Homework Assignment 1 Solution [Compiled on July 1, 2009]

Problem 1

Choose

 $W = \{w\}$ $R = \emptyset$ $\pi(p) = \emptyset$ for all p

Then w has no successors, thus $\mathfrak{M}, w \Vdash \Box p$ holds for all p, and so does $\mathfrak{M}, w \Vdash \Box \neg p$. These yield $\mathfrak{M}, w \Vdash \Box p \land \Box \neg p$.

Problem 2

$$\begin{split} \mathfrak{M} \Vdash \Box (\Box \varphi \supset \varphi) \\ \text{iff} \quad \forall w \in W, \mathfrak{M}, w \Vdash \Box (\Box \varphi \supset \varphi) \\ \text{iff} \quad \forall w, u \in W, (w, u) \in R, \mathfrak{M}, u \Vdash \Box \varphi \supset \varphi \\ \text{iff} \quad \forall w, u \in W, (w, u) \in R, \text{given } \mathfrak{M}, u \Vdash \Box \varphi \text{ it can be shown that } \mathfrak{M}, u \Vdash \varphi \end{split}$$

But by definition, for such $u, (u, u) \in R$, and $\mathfrak{M}, u \Vdash \Box \varphi$ implies $\mathfrak{M}, u \Vdash \varphi$, then we are done.

Problem 3(a)

Choose

$$W = \{w_1, w_2\}$$
 $R = \{(w_1, w_2)\}$ $\pi(p) = \{w_1\}$

then $\mathfrak{M}, w_1 \Vdash p$ but since $\mathfrak{M}, w_2 \nvDash p, \mathfrak{M}, w_1 \nvDash \Box p$.

If $\{p\} \Vdash_{c} \Box p$, every model \mathfrak{M} and world w in it with $\mathfrak{M}, w \Vdash p$ must implies $\mathfrak{M}, w \nvDash \Box p$. But the setting in the previous paragraph is a counterexample, thus $\{p\} \nvDash_{c} \Box p$.

Problem 3(b)

To prove that $\{p\} \Vdash_{\mathsf{C}}^{g} \Box p$, assume $\mathfrak{M} \in \mathsf{C}$ such that $\mathfrak{M} \Vdash p$, we shall prove that $\mathfrak{M} \Vdash \Box p$. But this is obvious since every worlds in \mathfrak{M} satisfies p, every successors of every worlds also does, which means every worlds in \mathfrak{M} satisfies $\Box p$.

Problem 4

Let

$$\mathfrak{M} = (W, R, \pi) = (\mathbb{Z}, \{(i, i+1)\}_{i \in \mathbb{Z}}, \pi)$$

$$\mathfrak{M} = (W', R', \pi') = (\mathbb{N}, \{(i, i+1)\}_{i \in \mathbb{N}}, \pi|_{\mathbb{N}})$$

where π is chosen so that w = 0 is the only world in w such that $\mathfrak{M}, w \Vdash \varphi$.

Obviously $\mathfrak{M}' \to \mathfrak{M}$. So for every $w \in W'$, $\mathfrak{M}, w \Vdash \varphi \Leftrightarrow \mathfrak{M}', w \Vdash \varphi$. Suppose $\overleftarrow{\diamond} \varphi$ is a wff, choose w = 1. We have $\mathfrak{M}, w \Vdash \overleftarrow{\diamond} \varphi$ since $\mathfrak{M}, 0 \Vdash \varphi$, but in $\mathfrak{M}', \mathfrak{M}', w \nvDash \overleftarrow{\diamond} \varphi$ since there is no u such that $(u, w) \in R'$.

So $\Diamond \varphi$ is not definable.

Problem 5

Let Z be the bisimulation such that for every $w \in W$, $(w, f(w)) \in Z$. Check:

- if wZw' then $w \in \pi(p)$ iff $w' \in \pi'(p)$ for every p: By definition, $w \in \pi(p)$ iff $f(w) \in \pi'(p)$ for every p.
- if wZw' and $(w, u) \in R$ then there exists $w' \in W'$ such that uZu' and $(w', u') \in R'$: By definition, $(w, u) \in R$ implies $(f(w), f(u)) \in R'$, so u' = f(u) satisfies.
- if wZw' and $(w', u') \in R'$ then there exists $u \in W$ such that uZu' and $(w, u) \in R$: By definition, if $(f(w), u') \in R'$ then there exists $u \in W$ such that $(w, u) \in R$ and f(u) = u'. Such u satisfies.