(81, 8) = (51, 8')
We therefore have
(51352,) =5

and the induction hypothesis can be applied to this derivation sequence because
it is shorter than the one we started with. This means that there is a state sq and
natural numbers k; and ky such that

<S'1, s’) =k so and <527 30> =k g1
where k;-+ky=ky. Using that (S1, s) = (51,) and (81, ') =¥ s we get
(84, s) =kt 5

We have already seen that (S2, so) =% s” and since (k;+1)+ky = ko+1 we have
proved the required result.

© Ralf Lammel, 2009-2010 unless noted otherwise 10

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

<Sl, 8> = s

<Sl;52a S> = <S2> SI>

The second possibility is that [comp2 | has been used to obtain the derivation
(81;82, s) = 7. Then we have

(51, 8) = ¢
and v is (S, s') so that
<SQ, 8'> ko g

The result now follows by choosing k;=1 and ky=kg. O

© Ralf Lammel, 2009-2010 unless noted otherwise Il

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Equivalence of semantics

Sus: Stm — (State — State)

Ssos: Stm — (State — State)

s if (S, s) = ¢
undef otherwise

Sulsls = {

s if (S, s) =* ¢
Ssos[S]s =

undef otherwise

Theorem 2.26 For every statement S of While we have Sys[S] = Ssos[5]-

© Ralf Lammel, 2009-2010 unless noted otherwise 12

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Theorem 2.26 For every statement S of While we have S5[S] = Ssos[S]-

Proof Summary for While:

Equivalence of two Operational Semantics

1: Prove by induction on the shape of derivation trees that for each derivation
tree in the natural semantics there is a corresponding finite derivation
sequence in the structural operational semantics.

2: Prove by induction on the length of derivation sequences that for each
finite derivation sequence in the structural operational semantics there is
a corresponding derivation tree in the natural semantics.

© Ralf Lammel, 2009-2010 unless noted otherwise I3

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Theorem 2.26 For every statement S of While we have Sy[S] = Ssos[S]-

Lemma 2.27 For every statement S of While and states s and s’ we have
(S, sy — s" implies (9, s) =* &'

So if the execution of S from s terminates in the natural semantics then it will
terminate in the same state in the structural operational semantics.

Lemma 2.28 For every statement S of While, states s and s’ and natural number
k we have that

(8, s) =K 5" implies (S, s) — 5.

So if the execution of S from s terminates in the structural operational semantics
then it will terminate in the same state in the natural semantics.

© Ralf Lammel, 2009-2010 unless noted otherwise 14

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

(S, s) =¥ s’ implies (S, s) — s

Proof: The proof proceeds by induction on the length of the derivation sequence
(8, s) =K &', that is by induction on k.

If k=0 then the result holds vacuously.

To prove the induction step we assume that the lemma holds for k < kg and
we shall then prove that it holds for ko+1. We proceed by cases on how the first
step of (S, s) =¥+l s is obtained, that is by inspecting the derivation tree for
the first step of computation in the structural operational semantics.

The case [assgs|: Straightforward (and ko = 0).
The case [skipgs): Straightforward (and ko = 0).

© Ralf Lammel, 2009-2010 unless noted otherwise I5

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

The cases [compl | and [compZ2_]: In both cases we assume that
<51;SQ, S> :>k0+1 s

We can now apply Lemma 2.19 and get that there exists a state s’ and natural
numbers k; and ko such that

(81, 8) =k &' and (S, s') =k s

where k;+ko=k¢+1. The induction hypothesis can now be applied to each of these
derivation sequences because k; < kg and ky < kg. So we get

(S1, s) — s" and (S5, s') — §"

Using [comp,s] we now get the required (S;;5, s) — s".

Further composites omitted.

© Ralf Lammel, 2009-2010 unless noted otherwise |16

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Definitions and proofs

+ Three approaches to semantics
* Compositional definitions
* Natural semantics
* SOS
+ Three proof principles
* Structural induction
* Induction on the shape of derivation trees

* Induction on the length of derivation sequences

© Ralf Lammel, 2009-2010 unless noted otherwise 17

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Extensions of While

S = x:=a | ski S1; S :
| skip | 515 Aborting a

‘ if b then 51 else SQ computation
‘ while b do S

""""""""""""""" E Nondeterminism
‘ abort

| S1or Sy Parallelism
| 51 par S

L

© Ralf Lammel, 2009-2010 unless noted otherwise

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding abort

Configurations:

{(S,s) | S € While™! s ¢ State}
U State

Transition relation for NS:

unchanged

Transition relation for SOS:

unchanged

© Ralf Lammel, 2009-2010 unless noted otherwise 19

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

NS vs. SOS SKip

while true do skip

°~

* A natural semantics may “‘succeed” with a final state or it may falil
to succeed: this could mean both: abortion or nontermination.
One could extend the set of final configurations to specifically
distinguish “stuck” configurations due to abort.

* In a SOS, looping is reflected by infinite derivation sequences and

abnormal termination by finite derivation sequences ending in a
stuck configuration.

© Ralf Limmel, 2009-2010 unless noted otherwise 20

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding nondeterminism

x:=1or (x:=2;x:=x+ 2) evaluatesto | or4.

[Orslos] <Sl or SQ, S) = <Sl, 3)
[or2] (81 or Sy, 8) = (52, s)
(S1, s) = &
[ory]
(81 or Sq, s) = &
S, 8) — &
for2,] 2.)
(S10r Sy, 8) — &
© Ralf Lammel, 2009-2010 unless noted otherwise 21

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

N S VS S O S Does the following program terminate?

(while true do skip) or (x := 2; x := x+2)

* In a natural semantics, nondeterminism suppresses looping, if
possible, that is, the terminating option will be manifested by any
transition (derivation tree).

* In a SOS, nondeterminism does not suppress looping, that is, the
derivation sequence could commit to a choice that leads an
infinite sequence.

© Ralf Limmel, 2009-2010 unless noted otherwise 22

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding parallelism

x := 1 par (x := 2; x := x+2) evaluates to |, 3, or 4.

Transition relation for SOS:

(51,8) = (51, 8')

(Sl par S, S) = (Si par S, S/)

(S1,8) = ¢
(Sl par SQ, s) = (SQ, 8’)

(5, 8) = (59, 8')

(Sl par SQ, S) = (Sl par Sé, S')

(Sy,8) = ¢
(Sl par Sg, S) = (Sl, S/)

© Ralf Lammel, 2009-2010 unless noted otherwise

Transition relation for NS:

(S1,8) = 8, (Sy,8) — "
(Sl par SQ, S) — 5

(So,8) = &', (51,8) — ¢
(Sy par Sp,8) — §”

23

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

NS vs. SOS

* In a natural semantics, the execution of the immediate
constituents is an atomic entity. Hence, we cannot express

interleaving of computations.

x := 1par (x := 2; x := x+2) evaluates to I, 4.

e In a SOS, small steps are modeled and hence interleaving is easily

expressed.

x :=1par (x := 2; x := x+2) evaluates to |, 3, or 4.

© Ralf Lammel, 2009-2010 unless noted otherwise

24

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Blocks and procedures

S = xz:=ua|skip| 51 ; 5o
| if b then S; else S,
| while bdo S

call p
Dy = varxz:=a; Dy |e |
Dp = procpis S;Dp|e:
© Ralf Lammel, 2009-2010 unless noted otherwise 25

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of var declarations

Extension of semantics of statements:

(Dy, s) —p s, (S, s) — §"
(begin Dy S end, s) — s”"[DV(Dy)— s

Semantics of variable declarations:

(Dy, sl — Alals]) —p &
(var x := a; Dy, s) —p §

(e,8) —=p s

© Ralf Lammel, 2009-2010 unless noted otherwise 26

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Scope rules

* Dynamic scope for variables and procedures
* Dynamic scope for variables but static for procedures
e Static scope for variables as well as procedures

begin var x := 0;
proc p is x := X * 2;
proc q is call p;
begin var x := 5;
proc p is x :=x + 1;
call g; y := x
end
end
© Ralf Lammel, 2009-2010 unless noted otherwise 27

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Scope rules

* Dynamic scope for variables and procedures
* Dynamic scope for variables but static for procedures
* Static scope for variables as well as procedures

begin var x3:= 0;
proc:’.}')\,is X 1= X % 2
proc?i is call p;
begin vay x}:= 5;
pro&fﬁtis X 1= x + 1;
call’q; y := x
end
end

© Ralf Lammel, 2009-2010 unless noted otherwise 27

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope T e p ek e 2,

. proc q is call p;
for variables and procedures gl var x5 L
call q; y := x

© Ralf Lammel, 2009-2010 unless noted otherwise 28

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope T e p e % = 2,
. proc q is call p;
for variables and procedures BB e X Sk,
call q; y = x

e Execution

© Ralf Limmel, 2009-2010 unless noted otherwise 28

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope T e p ek e 2,

proc q is call p;

for variables and procedures P S D

proc p is x := x + 1;
call q; y := x
end
end

e Execution

+callg

© Ralf Lammel, 2009-2010 unless noted otherwise 28

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope T e p e % = 2,

proc q is call p;

for variables and procedures

proc p is x := x + 1;
call q; y = x
end
end

e Execution
+ call g

+ call p (calls inner; say local p)

© Ralf Limmel, 2009-2010 unless noted otherwise 28

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope T e p ek e 2,

proc q is call p;

for variables and procedures begin var x := §;

proc p is x := x + 1;
call q; y := x
end
end

 Execution
+callg
+ call p (calls inner, say local p)

+ x:=x + | (affects inner, say local x)

© Ralf Lammel, 2009-2010 unless noted otherwise 28

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic Scope peen ;:Zcxp:zso};(=X Ok 25

proc q is call p;

for variables and procedures

proc p is x := x + 1;
call q; y = x
end
end

* Execution
+ call g
+ call p (calls inner; say local p)
+ x:=x + | (affects inner, say local x)

+ y 1= x (obviously accesses local x)

© Ralf Limmel, 2009-2010 unless noted otherwise 28

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope

for variables and procedures

e Execution

+callg

+ call p (calls inner, say local p)

+ x:=x + | (affects inner, say local x)

+ y 1= x (obviously accesses local x)

* Final value of y = 6

© Ralf Lammel, 2009-2010 unless noted otherwise 28

begin var x := 0;

end

proc p is x := x * 2;

proc q is call p;

begin var x := 5;
proc p is x := x + 1;
call q; y := x

end

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

[assps)

[skipns]

[compns]

[blockys]

[eallz]

envp b (z := a, s) = s[z—Ala]s]
envp b (skip, s) — s

envp = (S1, s) = §', envp F (52, §') = §"

envp F (51;52, s) = §"

envp - (S1, s) = '

envp - (if b then §; else Sy, s) — &
if B[b]s = tt

envp = (Sa, s) = '

envp - (if b then §; else Sy, s) — &
if B[b]s = fF

envp (S, s) = &, envp - (while b do S, s') — 5"

envp b (while b do S, s) — s"
if B[b]s = tt
envp F (while b do S, s) = s
if B[b]s = ff

(Dy, s) =p §', updp(Dp, envp) F (S, §') — 5"

envp b (begin Dy Dp § end, s) — s"[DV(Dy)—ss] :

envp = (S, s) = ¢

where envp p = S

updp(proc p is §; Dp, envp) = updp(Dp, envp[p—S])

updp(e, envp) = envp

© Ralf Limmel, 2009-2010 unless noted otherwise 29

NS
with
dynamic
scope rules
using an
environment

Envp = Pname — Stm

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables ™ =50 -se s

Static scope for procedures mgn ke s

© Ralf Lammel, 2009-2010 unless noted otherwise 30

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables " - xv s

Static scope for procedures mgm v

e Execution

© Ralf Limmel, 2009-2010 unless noted otherwise 30

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables ™ =50 -se s

proc q is call p;

Static scope for procedures bogin vax x = 5

proc p is x := x + 1;
call q; y := x
end
end

e Execution

+callg

© Ralf Lammel, 2009-2010 unless noted otherwise 30

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables " - xv s

proc q is call p;

Static scope for procedures

proc p is x := x + 1;
call q; y = x
end
end

e Execution
+ call g

+ call p (calls outer, say global p)

© Ralf Limmel, 2009-2010 unless noted otherwise 30

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

begin var x := 0;

Dynamic scope for variables oop sk i x

proc q is call p;

Static scope for procedures begin var x =5

call q; y := x
end
end

 Execution
+callg
+ call p (calls outer, say global p)

+ x:= x * 2 (affects inner, say local x)

© Ralf Lammel, 2009-2010 unless noted otherwise 30

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

begin var x := 0;

Dynamic scope for variables e 15 % = x 4 2

proc q is call p;

Static scope for procedures gt var x =0

call q; y = x
end
end

* Execution
+ call g
+ call p (calls outer, say global p)
+ x = x * 2 (affects inner, say local x)

+ y 1= x (obviously accesses local x)

© Ralf Limmel, 2009-2010 unless noted otherwise 30

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables ™ =50 -se s

proc q is call p;

Static scope for procedures bogin vax x = 5

proc p is x := x + 1;
call q; y := x
end
end

 Execution
+callg
+ call p (calls outer, say global p)
+ x:= x * 2 (affects inner, say local x)
+ y 1= x (obviously accesses local x)

e Final value of y = 10

© Ralf Lammel, 2009-2010 unless noted otherwise 30

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables
Static scope for procedures

Updated environment

Envp = Pname — Stm x Envp

Updated environment update

updp(proc p is S; Dp, envp) = updp(Dp, envp[p—(S, envp)])

updp (g, envp) = envp

Updated rule for calls env'y (S, s) = '

envp F (call p, s) — s

where envp p = (5, env’p)

* Recursive calls env’p[p— (S, env’p)] F (S, s) — &

envp - {call p, s) — &

where envp p = (S, env’p)

© Ralf Lammel, 2009-2010 unless noted otherwise 31

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope ey ia ke,

. proc q is call p;
for variables and procedures R Y
call q; y :=

Ll

end
end

© Ralf Lammel, 2009-2010 unless noted otherwise 32

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope
for variables and procedures

]

end
end

e Execution

© Ralf Limmel, 2009-2010 unless noted otherwise 32

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope ey ia ke,

proc q is call p;

for variables and procedures P S D

proc p is x := x + 1;
call q; y := x
end
end

e Execution

+callg

© Ralf Lammel, 2009-2010 unless noted otherwise 32

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope T ek =

proc q is call p;

for variables and procedures

proc p is x := x + 1;
call q; y = x
end
end

e Execution
+ call g

+ call p (calls outer, say global p)

© Ralf Limmel, 2009-2010 unless noted otherwise 32

2010%6A13HEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope

begin var x := 0;
proc p is x := x * 2;
proc q is call p;

for variables and procedures begin var x := §;

e Execution

+callg

proc p is x := x + 1;
call q; y := x
end
end

+ call p (calls outer; say global p)

+ x := x * 2 (affects outer, say global x)

© Ralf Lammel, 2009-2010 unless noted otherwise

32

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope

begin var x := 0;
proc p is x := x * 2;
proc q is call p;

for variables and procedures

e Execution

+ call g

proc p is x := x + 1;
call q; y = x
end
end

+ call p (calls outer; say global p)

+ x := x * 2 (affects outer, say global x)

+ y 1= x (obviously accesses local x)

© Ralf Lammel, 2009-2010 unless noted otherwise

32

201056 A13AEMH

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

begin var x := 0;

S-ta-tic Scope proc p is x := x * 2;

proc q is call p;

for variables and procedures gl var x5 L

call q; y := x
end
end

 Execution
+ call g
+ call p (calls outer; say global p)
+ x := x * 2 (affects outer, say global x)
+ y:= x (obviously accesses local x)

* Final value of y =5

© Ralf Lammel, 2009-2010 unless noted otherwise 32

2010%6H13HEM

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

begin var x := 0;

S-ta-tic Scope proc p is x := x * 2;

proc q is call p;

for variables and procedures bgla var x5

call q; y = x
end
end

e Execution
+ call g

+ call p (calls outer, say global p) Formal semantics

omitted here.

+ x := x * 2 (affects outer, say global x)
+ y 1= x (obviously accesses local x)

 Final value of y =5

© Ralf Limmel, 2009-2010 unless noted otherwise 32

2010%6A13HEMH

