• The following symbols are used in sentential logic Symbol Name Remark left parenthesis punctuation **Elementary Logic** right parenthesis punctuation negation symbol not conjunction symbol and Λ Bow-Yaw Wang disjuction symbol or (inclusive) V condition symbol if __, then __ \rightarrow Institute of Information Science Academia Sinica. Taiwan biconditional symbol if and only if \leftrightarrow first sentence symbol A_1 July 1, 2009 second sentence symbol A_2 . . . A_n *n*th sentence symbol . . . • The set of sentence symbols will be denoted by \mathscr{S} July 1, 2009 1 / 97 July 1, 2009 3 / 97 -Yaw Wang (Academia Sinica) w-Yaw Wang (Academia Si Outline Well-Formed Formulae (wff's) 1 Sentential Logic • A set S of expressions is inductive if it has the following properties. 2 First-Order Language • A well-formed formula (wff) is defined as follows: every sentence symbol is a wff; Truth and Models • if expressions α and β are wff's, then so are $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, 3 $(\alpha \rightarrow \beta)$, and $(\alpha \leftrightarrow \beta)$. • The set of wffs generated from \mathscr{S} is denoted by $\overline{\mathscr{S}}$ A Deductive Calculus 4 **5** Soundness and Completeness Theorems

The Language

- Fix a set $\{T, F\}$ of truth values
- A truth assignment is a function

$$\nu:\mathscr{S}\to\{\mathsf{T},\mathsf{F}\}$$

- A truth assignment ν satisfies a wff ϕ if $\overline{\nu}(\phi) = T$
- Let Σ be a set of wffs and φ a wff. Σ tautologically implies φ (Σ ⊨ φ) if every truth assignment satisfies every member of Σ also satisfies φ
- ϕ is a tautology if $\varnothing \vDash \phi$
- If $\sigma \vDash \tau$ and $\tau \vDash \sigma$, we say σ and τ are tautologically equivalent $(\sigma \vDash \tau)$
 - $\sigma \vDash \tau$ stands for $\{\sigma\} \vDash \tau$

Bow-Yaw Wang (Academia Sinica)	Elementary Logic	July 1, 2009 5 / 97	Bow-Yaw Wang (Academia Sinica)	Elementary Logic	July 1, 2009 7 / 97

Extended Truth Assignment

• Define the extension $\overline{\nu}: \overline{\mathscr{S}} \to \{\mathsf{T},\mathsf{F}\}$ by

$$\overline{\nu}(A) = \nu(A)$$

$$\overline{\nu}((\neg \alpha)) = \begin{cases} \mathsf{T} & \text{if } \overline{\nu}(\alpha) = \mathsf{F} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\overline{\nu}((\alpha \land \beta)) = \begin{cases} \mathsf{T} & \text{if } \overline{\nu}(\alpha) = \mathsf{T} \text{ and } \overline{\nu}(\beta) = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\overline{\nu}((\alpha \lor \beta)) = \begin{cases} \mathsf{T} & \text{if } \overline{\nu}(\alpha) = \mathsf{T} \text{ or } \overline{\nu}(\beta) = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\overline{\nu}((\alpha \to \beta)) = \begin{cases} \mathsf{F} & \text{if } \overline{\nu}(\alpha) = \mathsf{T} \text{ and } \overline{\nu}(\beta) = \mathsf{F} \\ \mathsf{T} & \text{otherwise} \end{cases}$$

$$\overline{\nu}((\alpha \leftrightarrow \beta)) = \begin{cases} \mathsf{T} & \text{if } \overline{\nu}(\alpha) = \overline{\nu}(\beta) \\ \mathsf{F} & \text{otherwise} \end{cases}$$

Omitting Parentheses

- To reduce the number of parentheses, we use the following convention:
 - The outmost parentheses need not be explicitly mentioned. "A ∧ B" means (A ∧ B)
 - The negation symbol applies to as little as possible. " $\neg A \land B$ " means $(\neg A) \land B$
 - The conjunction and disjunction symbols also apply to as little as possible. " $A \land B \rightarrow \neg C \lor D$ " means $(A \land B) \rightarrow ((\neg C) \lor D)$
 - Where one connective symbol is used repeatedly, grouping to the right. " $A \rightarrow B \rightarrow C$ " means $A \rightarrow (B \rightarrow C)$

Boolean Functions

- A k-place Boolean function is a function from $\{T,F\}^k$ into $\{T,F\}$
- Suppose a wff α has sentence symbols among A₁,..., A_n. The Boolean function Bⁿ_α realized by α is defined by

$$B_{\alpha}^{n}(X_{1},\ldots,X_{n}) = \overline{\nu}(\alpha)$$

where
$$\nu(A_i) = X_i \in \{\mathsf{T},\mathsf{F}\}$$
 for each $i = 1, \ldots, n$

Completeness of Connectives

Theorem

Let G be an n-place Boolean function with $n \ge 1$. There is a wff α such that $G = B_{\alpha}^n$

Proof.

If ran $G = \{F\}$, let $\alpha = A_1 \land \neg A_1$. Otherwise, let G have the value T at $\vec{X}_i = \langle X_{i1}, X_{i2}, \dots, X_{in} \rangle$ for $i = 1, \dots, k$. Define

$$\beta_{ij} = \begin{cases} A_j & \text{if } X_{ij} = 1\\ \neg A_j & \text{if } X_{ij} = F \end{cases}$$

$$\gamma_i = \beta_{i1} \wedge \cdots \wedge \beta_{in}$$

$$\alpha = \gamma_1 \vee \cdots \vee \gamma_k$$

It is straightforward to show $G = B_{\alpha}^{n}$

Bow-Yaw Wang (Academia Sinica)

July 1, 2009 11 / 9

Facts about B^n_{α}

Theorem Let α and β be wffs whose sentence symbols are among A_1, \ldots, A_n . $\alpha \models \beta$ iff for all $\vec{X} \in \{T, F\}^n$, $B^n_{\alpha}(\vec{X}) = T$ implies $B^n_{\beta}(\vec{X}) = T$ $\alpha \models \beta$ iff $B^n_{\alpha} = B^n_{\beta}$ $\alpha \models \alpha$ iff ran $B^n_{\alpha} = \{T\}$

Proof.

Observe that $\alpha \vDash \beta$ iff for all 2^n truth assignments ν , $\overline{\nu}(\alpha) = \mathsf{T}$ implies $\overline{\nu}(\beta) = \mathsf{T}$.

Disjunctive Normal Form

- A literal is either a sentence symbol A or its negation $\neg A$
- $\bullet~{\rm A}~{\rm wff}~\alpha$ is in disjunctive normal form if

$$\alpha = \gamma_1 \lor \gamma_2 \lor \cdots \lor \gamma_k$$

where

$$\gamma_i = \beta_{i1} \wedge \beta_{i2} \wedge \cdots \beta_{in_i}$$

and β_{ij} is a literal

Corollary

For any wff $\phi,$ there is a tautologically equivalent wff α in disjunctive normal form

July 1, 2009

Compactness

- $\bullet~$ A set Σ of wffs is satisfiable if there is a truth assignment which satisfies every member of Σ
- $\bullet~\Sigma$ is finitely satisfiable if every finite subset of Σ is satisfiable
- In mathematics, compactness relates finite and infinite features
 - A set is compact if any open cover has a finite subcover
 - \bigstar bounded closed sets are compact; bounded open sets are not.

Corollary

If $\Sigma \vDash \tau$, there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \tau$

Proof.

Suppose $\Sigma_0 \notin \tau$ for every finite $\Sigma_0 \subseteq \Sigma$. Then $\Sigma_0 \cup \{\tau\}$ is not satisfiable for any finite $\Sigma_0 \subseteq \Sigma$. Hence $\Sigma \cup \{\tau\}$ is not finitely satisfiable. Thus $\Sigma \cup \{\tau\}$ is not satisfiable. Therefore $\Sigma \notin \tau$.

Examples of First-Order Language

• Pure predicate language ▶ equality: no • *n*-place predicate symbols: A_1^n , A_2^n , ... • constant symbols: a_1, a_2, \ldots • Terms are generated by variables, constant symbols, and function ▶ *n*-place function symbols (*n* > 0): none symbols • Language of set theory • Examples: equality: yes ▶ predicate parameters: ∈ $+v_2S0$ informally, v_2+1 ▶ constant symbols: Ø (sometimes) SSSS0 informallv. 4 function symbols: none + Ev_1SS0Ev_2SSS0 informally, $v_1^2 + v_2^3$ • Language of elementary number theory equality: yes predicate parameters: <</p> constant symbols: 0 I-place function symbols: S ▶ 2-place function symbols: $+, \times, \text{ and } E$ July 1, 2009 July 1, 2009 17 / 97 19 / 97 Bow-Yaw Wang (Academia Sinica)

Terms

Examples

'aw Wang (Academia Sinica)

• "There is no set of which every set is a member."

$$\neg (\neg \forall v_1 (\neg \forall v_2 \in v_2 v_1))$$

or $\neg (\exists v_1 (\forall v_2 \in v_2 v_1))$

• "For any two sets, there is a set whose members are exactly the two given sets."

```
\forall v_1 v_2 \exists v_3 \forall v_4 (\in v_4 v_3 \leftrightarrow \approx v_4 v_1 \lor \approx v_4 v_2)
```

• "Any nonzero natural number is the successor of some number."

$$\forall v_1(\neg \approx v_1 \mathbf{0} \rightarrow \exists v_2 \approx v_1 \mathbf{S} v_2)$$

Atomic Formulae

• An atomic formula is an expression of the form

$Pt_1 \cdots t_n$

where P is an *n*-place predicate symbol (or equality), and t_1, \ldots, t_n are terms

• Examples:

 $\approx v_1 S0$ informally, $v_1 = 1$ $\in v_2 v_3$ informally, $v_2 \in v_3$

Well-Formed Formulae

- The set of well-formed formulae (wff, or formulae) is generated from the atomic formulae by connective symbols (\neg, \rightarrow) and the quantifier symbol (\forall)
 - $\neg \gamma$, $\gamma \rightarrow \delta$, $\forall v_i \gamma$ are wffs provided γ, δ are
- Example:

$$\forall v_1((\neg \forall v_3(\neg \in v_3v_1)) \rightarrow (\neg \forall v_2(\in v_2v_1) \rightarrow (\neg \forall v_4(\in v_4v_2 \rightarrow (\neg \in v_4v_1)))))$$

informally
$$\forall v_1((\exists v_3v_3 \in v_1) \rightarrow (\neg \forall v_2v_2 \in v_1 \rightarrow (\neg \forall v_4v_4 \in v_2 \rightarrow v_4 \notin v_1)))$$

• Nonexample: $\neg v_5$

Abbreviations

- $\bullet~ {\rm Let}~\alpha$ and $\beta~ {\rm be}$ formulae and x a variable
- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$
- $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$
- $(\alpha \leftrightarrow \beta)$ abbreviates $((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha))$; that is,

$$(\neg((\alpha \rightarrow \beta) \rightarrow (\neg(\beta \rightarrow \alpha))))$$

- $\exists x \alpha \text{ abbreviates } (\neg \forall x (\neg \alpha))$
- *u* ≈ *t* abbreviates ≈ *ut* (and similarly for other 2-place predicate symbols)
- *u* ≠ *t* abbreviates (¬ ≈ *ut*) (and similarly for other 2-place predicate symbols)

July 1, 2009

21 / 97

- Let x be a variable and α a wff
- We say x occurs free in α if
 - x is a symbol in α when α is atomic
 - x occurs free in β when α is $\neg\beta$

 - x occurs free in β and $x \neq v_i$ when α is $\forall v_i \beta$
- $\bullet\,$ If no variable occurs free in the wff $\alpha,$ we say α is a sentence
- Examples:

Free Variables

- $\forall v_2(Av_2 \rightarrow Bv_2)$ and $\forall v_3(Pv_3 \rightarrow \forall v_3Qv_3)$ are sentences
- v_1 occurs free in $(\forall v_1 A v_1) \rightarrow B v_1$

Precedences

w-Yaw Wang (Academia Sinica)

- Outermost parentheses may be dropped.
 - $\forall x \alpha \rightarrow \beta \text{ is } (\forall x \alpha \rightarrow \beta)$
- $\bullet \ \neg, \ \forall, \ \text{and} \ \exists \ \text{apply to as little as possible.}$
 - $\neg \alpha \land \beta$ is $((\neg \alpha) \land \beta)$
 - $\forall x \alpha \rightarrow \beta \text{ is } ((\forall x \alpha) \rightarrow \beta)$
- \wedge and \vee apply to as little as possible, subject to above $\neg \alpha \land \beta \rightarrow \gamma$ is $(((\neg \alpha) \land \beta) \rightarrow \gamma)$
- When connective is used repeatedly, group them to the right
 α → β → γ is α → (β → γ)

July 1, 2009

Notation Conventions

- Predicate symbols: A, B, C, etc. Also ϵ , <
- Variables: v_i , u, x, y, etc.
- Function symbols: f, g, h, etc. Also S, +, etc.
- Constant symbols: *a*, *b*, *c*, etc. Also 0
- Terms: *u*, *t*
- Formulae: α , β , γ , etc.
- Sentences: σ , τ , etc.
- Set of formulae: Σ , Δ , Γ , etc.
- Structures: \mathfrak{U} , \mathfrak{B} , etc.

- In the language for set theory. Define
 - $|\mathfrak{U}| =$ the set of natural numbers
 - $\bullet \ \in^{\mathfrak{U}} = \{ \langle m, n \rangle : m < n \}$
- Consider $\exists x \forall y \neg y \in x$

Examples of Structures

- $\,\,{\scriptstyle \succ}\,$ there is a natural number such that no natural number is smaller
- Informally, we would like to say ∃x∀y¬y ∈ x is true in 𝔅 or 𝔅 is a model of the sentence

Bow-Yaw Wang (Academia Sinica

gic

July 1, 2009 27 / 97

- Structures
 - \bullet A structure ${\mathfrak U}$ for a first-order language is a function whose domain is the set of parameters such that
 - $\textcircled{0} \ \mathfrak{U} \text{ assigns to } \forall \text{ a nonempty set } |\mathfrak{U}|, \text{ called the universe of } \mathfrak{U}$
 - ② 𝔅 assigns to each *n*-place predicate symbol *P* an *n*-ary relation $P^{\mathfrak{u}} \subseteq |\mathfrak{U}|^n$
 - $\textcircled{0} \ \mathfrak{U} \text{ assigns to each constant symbol } c \text{ a member } c^\mathfrak{u} \in |\mathfrak{U}|$
 - \mathfrak{U} assigns to each *n*-place function symbol *f* an *n*-ary function $f^{\mathfrak{u}} : |\mathfrak{U}|^n \to |\mathfrak{U}|$
 - Note that $|\mathfrak{U}|$ is nonempty and $f^{\mathfrak{U}}$ is not a partially-defined function

$\mathsf{Satisfaction} \vDash_\mathfrak{U} \phi[s] \mathsf{I}$

Let ϕ be a wff, $\mathfrak U$ a structure, and $s:V\to |\mathfrak U|$ from the set V of variables to the universe of $\mathfrak U$

- Terms. Define the extension $\overline{s}: T \to |\mathfrak{U}|$ from terms to the universe by
 - for variable x, $\overline{s}(x) = s(x)$
 - (2) for constant symbol $c, \overline{s}(c) = c^{\mathfrak{U}}$
 - (a) if t_1, \ldots, t_n are terms and f is an n-place function symbol, $\overline{s}(ft_1 \cdots t_n) = f^{\mathfrak{U}}(\overline{s}(t_1), \ldots, \overline{s}(t_n))$
- Atomic formulae. Define

July 1, 2009

Satisfaction $\models_{\mathfrak{U}} \phi[s] \mid \mathsf{I}$

• Other wffs. Define

- **③** ⊨_{𝔅𝔅} $\forall x \phi[s]$ if for every $d \in |𝔅|$, we have ⊨_{𝔅𝔅} $\phi[s(x|d)]$ where

$$s(x|d)(y) = \begin{cases} s(y) & \text{if } y \neq x \\ d & \text{if } y = x \end{cases}$$

Relevant Valuation

Theorem

Assume $s_1, s_2 : V \to |\mathfrak{U}|$ such that s_1 and s_2 agree at all variables occurring free in ϕ . Then $\models_{\mathfrak{U}} \phi[s_1]$ iff $\models_{\mathfrak{U}} \psi[s_2]$.

Proof.

By induction.

- φ = Pt₁···t_n. Observe s
 ₁(t) = s
 ₂(t) for any term t occurring in φ (why?)
- $\phi = \neg \alpha$ or $\alpha \rightarrow \beta$. By inductive hypothesis
- $\phi = \forall x\psi$. Then free variables in ϕ are free variables in ψ except x. Thus $s_1(x|d)$ and $s_2(x|d)$ agree at free variables in ψ for any $d \in |\mathfrak{U}|$. By inductive hypothesis, $\models_{\mathfrak{U}} \psi[s_1(x|d)]$ iff $\models_{\mathfrak{U}} \psi[s_2(x|d)]$ for any $d \in |\mathfrak{U}|$.

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

29 / 97

Logical Implication

Definition

Let Γ be a set of wffs, ϕ a wff. Γ logically implies ϕ ($\Gamma \models \phi$) if for every structure \mathfrak{U} and every function $s: V \rightarrow |\mathfrak{U}|$ such that \mathfrak{U} satisfies every member of Γ with s, \mathfrak{U} also satisfies ϕ with s

- ϕ and ψ are logically equivalent ($\phi \vDash \psi$) if $\phi \vDash \psi$ and $\psi \vDash \phi$
- A wff ϕ is valid if $\emptyset \vDash \phi$ (or just $\vDash \phi$)

Truth and Models

Corollary

- For a sentence σ , either
- (a) \mathfrak{U} satisfies σ with every function s; or
- (b) $\mathfrak U$ does not satisfy σ with any such function
- If (a) holds, we say σ is true in $\mathfrak U$ or $\mathfrak U$ is a model of σ
- If (b) holds, we say σ is false in $\mathfrak U$
- $\bullet~\mathfrak{U}$ is a model of a set Σ of sentences iff it is a model of every member of Σ

Corollary

For a set $\Sigma; \tau$ of sentences. $\Sigma \vDash \tau$ iff every model of Σ is a model of τ

31 / 97

July 1, 2009

Logical and Tautological Implications

- Consider the problem of determining $\vDash \phi$ when
 - $\,\blacktriangleright\,\phi$ is in sentential logic; and
 - $\blacktriangleright \phi$ is in first-order logic
- $\bullet\,$ For sentential logic, there is an effective procedure
 - ▹ by truth table
- For first-order logic, we have to consider all structures
 - there are infinitely many structures!
 - $\label{eq:relation}$ the validity problem is in fact undecidable

 \bullet Let Σ be a set of sentences. $\mathsf{Mod}(\Sigma)$ denotes the class of all models of $\Sigma.$ That is

 $\mathsf{Mod}(\Sigma) = \{\mathfrak{U} \coloneqq \sigma \text{ for all } \sigma \in \Sigma\}$

A class *ℋ* of structures is an elementary class (EC) if *ℋ* = Mod(τ) for some sentence τ. *ℋ* is an elementary class in the wider sense (EC_Δ) if *ℋ* = Mod(Σ) for some set Σ of sentences

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 33 / 97	Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 35 / 97
Notational Convention	Examples
	 A structure (A, R) with R ⊆ A × A is an ordered set if R is transitive and satisfies trichotomy condition that is, exactly one of (a, b) ∈ R, a = b, (b, a) ∈ R holds The class of percempty ordered sets is an elementary class
 By our notational convention, the following statements can be proved ⊨_{𝔅𝔅} (α ∧ β)[s] iff ⊨_{𝔅𝔅} α[s] and ⊨_{𝔅𝔅} β[s]; similarly for ∨ and ↔ ⊨_{𝔅𝔅} ∃xα[s] iff there is some d ∈ 𝔅 such that ⊨_{𝔅𝔅} α[s(x d)] 	• The class of holempty ordered sets is an elementary class $\tau = \forall x \forall y \forall z (xRy \rightarrow yRz \rightarrow xRz) \land \\ \forall x \forall y (xRy \lor x \approx y \lor yRx) \land \\ \forall x \forall y (xRy \rightarrow \neg yRx)$
	\bullet The class of infinite sets is EC_Δ
	$\lambda_{2} = \exists x \exists yx \notin y$ $\lambda_{3} = \exists x \exists y \exists z (x \notin y \land x \notin z \land y \notin z)$ $\Sigma = \{\lambda_{2}, \lambda_{3}, \dots, \}$
Pour Vuir Mang (Acadamia Cinica) Elementary Logic Int. 1 2000 24/07	Row Your Wang (Academia Sinica) Elementary Logic Iuly 1, 2000, 36 / 07

Definability within a Structure

Homomorphisms

- Fix a structure $\mathfrak U$
- Let ϕ be a formula with free variables $\textit{v}_1,\ldots,\textit{v}_k$
- For $a_1, \ldots, a_k \in |\mathfrak{U}|, \models_{\mathfrak{U}} \phi[\![a_1, \ldots, a_k]\!]$ means that \mathfrak{U} satisfies ϕ with some $s : V \to |\mathfrak{U}|$ where $s(v_i) = a_i$ for $1 \le i \le k$
- The k-ary relation defined by ϕ is the relation

$$\{\langle a_1,\ldots,a_k\rangle\coloneqq_{\mathfrak{U}}\phi\llbracket a_1,\ldots,a_k\rrbracket\}$$

• A k-ary relation on $|\mathfrak{U}|$ is definable if there is a formula defining it

- Let \mathfrak{U} and \mathfrak{B} be structures. A mapping $h: |\mathfrak{U}| \to |\mathfrak{B}|$ is a homomorphism if
 - ▶ For each *n*-place predicate symbol *P* and *n*-tuple $\langle a_1, \ldots, a_n \rangle \in |\mathfrak{U}|^n$, $\langle a_1, \ldots, a_n \rangle \in P^{\mathfrak{U}}$ iff $\langle h(a_1), \ldots, h(a_n) \rangle \in P^{\mathfrak{B}}$
 - ► For each *n*-place function symbol *f* and *n*-tuple $\langle a_1, \ldots, a_n \rangle \in |\mathfrak{U}|^n$, $h(f^{\mathfrak{U}}(a_1, \ldots, a_n)) = f^{\mathfrak{B}}(h(a_1), \ldots, h(a_n))$
- If h is one-to-one, it is called an isomorphism
- If there is an isomorphism of \mathfrak{U} onto \mathfrak{B} , we say \mathfrak{U} and \mathfrak{B} are isomorphic (in notation, $\mathfrak{U} \cong \mathfrak{B}$)

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

37 / 97

Examples

- Consider the language of number theory with the intended structure \mathfrak{N} = $(\mathbb{N},0,S,+,-,\cdot)$
- The ordering relation $\{\langle m, n \rangle : m < n\}$ is defined by $\exists v_3v_1 + Sv_3 \approx v_2$
- For any $n \in \mathbb{N}$, $\{n\}$ is definable. For instance, $\{2\}$ is defined by $v_1 \approx SS0$
 - ${\scriptstyle \blacktriangleright}$ we hence say n is a definable element in ${\mathfrak N}$
- The set of primes is definable. Consider

$$\exists v_3 S0 + Sv_3 \approx v_1 \land$$

$$\forall v_2 \forall v_3 (v_1 \approx v_2 \cdot v_3 \rightarrow v_2 \approx S0 \lor v_3 \approx$$

Examples

- Consider (Z⁺, <⁺_Z) and (N, <_N). The function h(n) = n − 1 is an isomorphism from (Z⁺, <⁺_Z) onto (N, <_N)
- Consider two structures \mathfrak{U} and \mathfrak{B} with $|\mathfrak{U}| \subseteq |\mathfrak{B}|$. The identity map (i(n) = n) is an isomorphism of \mathfrak{U} into \mathfrak{B} iff
 - P^{II} is the restriction of P^B to |II| for every predicate symbol P; and
 f^{II} is the restriction of f^B to |II| for every function symbol f
- \bullet In this case, we say ${\mathfrak U}$ is a substructure of ${\mathfrak B},$ and ${\mathfrak B}$ is an extension of ${\mathfrak U}$
- $(\mathbb{Z}^+, <^+_{\mathbb{Z}})$ is a substructure of $(\mathbb{N}, <_{\mathbb{N}})$

*S*0)

July 1, 2009

Homomorphism Theorem

Theorem

- Let h be a homomorphism of $\mathfrak U$ into $\mathfrak B,$ and $s:V\to |\mathfrak U|.$
- For any term t, $h(\overline{s}(t)) = \overline{h \circ s}(t)$;
- **2** For any quantifier-free formula α without equality symbol, $\models_{\mathfrak{U}} \alpha[s]$ iff $\models_{\mathfrak{B}} a[h \circ s];$
- **③** If h is one-to-one, then 2 holds even when α contains equality symbol;
- If h is onto, then 2 holds even when α has quantifiers.

Proof of Homomorphism Theorem II If *h* is one-to-one, we have

$$\models_{\mathfrak{U}} u \approx t[s] \iff \overline{s}(u) = \overline{s}(t) \\ \Leftrightarrow h(\overline{s}(u)) = h(\overline{s}(t)) \\ \Leftrightarrow \overline{h \circ s}(u) = \overline{h \circ s}(t) \\ \Leftrightarrow \models_{\mathfrak{B}} u \approx t[h \circ s].$$

Other cases are proved by induction.

 $\textbf{ 9 By induction hypothesis, } \vDash_{\mathfrak{U}} \phi[s] \Leftrightarrow \vDash_{\mathfrak{B}} \phi[h \circ s] \text{ for any } s.$

```
 \begin{split} \vDash_{\mathfrak{B}} \forall x \phi[h \circ s] & \Leftrightarrow \quad \vDash_{\mathfrak{B}} \phi[(h \circ s)(x|b)] \text{ for every } b \in |\mathfrak{B}| \\ & \Leftrightarrow \quad \bowtie_{\mathfrak{B}} \phi[(h \circ s)(x|h(a))] \text{ for every } a \in |\mathfrak{U}| \\ & \Leftrightarrow \quad \bowtie_{\mathfrak{B}} \phi[h \circ (s(x|a))] \text{ for every } a \in |\mathfrak{U}| \\ & \Leftrightarrow \quad \bowtie_{\mathfrak{U}} \phi[s(x|a)] \text{ for every } a \in |\mathfrak{U}| \\ & \Leftrightarrow \quad \bowtie_{\mathfrak{U}} \forall x \phi[s]. \end{split}
```

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

Proof of Homomorphism Theorem I

By induction on t.

② For atomic formula such as *Pt*, we have

$$\models_{\mathfrak{U}} Pt[s] \iff \overline{s}(t) \in P^{\mathfrak{U}}$$

$$\Leftrightarrow h(\overline{s}(t)) \in P^{\mathfrak{B}}$$

$$\Leftrightarrow \overline{h \circ s}(t) \in P^{\mathfrak{B}}$$

$$\Leftrightarrow \models_{\mathfrak{B}} Pt[h \circ s].$$

Other quantifier-free formulae without equality symbols can be proved by induction.

Elementary Equivalence

• Two structures \mathfrak{U} and \mathfrak{B} are elementarily equivalent ($\mathfrak{U} \equiv \mathfrak{B}$) if for every sentence σ ,

$$\vDash_{\mathfrak{U}} \sigma \quad \Leftrightarrow \quad \vDash_{\mathfrak{B}} \sigma.$$

- By Homomorphism Theorem, two isomorphic structures are elementarily equivalent
 - ▶ but two elementarily equivalent structures are not necessarily isomorphic, e.g. $(\mathbb{R},<_{\mathbb{R}})$ and $(\mathbb{Q},<_{\mathbb{Q}})$
- \bullet The identity map from $(\mathbb{Z}^+,<^+_\mathbb{Z})$ into $(\mathbb{N},<_\mathbb{N})$ is an isomorphism. We have

$$\vDash_{\left(\mathbb{Z}^+, <^+_{\mathbb{Z}}\right)} \forall v_2(v_1 \notin v_2 \rightarrow v_1 < v_2) \llbracket v_1 \mapsto 1 \rrbracket$$

but

$$\not\models_{(\mathbb{N},<_{\mathbb{N}})} \forall v_2(v_1 \not \approx v_2 \rightarrow v_1 < v_2) \llbracket v_1 \mapsto 1 \rrbracket$$

41 / 97

July 1, 2009

Generalization and Substitution

- A wff ϕ is a generalization of ψ if for some $n \ge 0$ and variables $x_1, \ldots, x_n, \ \phi = \forall x_1 \cdots \forall x_n \psi$
- For variable x and term t, write α_t^{x} for the formula obtained by replacing x with t. Formally,
 - $\ \, {\rm O} \ \, {\rm for \ atomic \ \, } \alpha, \ \, \alpha^x_t \ \, {\rm is \ obtained \ \, by \ \, \alpha} \ \, {\rm by \ replacing \ the \ variable \ \, x \ \, by \ t;}$

$$\begin{array}{l} (\neg \alpha)_t^x = (\neg \alpha_t^x); \\ (\alpha \to \beta)_t^x = (\alpha_t^x \to \beta_t^x); \\ (\forall v \alpha)^x = \int \forall y \alpha \quad \text{if } x \end{array}$$

- $(\forall y\alpha)_t^x = \begin{cases} \forall y(\alpha_t^x) & \text{if } x \neq y \end{cases}$
- t is substitutable for x in α if
 - for atomic α , t is always substitutable for x in α ;
 - t is substitutable for x in (¬α) if it is substitutable for x in α; t is substitutable for x in (α → β) if it is substitutable for x in both α and β;
 - (a) *t* is substitutable for *x* in $\forall y \alpha$ if
 - x does not occur free in $\forall y \alpha$; or

July 1, 2009

45 / 97

More about Substitution

- Consider $\gamma = \forall v_2 B v_1 v_2$
- Then $\gamma_{v_2}^{v_1} = \forall v_2 B v_2 v_2$
 - however, v_2 is not substitutable for v_1 in γ (why?)
- When an axiom of the form $\forall x\alpha$ is instantiated, we have $\alpha^{\rm x}_t$ for some term t
- But the substitution cannot be performed arbitrarily
 - + thus we have to check whether t is substitutable for x in α

Logical Axioms Λ

The $\mathsf{logical}\xspace$ axioms Λ are generalizations of wffs of the following forms:

- tautologies;
- **2** $\forall x \alpha \rightarrow \alpha_t^x$ where t is substitutable for x in α ;
- $\alpha \rightarrow \forall x \alpha$ where x does not occur free in α ;
- $x \approx y \rightarrow (\alpha \rightarrow \alpha')$ where α is atomic and α' is obtained from α by replacing x in zero or more places by y

Bow-Yaw Wang (Academia Sinica

ntary Logic

July 1, 2009 47 / 97

Modus Ponens

• (Modus ponens) From α and $\alpha \rightarrow \beta$, we may infer β :

$$\frac{\alpha, \ \alpha \to \beta}{\beta}$$

- A set Δ of formulae is closed under modus ponens if whenever α and $\alpha \rightarrow \beta$ are in Δ , then β is in Δ
- ϕ is a theorem of Γ ($\Gamma \vdash \phi$) if ϕ belongs to the set generated from $\Gamma \cup \Lambda$ by modus ponens

Definition

A deduction of ϕ from Γ is a sequence $\langle \alpha_0, \ldots, \alpha_n \rangle$ of formulae such that $\alpha_n = \phi$ and for each $i \leq n$,

- $\alpha_i \in \Gamma \cup \Lambda$; or
- for some $j, k < i, \alpha_i$ is obtained by modus ponens from α_j and $\alpha_k (= \alpha_j \rightarrow \alpha_i)$

Theorem and Deduction

Theorem

There exists a deduction of α from Γ iff α is a theorem of Γ .

Proof.

If there is a deduction $\langle a_0, \ldots, a_n \rangle$, then each α_i belongs to the set generated from $\Gamma \cup \Lambda$ by modus ponens. Hence $\Gamma \vdash \alpha_n (= \phi)$. Conversely, every formula in $\Gamma \cup \Lambda$ has a deduction. Moreover, every formula obtained from $\Gamma \cup \Lambda$ by modus ponens has a deduction. Hence, every formula generated from $\Gamma \cup \Lambda$ by modus ponens has a deduction. Particularly, the theorem ϕ of Γ has a deduction.

We therefore say ϕ is deducible from Γ if $\Gamma \vdash \phi$.

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

Tautologies

• A tautology in first-order logic is a wff obtained from a tautology in sentential logic by replacing each sentence symbol with a wff of first-order language

$$\forall x [(\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py)]$$

is obtained from
 $(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$

by generalization

More about Tautologies

- Divide wffs in first-order language in two groups
 - **(**) Prime formulae are the atomic formulae and those of the form $\forall x \alpha$
 - **②** Non-prime formulae are those of the form $\neg \alpha$ or $\alpha \rightarrow \beta$
- Now take prime formulae as sentence symbols. Any tautology of the (new) sentential logic is a tautology in first-order language
- Consider $(\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall \neg Px)$
 - ▶ there are two prime formulae: $\forall y \neg Py$ and Px
 - → it remains to check whether $(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$ is a tautology
- By taking prime formulae as sentence symbols, first-order formulae are also wffs of sentential logic. Concepts for sentential logic are applicable.
 - it makes sense, for instance, to say "tautologically implies" in first-order language.

ow-Yaw Wang (Academia Sinica)

July 1, 2009 51 / 97

Deduction and Tautologically Implication

Theorem

 $\Gamma \vdash \phi$ iff $\Gamma \cup \Lambda$ tautologically implies ϕ

Proof.

Observe that $\{\alpha, \alpha \to \beta\}$ tautologically implies β . Now suppose there is a truth assignment ν satisfying $\Gamma \cup \Lambda$. We can prove ν satisfies any theorem of Γ by induction on the length of deduction. The inductive step uses the observation.

Conversely, assume $\Gamma \cup \Lambda$ tautologically implies ϕ . By compactness theorem (for sentential logic), there is a finite subset $\{\gamma_1, \ldots, \gamma_m, \lambda_1, \ldots, \lambda_n\}$ tautologically implying ϕ . Hence,

 $\gamma_1 \to \cdots \to \gamma_m \to \lambda_1 \to \cdots \to \lambda_n \to \phi$

is a tautology (why?) and hence in $\Lambda.$ Applying modus ponens, we have $\phi.$

49 / 97

• $\vdash Px \rightarrow \exists yPy$ $\frac{\forall y \neg Py \rightarrow \neg Px}{\forall y \neg Py \rightarrow \neg Px} \quad (\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py)$ • $\vdash \forall x(Px \rightarrow \exists yPy)$ • $\vdash \forall x(Px \rightarrow \exists yPy)$ $\frac{\forall x[(\forall y \neg Py \rightarrow \neg Px) \rightarrow \forall x(\alpha \rightarrow \beta) \rightarrow (Px \rightarrow \neg \forall y \neg Py)] \quad (\forall x\alpha \rightarrow \forall x\beta)}{\forall x(\forall y \neg Py \rightarrow \neg Px) \rightarrow \forall x(Px \rightarrow \neg \forall y \neg Py)}$ where α is $\forall y \neg Py \rightarrow \neg Px$ and β is $Px \rightarrow \neg \forall y \neg Py$.

Theorem (generalization)

If $\Gamma \vdash \phi$ and x does not occur free in any formula in Γ , then $\Gamma \vdash \forall x \phi$

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 53 / 97	Bow-Yaw Wang (Academia Sinica)Elementary LogicJuly 1, 200955 / 97
Theorems and Metatheorems	Generalization Theorem II Proof. Fix a set 5 and a variable v not free in 5. If T = (4.5. Vv4) includes
 Note that the word "theorem" has two different meanings In Γ ⊢ α, we say α is a "theorem" properties derived from Γ, at the object level We also say the following is a "theorem" 	 Fix a set Γ and a variable x not free in Γ. If Γ = {φ:Γ ⊢ ∀xφ} includes Γ ∪ Λ and is closed under modus ponens, then every theorem φ of Γ belongs to T. Hence Γ ⊢ ∀xφ for any theorem φ. ψ ∈ Λ. Hence ∀xψ ∈ Λ. Thus Γ ⊢ ∀xψ and ψ ∈ T ψ ∈ Γ. Then x does not occur free in ψ. ψ → ∀xψ ∈ Λ (axiom group 4). We have
Theorem $\Gamma \vdash \phi$ iff $\Gamma \cup \Lambda$ tautologically implies ϕ	$\frac{\psi \qquad \psi \to \forall x \psi}{\forall x \psi}$
 ▶ properties about arbitrary Γ, at the meta level 	• Suppose ϕ and $\phi \rightarrow \psi$. By induction hypothesis, $\Gamma \vdash \forall x \phi$ and $\Gamma \vdash \forall x(\phi \rightarrow \psi)$. We have $\frac{\forall x(\phi \rightarrow \psi) \forall x(\phi \rightarrow \psi) \rightarrow (\forall x \phi \rightarrow \forall x \psi)}{\forall x \phi \rightarrow \forall x \psi}$

Remark

- Informally, when we prove ________ from Γ and Γ does not restrict x, we should have ∀x______x____
 - this is exactly Generalization Theorem
- Axiom group 3 and 4 are crucial in the proof
- x must not occur free in Γ
 - ▶ $Px \notin \forall xPx$, one should not have $Px \vdash \forall xPx$
- For applications, let us show ∀x∀yα ⊢ ∀y∀xα
 By axiom group 2 (twice) and ∀x∀yα, we have ∀x∀yα ⊢ α. By applying Generalization Theorem (twice), we have ∀x∀yα ⊢ ∀y∀xα

Theorem				
If $\Gamma \cup \{\gamma\} \vdash \phi$, Γ	$- \vdash \gamma \rightarrow$	ϕ		
Proof.				
(First proof)				
Γ ∪{	$\gamma\} \vdash \phi$	iff	$\Gamma \cup \{\gamma\} \cup \Lambda$ tautologically implies ϕ	
		iff	$\Gamma \cup \Lambda$ tautologically implies $\gamma \rightarrow \phi$	
		iff	$\Gamma \vdash \gamma \to \phi$	

Bow-Yaw Wang (Academia Sinica)Elementary LogicJuly 1, 200957 / 97Bow-Yaw Wang (ARule TDeductionLemma (Rule T)Proof. $If \Gamma \vdash \alpha_1, \ldots, \Gamma \vdash \alpha_n$ and $\{\alpha_1, \ldots, \alpha_n\}$ tautologically implies β , then $\Gamma \vdash \beta$ $\phi \in \Lambda \cup$
(why?)Proof.
 $\alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \beta$ is a tautology and hence a logical axiom. Apply modus
ponens. ϕ is obti
hypothed

Deduction Theorem II

Proof.	
Second proof)	
We show that $Γ ⊢ γ → φ$ when $Γ ∪ {γ} ⊢ φ$.	
• $\phi = \gamma$. Clearly, $\Gamma \vdash \gamma \rightarrow \phi$	
• $\phi \in \Lambda \cup \Gamma$. We have $\Gamma \vdash \phi$. Moreover, $\phi \rightarrow (\gamma \rightarrow \phi)$ is a tautology. (why?) By modus ponens, $\Gamma \vdash \gamma \rightarrow \phi$	
• ϕ is obtained from ψ and $\psi \rightarrow \phi$ by modus ponens. By inductive hypothesis, $\Gamma \vdash \gamma \rightarrow \psi$ and $\Gamma \vdash \gamma \rightarrow (\psi \rightarrow \phi)$. Moreover, $\{\gamma \rightarrow \psi, \gamma \rightarrow (\psi \rightarrow \phi)\}$ tautologically implies $\gamma \rightarrow \phi$. By rule T, $\Gamma \vdash \gamma \rightarrow \phi$	

July 1, 2009

Contraposition

Corollary (contraposition)
$\Gamma \cup \{\phi\} \vdash \neg \psi \text{ iff } \Gamma \cup \{\psi\} \vdash \neg \phi$
Proof.
$ \Gamma \cup \{\phi\} \vdash \neg \psi \implies \Gamma \vdash \phi \to \neg \psi \text{ (Deduction Theorem)} $ $ \Rightarrow \Gamma \vdash \psi \to \neg \phi $
$(\phi \rightarrow \neg \psi \text{ tautologically implies } \psi \rightarrow \neg \phi, \text{ Rule T})$ $\Rightarrow \Gamma \cup \{\psi\} \vdash \neg \phi \text{ (modus ponens)}$
The converse is obtained by symmetry. $\hfill \square$

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

61 / 97

Inconsistency

- A set Γ of formulae is inconsistent if both $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$ for some β
- In this case, $\mathbf{\Gamma} \vdash \alpha$ for any formula α

Reductio ad Absurdum

Corollary (reductio ad absurdum) If $\Gamma \cup \{\phi\}$ is inconsistent, $\Gamma \vdash \neg \phi$.

Proof.

By Deduction Theorem, $\Gamma \vdash \phi \rightarrow \beta$ and $\Gamma \vdash \phi \rightarrow \neg \beta$ for some β . Moreover, $\{\phi \rightarrow \beta, \phi \rightarrow \neg \beta\}$ tautologically implies $\neg \phi$.

Deduction Strategy

Given $\Gamma \vdash \phi$, how to find a proof of it?

- $\phi = (\psi \rightarrow \theta)$. This is the same as $\Gamma \cup {\phi} \vdash \theta$ (Deduction Theorem)
- φ = ∀xψ. This is the same as Γ ⊢ ψ after variable renaming (Generalization Theorem)
- $\bullet~\phi$ is a negation.
 - ▶ $\phi = \neg(\psi \rightarrow \theta)$. This is the same as Γ ⊢ ψ and Γ ⊢ $\neg \theta$ (rule T)
 - $\phi = \neg \neg \psi$. This is the same as $\Gamma \vdash \psi$ (rule T)
 - $\phi = \neg \forall x \psi$. It suffices to show $\Gamma \vdash \neg \psi_t^x$ for some *t* substitutable for *x* in ϕ (reductio ad absurdum).
 - ★ but it is not always possible, e.g. $\vdash \neg \forall x \neg (Px \rightarrow \forall yPy)$
 - \bigstar this is case, we may use contraposition and reductio ad absurdum

Examples II

Example (Eq2)

Show $\vdash \forall x \forall y (x \approx y \rightarrow y \approx x)$

Proof.

Note that this is not a formal proof of $\forall x \forall y (x \approx y \rightarrow y \approx x)$. This is an informal proof which shows that a formal proof exists

3ow-Yaw Wang (Academia Sinica)

July 1, 2009

Examples I

Example

If x does not occur free in α , show $\vdash (\alpha \rightarrow \forall x\beta) \leftrightarrow \forall x(\alpha \rightarrow \beta)$

Proof.

It suffices to show $\vdash (\alpha \rightarrow \forall x\beta) \rightarrow \forall x(\alpha \rightarrow \beta)$ and $\vdash \forall x(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x\beta)$ (rule T).

- $\vdash (\alpha \rightarrow \forall x\beta) \rightarrow \forall x(\alpha \rightarrow \beta)$. It suffices to show $\{\alpha \rightarrow \forall x\beta, \alpha\} \vdash \beta$ (Deduction and Generalization Theorems). But this follows by modus ponens and axiom group 2
- ⊢ ∀x(α → β) → (α → ∀xβ). By Deduction and Generalization Theorems, it suffices to show {∀x(α → β), α} ⊢ β. But this follows by axiom group 2 and modus ponens.

Examples III

Example

Show $\vdash x \approx y \rightarrow \forall z P x z \rightarrow \forall z P y z$

Proof.

- $\mathbf{0} \vdash x \approx y \rightarrow Pxz \rightarrow Pyz. Ax 6$
- \vdash $\forall zPxz \rightarrow Pxz$. Ax 2
- **③** ⊢ $x \approx y \rightarrow \forall z P x z \rightarrow P y z$. 1, 2, T
- $\{x \approx y, \forall z P x z\} \vdash P y z$. 3, MP
- **③** { $x \approx y, \forall z P x z$ } ⊢ $\forall z P y z$. 4, gen

65 / 97

67 / 97

July 1, 2009

Generalization on Constants

Theorem

Assume that $\Gamma \vdash \phi$ and c is a constant symbol not in Γ . Then there is a variable y (not in ϕ) such that $\Gamma \vdash \forall y \phi_y^c$. Moreover, there is a deduction of $\forall y \phi_y^c$ from Γ where c does not appear.

Proof.

Let $\langle \alpha_0, \ldots, \alpha_n \rangle$ be a deduction of ϕ from Γ . Let y be a variable not in any of α_i 's. We claim $\langle (\alpha_0)_v^c, \ldots, (\alpha_n)_v^c \rangle$ is a deduction of ϕ_v^c .

- $\alpha_k \in \Gamma$. Then $(\alpha_k)_v^c = \alpha_k \in \Gamma$.
- α_k is a logical axiom. Then $(\alpha_k)_y^c$ is also a logical axiom.
- α_k is obtained from α_i and $\alpha_j = \alpha_i \to \alpha_k$. Then $(\alpha_k)_y^c$ is obtained by $(\alpha_i)_y^c$ and $(\alpha_j)_y^c = (\alpha_i)_y^c \to (\alpha_k)_y^c$.

Thus, $\Gamma \vdash \phi_y^c$. By Generalization Theorem, $\Gamma \vdash \forall y \phi_y^c$. Moreover, *c* does not appear in the deduction of $\forall y \phi_y^c$ from Γ .

```
Bow-Yaw Wang (Academia Sinica)
```

July 1, 2009

Applications I

Corollary

Assume $\Gamma \vdash \phi_c^x$ and c does not occur in Γ or ϕ . Then $\Gamma \vdash \forall x \phi$ and there is a deduction of $\forall x \phi$ where c does not occur.

Proof.

By the previous theorem, there is a deduction of $\forall y (\phi_c^x)_y^c$ without *c*. Since *c* does not occur in ϕ , $(\phi_c^x)_y^c = \phi_y^x$. Observe that $(\forall y \phi_y^x) \rightarrow (\phi_y^x)_x^y$ is an axiom (axiom group 2). Moreover, $(\phi_y^x)_x^y = \phi$ (by induction). Thus, $\forall y \phi_y^x \vdash \forall x \phi$ (Generalization Theorem).

Corollary (rule EI)

Assume c does not occur in ϕ , ψ , or Γ . If $\Gamma \cup \{\phi_c^x\} \vdash \psi$, then $\Gamma \cup \{\exists x\phi\} \vdash \psi$. Moreover, there is a deduction of ψ from $\Gamma \cup \{\exists x\phi\}$ without c.

Applications II

Proof.

By contraposition,	we have $\Gamma \cup \{\neg \psi\} \vdash \neg \phi_c^x$. By the previous corollary,
$\Gamma \cup \{\neg\psi\} \vdash \forall x \neg \phi.$	Applying contraposition again, we have
$\Gamma \cup \{\exists x\phi\} \vdash \psi.$	

"EI" stands for "existential instantiation."

Bow-Yaw Wang (Academia Sini

July 1, 2009

71 / 97

Example

Example	
---------	--

```
Show \vdash \exists x \forall y \phi \rightarrow \forall y \exists x \phi
```

Proof.

Alphabetic Variants

Theorem

Let ϕ be a formula, t a term, and x a variable. Then there is a formula ϕ' such that (1) $\phi \vdash \phi'$ and $\phi' \vdash \phi$; (2) t is substitutable for x in ϕ' .

Proof.

Fix x and t. Construct ϕ' as follows. If ϕ is atomic, $\phi' = \phi$; $(\neg \phi)' = \neg \phi'$; and $(\phi \rightarrow \psi)' = \phi' \rightarrow \psi'$. Finally, define $(\forall y \phi)' = \forall z (\phi')_z^y$ where z is a fresh variable not in ϕ' , t, or x. Note that t is substitutable for x in $(\phi')_z^y$ for z is fresh.

By inductive hypothesis, $\phi \vdash \phi'$. Thus $\forall y \phi \vdash \forall y \phi'$ (why?). Moreover, $\forall y \phi' \vdash (\phi')_z^y$. Hence $\forall y \phi' \vdash \forall z (\phi')_z^y$ by generalization. $\forall y \phi \vdash \forall z (\phi')_z^y$. Conversely, $\forall z (\phi')_z^y \vdash ((\phi')_z^y)_y^z$. Since $((\phi')_z^y)_z^y = \phi'$ and $\phi' \vdash \phi$ (inductive hypothesis), $\forall z (\phi')_z^y \vdash \phi$. Finally, $\forall z (\phi')_z^y \vdash \forall y \phi$.

Soundness and Completeness

Soundness.

• Completeness.

 $\Gamma \vdash \phi \Rightarrow \Gamma \models \phi$

 $\Gamma \vDash \phi \Rightarrow \Gamma \vdash \phi$

Substitution Lemma II

Proof (cont'd).

- $\phi = \neg \psi$ or $\psi \rightarrow \theta$. Follow by induction hypothesis.
- $\phi = \forall y \psi$ and x does not occur free in ϕ . Since ϕ_t^x is ϕ , the result follows.
- $\phi = \forall y\psi$ and x does occur free in ϕ . Since t is substitutable for x in ϕ , y does not occur in t. Hence $\overline{s}(t) = \overline{s(y|d)}(t)$ for any $d \in |\mathfrak{U}|$. Thus

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

Soundness Theorem I

$$\nu(\gamma) = \mathsf{T} \text{ iff } \models_{\mathfrak{U}} \gamma[s].$$

Then $\overline{\nu}(\alpha) = \mathsf{T}$ iff $\models_{\mathfrak{U}} \alpha[s]$ for any formula α . Particularly, if \emptyset tautologically implies α , then $\models \alpha$.

Soundness Theorem II

Proof (cont'd).

- Consider, for example, $\forall x Px \rightarrow Pt$. Assume $\models_{\mathfrak{U}} \forall x Px[s]$. We have $\models_{\mathfrak{U}} Px[s(x|d)]$ for any $d \in |\mathfrak{U}|$. Particularly, $\models_{\mathfrak{U}} Px[s(x|\overline{s}(t))]$. By Substitution Lemma, $\models_{\mathfrak{U}} Pt[s]$. Thus $\models_{\mathfrak{U}} \forall x Px \rightarrow Pt$.
- Assume $\models_{\mathfrak{U}} \forall x(\alpha \rightarrow \beta)$ and $\models_{\mathfrak{U}} \forall x\alpha$. For any $d \in |\mathfrak{U}|$, $\models_{\mathfrak{U}} \alpha \rightarrow \beta[s(x|d)]$ and $\models_{\mathfrak{U}} \alpha[s(x|d)]$. Hence $\models_{\mathfrak{U}} \beta[s(x|d)]$ as required.
- Assume x does not occur free in α and $\models_{\mathfrak{U}} \alpha[s]$. Then $\models_{\mathfrak{U}} \alpha[s(x|d)]$ as required.
- Trivial, for $\models_{\mathfrak{U}} x \approx x[s]$ iff s(x) = s(x).

Bow-Yaw Wang (Academia Sinic

July 1, 2009 79 / 9

Soundness Theorem III

Proof (cont'd).

Assume α is atomic and α' is obtained from α by replacing x at some places by y. Suppose ⊨_𝔅 x ≈ y[s] and ⊨_𝔅 α[s]. We have s(x) = s(y). Hence for any term t and t' obtained from t by replacing x at some places y, we have s̄(t) = s̄(t') by induction on t. The result follows by case analysis on α.

77 / 97

Soundness Theorem

Theorem

If $\Gamma \vdash \phi$, $\Gamma \vDash \phi$.

Proof.

By induction on the deduction.

- ϕ is a logical axiom. Hence $\vDash \phi$. Thus $\Gamma \vDash \phi$.
- $\phi \in \Gamma$. Clearly, $\Gamma \vDash \phi$.
- ϕ is obtained from ϕ and $\psi \rightarrow \phi$. By inductive hypothesis, $\Gamma \vDash \psi$ and $\Gamma \vDash \psi \rightarrow \phi$. Since $\{\psi, \psi \rightarrow \phi\}$ tautologically implies ϕ , we have $\Gamma \vDash \phi$.

• We say Γ is satisfiable if there is some $\mathfrak U$ and s such that $\mathfrak U$ satisfies every member of Γ with s

Corollary

If Γ is satisfiable, Γ is consistent.

Proof.

Suppose Γ is inconsistent. Thus $\Gamma \vdash \phi$ and $\Gamma \vdash \neg \phi$ for some ϕ . By soundness theorem, $\Gamma \vDash \phi$ and $\Gamma \vDash \neg \phi$. Since Γ is satisfiable, $\vDash_{\mathfrak{U}} \phi[s]$ and $\vDash_{\mathfrak{U}} \neg \phi[s]$.

Bow-Yaw Wang (Academia Sinica)

July 1, 2009

81 / 97

Applications

Corollary	
If $\vdash \phi \leftrightarrow \psi$, ϕ and ψ are logically equivalent.	
Proof.	
$\vdash \phi \rightarrow \psi$ implies $\phi \vdash \psi$ (modus ponens). Thus $\phi \models \psi$ (soundness). By symmetry, $\psi \models \phi$.	
Corollary	
If ϕ' is an alphabetic variant of ϕ, ϕ and ϕ' are logically equivalent.	
Proof.	
By the definition of alphabetic variant.	

Completeness Theorem

Lemma

The following are equivalent:

- If $\Gamma \vDash \phi$, $\Gamma \vdash \phi$
- Any consistent set of formulae is satisfiable

Proof.

Suppose Γ is a consistent set of formulae but Γ is not satisfiable. Since Γ is not satisfiable, we have $\Gamma \vDash \phi$ for any ϕ vacuously. Thus, $\Gamma \vdash \phi$ for any ϕ . Particularly, $\Gamma \vdash \phi$ and $\Gamma \vdash \neg \phi$. A contradiction. Conversely, suppose $\Gamma \vDash \phi$. Then $\Gamma \cup \{\neg\phi\}$ is unsatisfiable and hence inconsistent. Thus $\Gamma \cup \{\neg\phi\} \vdash \psi$ and $\Gamma \cup \{\neg\phi\} \vdash \neg\psi$ for some ψ . We have $\Gamma \cup \{\neg\phi\} \vdash \psi \land \neg\psi$. By Deduction Theorem, $\Gamma \vdash \neg\phi \rightarrow (\psi \land \neg\psi)$. Note that $\vdash (\neg\phi \rightarrow (\psi \land \neg\psi)) \rightarrow \phi$ (why?). We have $\Gamma \vdash \phi$ by modus ponens.

July 1, 2009

Completeness Theorem I

Theorem (Gödel, 1930) Any consistent set of formulae is satisfiable.

Sketch. (Step 1).

Let Γ be a consistent set of wffs in a countable language. Expand the language with a countably infinite set of new constant symbols. Then Γ remains consistent in the new language.

Details. (Step 1).

Otherwise, there is a β such that $\Gamma \vdash \beta \land \neg \beta$ in the new language. Since the deduction uses only finitely many new constants, we replace these new constants by variables (generalization on constants) and obtain β' . Then we have $\Gamma \vdash \beta' \land \neg \beta'$ in the original language. A contradiction.

```
Bow-Yaw Wang (Academia Sinica)
```

July 1, 2009 8

Completeness Theorem II

Sketch. (Step 2).

For each wff ϕ in the new language and each variable x, consider wffs of the form

 $\neg \forall x \phi \rightarrow \neg \phi_c^x$

where c is a new constant. We can have consistent $\Gamma \cup \Theta$ for some set Θ of wffs in such form.

Completeness Theorem III

Details. (Step 2).

Let $\langle \phi_1, x_1 \rangle, \dots, \langle \phi_n, x_n \rangle, \dots$ be an enumeration. Define θ_n to be

 $\neg \forall x_n \phi_n \to \neg (\phi_n)_{c_n}^{x_n}$

where c_n is the first new constant symbol not occurring in ϕ_n nor in θ_k for k < n. Let $\Theta = \{\theta_1, \ldots, \theta_n, \ldots\}$. If $\Gamma \cup \Theta$ is inconsistent, there is a least $m \ge 0$ such that $\Gamma \cup \{\theta_1, \ldots, \theta_m, \theta_{m+1}\}$ is inconsistent (because deduction is finite). By RAA, $\Gamma \cup \{\theta_1, \ldots, \theta_m\} \vdash \neg \theta_{m+1}$. Let $\theta_{m+1} = \neg \forall x \psi \rightarrow \neg \psi_c^x$. Then

 $\Gamma \cup \{\theta_1, \dots, \theta_m\} \vdash \neg \forall x \psi \quad \text{and} \quad \Gamma \cup \{\theta_1, \dots, \theta_m\} \vdash \psi_c^{\times}$

Since *c* does not occur in $\Gamma \cup \{\theta_1, \ldots, \theta_m\}$, we have $\Gamma \cup \{\theta_1, \ldots, \theta_m\} \vdash \forall x \psi$ by generalization on constants. A contradiction to the minimality of *m* (or consistency of Γ).

```
Bow-Yaw Wang (Academia Si
```

July 1, 2009 87 / 9

Completeness Theorem IV

Sketch (Step 3).

We extend $\Gamma \cup \Theta$ to a maximal consistent set Δ such that for any wff ϕ either $\phi \in \Delta$ or $\neg \phi \in \Delta$. Observe that $\Delta \vdash \phi$ implies $\Delta \not\models \neg \phi$ (consistency). Hence $\neg \phi \notin \Delta$. Thus $\phi \in \Delta$ (maximality).

Details (Step 3).

Let Λ be the set of logical axioms in the new language. Since $\Gamma \cup \Theta$ is consistent, there is no β such that $\Gamma \cup \Theta \cup \Lambda$ tautologically implies both β and $\neg \beta$ (why?). There is a truth assignment ν for prime formulae which satisfies $\Gamma \cup \Theta \cup \Lambda$ (why?). Define $\Delta = \{\phi : \overline{\nu}(\phi) = T\}$. Then for any ϕ , either $\phi \in \Delta$ or $\neg \phi \in \Delta$. Moreover

$$\Delta \vdash \phi \implies \Delta \cup \Lambda(=\Delta) \text{ tautologically implies } \phi$$
$$\implies \overline{\nu}(\phi) = \mathsf{T} \implies \phi \in \Delta.$$

 Δ cannot be inconsistent.

July 1, 2009 86 / 97

Bow-Yaw Wang (Academia Sinica)

Completeness Theorem V

Sketch (Step 4).

Define a structure ${\mathfrak U}$ as follows

- $\bullet~|\mathfrak{U}|$ = the set of all terms in the new language
- $\langle u, t \rangle \in E^{\mathfrak{U}}$ iff $u \approx t \in \Delta$
- For each *n*-place predicate symbol P, $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{U}}$ iff $Pt_1 \cdots t_n \in \Delta$
- For each *n*-place function symbol *f*, define $f^{\mathfrak{U}}(t_1,\ldots,t_n) = ft_1\cdots t_n$

Let $s: V \to |\mathfrak{U}|$ be the identity function. Then $\overline{s}(t) = t$ for all t. For any wff ϕ , let ϕ^* be the result of replacing all \approx in ϕ by E. We have $\models_{\mathfrak{U}} \phi^*[s]$ iff $\phi \in \Delta$.

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009

Completeness Theorem VI

Completeness Theorem VII Details (Step 4)(cont'd). • Recall $\theta = \neg \forall x \phi \rightarrow \neg \phi_c^x \in \Delta$. $\models_{\mathfrak{U}} \forall x \phi^*[s] \Rightarrow \models_{\mathfrak{U}} \phi^*[s(x|c)]$ $\Rightarrow \models_{\mathfrak{U}} (\phi^*)_c^x[s]$ (substitution lemma) $\Rightarrow \models_{\mathfrak{U}} (\phi_c^*)^*[s] \Rightarrow \phi_c^x \in \Delta \Rightarrow \neg \phi_c^x \notin \Delta$

 $\Rightarrow \neg \forall x \phi \notin \Delta \ (\theta \in \Delta) \ \Rightarrow \ \forall x \phi \in \Delta.$

ow-Yaw Wang (Academia Sinica

ntary Logic

July 1, 2009 91 / 97

Completeness Theorem VIII

Sketch (Step 5).

If Γ contains equality, consider the quotient structure \mathfrak{U}/E : • Define $[t] = \{s : \langle s, t \rangle \in E^{\mathfrak{U}}\}$. Observe that $E^{\mathfrak{U}}$ is a congruence

- Define [t] = {s: (s, t) ∈ E^u}. Observe that E^u is a congruence relation:
 - $E^{\mathfrak{U}}$ is a equivalence relation on $|\mathfrak{U}|$
 - $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{U}}$ and $\langle t_i, t_i' \rangle \in E^{\mathfrak{U}}$ for $1 \leq i \leq n$, then $\langle t_1', \ldots, t_n' \rangle \in P^{\mathfrak{U}}$
 - $\langle t_i, t'_i \rangle \in E^{\mathfrak{U}}$ for $1 \leq i \leq n$, then $\langle f^{\mathfrak{U}}(t_1, \ldots, t_n), f^{\mathfrak{U}}(t'_1, \ldots, t'_n) \rangle \in E^{\mathfrak{U}}$
- $|\mathfrak{U}/E| = \{[t] : t \text{ a term }\}$
- $\langle [t_1], \ldots, [t_n] \rangle \in P^{\mathfrak{U}/E}$ iff $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{U}}$
- $f^{\mathfrak{U}/E}([t_1],\ldots,[t_n]) = [f^{\mathfrak{U}}(t_1,\ldots,t_n)]$. Particularly, $c^{\mathfrak{U}/E} = [c^{\mathfrak{U}}]$

Let h(t) = [t] be the natural map from $|\mathfrak{U}|$ to $|\mathfrak{U}/E|$. *h* is a homomorphism of \mathfrak{U} onto \mathfrak{U}/E . For any ϕ ,

 $\phi \in \Delta \iff \models_{\mathfrak{U}} \phi^*[s] \iff \models_{\mathfrak{U}/E} \phi^*[h \circ s] \iff \models_{\mathfrak{U}} \phi[h \circ s]$

Completeness Theorem IX

Details (Step 5). Recall $\langle t, t' \rangle \in E^{\mathfrak{U}}$ iff $t = t' \in \Delta$ iff $\Delta \vdash t = t'$. Hence $E^{\mathfrak{U}}$ is a congruence relation on \mathfrak{U} , and both $P^{\mathfrak{U}/E}$ and $f^{\mathfrak{U}/E}$ are well-defined. Clearly, h is a homomorphism of \mathfrak{U} onto \mathfrak{U}/E . Moreover, $\langle [t], [t'] \rangle \in E^{\mathfrak{U}/E}$ iff $\langle t, t' \rangle \in E^{\mathfrak{U}}$ iff [t] = [t']. Thus

```
\phi \in \Delta \iff \models_{\mathfrak{U}} \phi^*[s] \text{ (Step 4)}\Leftrightarrow \models_{\mathfrak{U}/E} \phi^*[h \circ s] \text{ (homomorphism theorem)}\Leftrightarrow \models_{\mathfrak{U}} \phi[h \circ s] \text{ (above)}
```

Compactness Theorem

Theorem (Compactness)

- **1** If $\Gamma \vDash \phi$, then $\Gamma_0 \vDash \phi$ for some finite $\Gamma_0 \subseteq \Gamma$;
- **2** If every finite subset Γ_0 of Γ is satisfiable, Γ is satisfiable.

Proof.

- Observe Γ ⊨ φ implies Γ ⊢ φ. Since deductions are finite, Γ₀ ⊢ φ for some finite Γ₀ ⊆ Γ. Hence Γ₀ ⊨ φ by soundness theorem.
- Suppose every finite subset of Γ is satisfiable, every finite subset of Γ is consistent (soundness theorem). Since deductions are finite, Γ is consistent. By completeness theorem, Γ is satisfiable.

Bow-Yaw Wang (Academia Sinica)

ntary Logic

July 1, 2009 95 / 97

History

- Kurt Gödel's 1930 doctoral dissertation contains the completeness theorem for countable languages. Compactness theorem was a corollary.
- Anatolii Mal'cev showed the compactness theorem for uncountable languages in 1941.
- Our proof of completeness theorem is based on Leon Henkin's 1949 dissertation.

Details (Step 6).

Completeness Theorem X

Restrict \mathfrak{U}/E to the original language. The restricted \mathfrak{U}/E satisfies every member of Γ with $h \circ s$. Γ is satisfiable.

• Remark. If the original language is uncountable, a modified proof still works. We only add sufficiently many new constant symbols

July 1, 2009

References

• Enderton. A Mathematical Introduction to Logic.

Bow-Yaw Wang (Academia Sinica) Elementary Logic

July 1, 2009 97 / 97