Homework Assignment 3 Solution [Compiled on July 4, 2009]

Problem 1

We shall prove all the properties with a Kripke model $\mathfrak{M} = (W, (\mathcal{K}_i)_i, (\mathcal{D}_G)_G, \pi)$ and an arbitrary world $w \in W$. (An interpreted system \mathcal{I} and an arbitrary point (r, m) in it can be considered as a special case and are sufficient, too.)

- (a) Assuming $\mathfrak{M}, w \Vdash D_G \varphi \wedge D_G(\varphi \supset \psi)$, we know that $\mathfrak{M}, w' \Vdash \varphi$ and $\mathfrak{M}, w' \Vdash \varphi \supset \psi$ for all points $w' \in \mathcal{D}_G(w)$. These give $\mathfrak{M}, w' \Vdash \psi$, thus $\mathfrak{M}, w \Vdash D_G \psi$. So $(D_G \varphi \wedge D_G(\varphi \supset \psi)) \supset D_G \psi$ is valid.
- (b) Assuming $\mathfrak{M}, w \Vdash D_G \varphi$, we know that $\mathfrak{M}, w' \Vdash \varphi$ for all points $w' \in \mathcal{D}_G(w)$. Since \mathcal{K}_i are all reflexive, $\mathcal{D}_G = \bigcap_{i \in G} \mathcal{K}_i$ is also reflexive. Thus $w \in \mathcal{D}_G(w)$, and $\mathfrak{M}, w \Vdash \varphi$ also holds. So $D_G \varphi \supset \varphi$ is valid.
- (c) Assuming $\mathfrak{M}, w \Vdash D_G \varphi$, we know that $\mathfrak{M}, w' \Vdash \varphi$ for all points $w' \in \mathcal{D}_G(w)$.

Now we want to prove that for any $w'' \in \mathcal{D}_G(w')$, it is still true that $\mathfrak{M}, w'' \Vdash \varphi$. This is because that \mathcal{K}_i are all transitive, \mathcal{D}_G is also transitive, and $w'' \in \mathcal{D}_G(w)$, which implies $\mathfrak{M}, w'' \Vdash \varphi$.

So that $\mathfrak{M}, w' \Vdash D_G \varphi, \mathfrak{M}, w \Vdash D_G D_G \varphi$, and $D_G \varphi \supset D_G D_G \varphi$ is valid.

(d) Assuming $\mathfrak{M}, w \Vdash \neg D_G \varphi$, we know that there exists a point $w' \in \mathcal{D}_G(w)$ such that $\mathfrak{M}, w' \nvDash \varphi$.

Then since \mathcal{K}_i are all symmetric and transitive, \mathcal{D}_G is also symmetric and transitive. Which means that for all $w'' \in D_G(w)$, $w \in D_G(w'')$, and finally $w' \in D_G(w'')$ by transitivity.

This implies that $\mathfrak{M}, w'' \Vdash \neg D_G \varphi$ since w' is a counterexample. Finally we get $\mathfrak{M}, w \Vdash D_G \neg D_G \varphi$ and $\neg D_G \varphi \supset D_G \neg D_G \varphi$ is valid.

- (e) Since $\mathcal{D}_{\{i\}}$ is defined as $\cap_{\{j\in\{i\}\}}\mathcal{K}_j = \mathcal{K}_i, D_{\{i\}}\varphi$ is identical to $K_i\varphi$.
- (f) From $G \subseteq G'$ we have

$$\mathcal{D}_G = igcap_{i \in G} \mathcal{K}_i \supseteq igcap_{i \in G'} \mathcal{K}_i = \mathcal{D}_{G'}$$

Assuming $\mathfrak{M}, w \Vdash D_G \varphi$, we know that $\mathfrak{M}, w' \Vdash \varphi$ for all points $w' \in \mathcal{D}_G(w)$. Then for every points $w'' \in \mathcal{D}_{G'} \subseteq \mathcal{D}_G, \mathfrak{M}, w'' \Vdash \varphi$, which implies that $\mathfrak{M}, w \Vdash D_{G'} \varphi$, and $D_G \varphi \supset D_{G'} \varphi$ is valid given that $G \subseteq G'$.

Problem 2

- (a) Given $\mathfrak{M} = (W, (R_a)_{a \in \Pi_0}, \pi)$, for every $w \in W$, assume that $\mathfrak{M}, w \Vdash \langle \alpha \rangle \varphi$. There is a $u \in W$ such that $(w, u) \in R_{\alpha}$ and $\mathfrak{M}, u \Vdash \varphi$. Then
 - $\begin{array}{ll} (w,u) & \in R_{\alpha^{-}} \\ (w,w) & \in R_{\alpha} \circ R_{\alpha^{-}} \\ (w,u) & \in R_{\alpha} \circ R_{\alpha^{-}} \circ R_{\alpha} = R_{\alpha\alpha^{-}\alpha} \end{array}$

and $\mathfrak{M}, w \Vdash \langle \alpha \alpha^- \alpha \rangle \varphi$. Which means $\langle \alpha \rangle \varphi \supset \langle \alpha \alpha^- \alpha \rangle \varphi$.

(b) $\mathfrak{M}, w \Vdash \langle \alpha^* \alpha \rangle \varphi$ iff there exists $u \in W$ such that $(w, u) \in R_\alpha, \mathfrak{M}, u \Vdash \varphi$. Assume that it is v_n such that $(w, v_n) \in R^n_\alpha$ and $(v_n, u) \in R^n_\alpha$.

If n = 0 the implication is obvious. Otherwise, let $v_i \in W$, $0 \leq i < n$, $v_0 = w$, and $(v_i, v_{i+1}) \in R_{\alpha}$. Then $(w, v_1) \in R_{\alpha}$ and $(v_1, u) \in R_{\alpha}^n$, which imply that $\mathfrak{M}, w \Vdash \langle \alpha \alpha^* \rangle \varphi$. And the another direction is the same.

(c) This is almost the same as (b), except that the v_i are defined on $0 \leq i \leq 2n$ with $(w, v_0) \in R_a, v_{2n} = u, (v_{2j}, v_{2j+1}) \in R_b$, and $(v_{2j+1}, v_{2j+2}) \in R_a$ for $0 \leq j < n$. Then $(w, v_{2n-1}) \in R_{(ab)^*}, (v_{2n-1}, u) \in R_a$ and $\langle a(ab)^* \rangle \varphi \equiv \langle (ab)^* a \rangle \varphi$.