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The Language

The following symbols are used in sentential logic
Symbol Name Remark

( left parenthesis punctuation
) right parenthesis punctuation
¬ negation symbol not
∧ conjunction symbol and
∨ disjuction symbol or (inclusive)
→ condition symbol if , then
↔ biconditional symbol if and only if
A1 first sentence symbol
A2 second sentence symbol
. . .
An nth sentence symbol
. . .

The set of sentence symbols will be denoted by S
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Well-Formed Formulae (wff’s)

A set S of expressions is inductive if it has the following properties.

A well-formed formula (wff) is defined as follows:
▸ every sentence symbol is a wff;
▸ if expressions α and β are wff’s, then so are (¬α), (α ∧ β), (α ∨ β),

(α → β), and (α↔ β).

The set of wffs generated from S is denoted by S
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Truth Assignments

Fix a set {T,F} of truth values

A truth assignment is a function

ν ∶ S → {T,F}
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Extended Truth Assignment

Define the extension ν ∶ S → {T,F} by

ν(A) = ν(A)

ν((¬α)) = {
T if ν(α) = F
F otherwise

ν((α ∧ β)) = {
T if ν(α) = T and ν(β) = T
F otherwise

ν((α ∨ β)) = {
T if ν(α) = T or ν(β) = T
F otherwise

ν((α → β)) = {
F if ν(α) = T and ν(β) = F
T otherwise

ν((α↔ β)) = {
T if ν(α) = ν(β)
F otherwise
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Tautology

A truth assignment ν satisfies a wff φ if ν(φ) = T

Let Σ be a set of wffs and φ a wff. Σ tautologically implies φ (Σ ⊧ φ)
if every truth assignment satisfies every member of Σ also satisfies φ

φ is a tautology if ∅ ⊧ φ

If σ ⊧ τ and τ ⊧ σ, we say σ and τ are tautologically equivalent
(σ ⊧â τ)

▸ σ ⊧ τ stands for {σ} ⊧ τ
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Omitting Parentheses

To reduce the number of parentheses, we use the following convention:

The outmost parentheses need not be explicitly mentioned. “A ∧B”
means (A ∧B)

The negation symbol applies to as little as possible. “¬A ∧B” means
(¬A) ∧B

The conjunction and disjunction symbols also apply to as little as
possible. “A ∧B → ¬C ∨D” means (A ∧B)→ ((¬C) ∨D)

Where one connective symbol is used repeatedly, grouping to the
right. “A→ B → C ” means A→ (B → C)
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Boolean Functions

A k-place Boolean function is a function from {T,F}k into {T,F}

Suppose a wff α has sentence symbols among A1, . . . ,An. The
Boolean function Bn

α realized by α is defined by

Bn
α(X1, . . . ,Xn) = ν(α)

where ν(Ai) = Xi ∈ {T,F} for each i = 1, . . . ,n
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Facts about Bn
α

Theorem

Let α and β be wffs whose sentence symbols are among A1, . . . ,An.

1 α ⊧ β iff for all X⃗ ∈ {T,F}n, Bn
α(X⃗ ) = T implies Bn

β(X⃗ ) = T

2 α ⊧â β iff Bn
α = Bn

β

3 ⊧ α iff ran Bn
α = {T}

Proof.

Observe that α ⊧ β iff for all 2n truth assignments ν, ν(α) = T implies
ν(β) = T.
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Completeness of Connectives

Theorem

Let G be an n-place Boolean function with n ≥ 1. There is a wff α such
that G = Bn

α

Proof.

If ran G = {F}, let α = A1 ∧ ¬A1.
Otherwise, let G have the value T at X⃗i = ⟨Xi1,Xi2, . . . ,Xin⟩ for
i = 1, . . . , k. Define

βij = {
Aj if Xij = T
¬Aj if Xij = F

γi = βi1 ∧⋯ ∧ βin

α = γ1 ∨⋯ ∨ γk

It is straightforward to show G = Bn
α
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Disjunctive Normal Form

A literal is either a sentence symbol A or its negation ¬A

A wff α is in disjunctive normal form if

α = γ1 ∨ γ2 ∨⋯ ∨ γk

where

γi = βi1 ∧ βi2 ∧⋯βini

and βij is a literal

Corollary

For any wff φ, there is a tautologically equivalent wff α in disjunctive
normal form
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Compactness

A set Σ of wffs is satisfiable if there is a truth assignment which
satisfies every member of Σ

Σ is finitely satisfiable if every finite subset of Σ is satisfiable

In mathematics, compactness relates finite and infinite features
▸ A set is compact if any open cover has a finite subcover

☀ bounded closed sets are compact; bounded open sets are not.
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Proof of Compactness

Theorem

A set Σ of wffs is satisfiable iff it is finitely satisfiable

Proof.

Let α0, α1, . . . be an enumeration of wffs. Define

∆0 = Σ

∆n+1 = {
∆n ∪ {αn+1} if this is finitely satisfiable
∆n ∪ {¬αn+1} otherwise

Let ∆ = ∪n∆n. Then (1) Σ ⊆ ∆; (2) for any wff α, either α ∈ ∆ or
¬α ∈ ∆; and (3) ∆ is finitely satisfiable.
Define a truth assignment ν by ν(A) = T if A ∈ ∆ for every sentence
symbol A. Then ν satisfies φ iff φ ∈ ∆. Since Σ ⊆ ∆, ν satisfies every
member of Σ.
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Applications of Compactness

Corollary

If Σ ⊧ τ , there is a finite Σ0 ⊆ Σ such that Σ0 ⊧ τ

Proof.

Suppose Σ0 /⊧ τ for every finite Σ0 ⊆ Σ. Then Σ0 ∪ {τ} is not satisfiable
for any finite Σ0 ⊆ Σ. Hence Σ ∪ {τ} is not finitely satisfiable. Thus
Σ ∪ {τ} is not satisfiable. Therefore Σ /⊧ τ .
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The Language

Logical symbols
▸ parentheses: (, )

▸ sentential connectives: →, ¬
▸ variables: v1, v2, . . .
▸ equality symbol (optional): ≈

Parameters
▸ quantifier symbol: ∀
▸ predicate symbols: n-place predicate symbols
▸ constant symbols (or 0-place function symbols)
▸ function symbols: n-place function symbols
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Examples of First-Order Language

Pure predicate language
▸ equality: no
▸ n-place predicate symbols: An

1, An
2, . . .

▸ constant symbols: a1, a2, . . .
▸ n-place function symbols (n > 0): none

Language of set theory
▸ equality: yes
▸ predicate parameters: ∈
▸ constant symbols: ∅ (sometimes)
▸ function symbols: none

Language of elementary number theory
▸ equality: yes
▸ predicate parameters: <
▸ constant symbols: 0
▸ 1-place function symbols: S
▸ 2-place function symbols: +, ×, and E
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Examples

“There is no set of which every set is a member.”

¬(¬∀v1(¬∀v2 ∈ v2v1))

or ¬(∃v1(∀v2 ∈ v2v1))

“For any two sets, there is a set whose members are exactly the two
given sets.”

∀v1v2∃v3∀v4(∈ v4v3 ↔≈ v4v1∨ ≈ v4v2)

“Any nonzero natural number is the successor of some number.”

∀v1(¬ ≈ v10→ ∃v2 ≈ v1Sv2)
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Terms

Terms are generated by variables, constant symbols, and function
symbols

Examples:

+v2S0 informally, v2 + 1

SSSS0 informally, 4

+Ev1SS0Ev2SSS0 informally, v 2
1 + v 3

2
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Atomic Formulae

An atomic formula is an expression of the form

Pt1⋯tn

where P is an n-place predicate symbol (or equality), and t1, . . . , tn
are terms

Examples:

≈ v1S0 informally, v1 = 1

∈ v2v3 informally, v2 ∈ v3
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Well-Formed Formulae

The set of well-formed formulae (wff, or formulae) is generated from
the atomic formulae by connective symbols (¬,→) and the quantifier
symbol (∀)

▸ ¬γ, γ → δ, ∀viγ are wffs provided γ, δ are

Example:

∀v1((¬∀v3(¬ ∈ v3v1))→ (¬∀v2(∈ v2v1)→

(¬∀v4(∈ v4v2 → (¬ ∈ v4v1)))))

informally

∀v1((∃v3v3 ∈ v1)→ (¬∀v2v2 ∈ v1 → (¬∀v4v4 ∈ v2 → v4 /∈ v1)))

Nonexample: ¬v5
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Free Variables

Let x be a variable and α a wff

We say x occurs free in α if
▸ x is a symbol in α when α is atomic
▸ x occurs free in β when α is ¬β
▸ x occurs free in β or in γ when α is β → γ
▸ x occurs free in β and x ≠ vi when α is ∀viβ

If no variable occurs free in the wff α, we say α is a sentence

Examples:
▸ ∀v2(Av2 → Bv2) and ∀v3(Pv3 → ∀v3Qv3) are sentences
▸ v1 occurs free in (∀v1Av1)→ Bv1
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Abbreviations

Let α and β be formulae and x a variable

(α ∨ β) abbreviates ((¬α)→ β)

(α ∧ β) abbreviates (¬(α → (¬β)))

(α↔ β) abbreviates ((α → β) ∧ (β → α)); that is,

(¬((α → β)→ (¬(β → α))))

∃xα abbreviates (¬∀x(¬α))

u ≈ t abbreviates ≈ ut (and similarly for other 2-place predicate
symbols)

u /≈ t abbreviates (¬ ≈ ut) (and similarly for other 2-place predicate
symbols)
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Precedences

Outermost parentheses may be dropped.
▸ ∀xα → β is (∀xα → β)

¬, ∀, and ∃ apply to as little as possible.
▸ ¬α ∧ β is ((¬α) ∧ β)
▸ ∀xα → β is ((∀xα)→ β)

∧ and ∨ apply to as little as possible, subject to above
▸ ¬α ∧ β → γ is (((¬α) ∧ β)→ γ)

When connective is used repeatedly, group them to the right
▸ α → β → γ is α → (β → γ)
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Notation Conventions

Predicate symbols: A, B, C , etc. Also ∈, <

Variables: vi , u, x , y , etc.

Function symbols: f , g , h, etc. Also S , +, etc.

Constant symbols: a, b, c , etc. Also 0

Terms: u, t

Formulae: α, β, γ, etc.

Sentences: σ, τ , etc.

Set of formulae: Σ, ∆, Γ, etc.

Structures: U, B, etc.
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Structures

A structure U for a first-order language is a function whose domain is
the set of parameters such that

1 U assigns to ∀ a nonempty set ∣U∣, called the universe of U
2 U assigns to each n-place predicate symbol P an n-ary relation

Pu
⊆ ∣U∣

n

3 U assigns to each constant symbol c a member cu
∈ ∣U∣

4 U assigns to each n-place function symbol f an n-ary function
f u

∶ ∣U∣
n
→ ∣U∣

Note that ∣U∣ is nonempty and f U is not a partially-defined function
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Examples of Structures

In the language for set theory. Define
▸ ∣U∣ = the set of natural numbers
▸ ∈

U = {⟨m,n⟩ ∶ m < n}

Consider ∃x∀y¬y ∈ x
▸ there is a natural number such that no natural number is smaller

Informally, we would like to say ∃x∀y¬y ∈ x is true in U or U is a
model of the sentence
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Satisfaction ⊧U φ[s] I

Let φ be a wff, U a structure, and s ∶ V → ∣U∣ from the set V of variables
to the universe of U

Terms. Define the extension s ∶ T → ∣U∣ from terms to the universe by
1 for variable x , s(x) = s(x)
2 for constant symbol c , s(c) = cU

3 if t1, . . . , tn are terms and f is an n-place function symbol,
s(ft1⋯tn) = f U

(s(t1), . . . , s(tn))

Atomic formulae. Define
1 ⊧U≈ t1t2[s] if s(t1) = s(t2)

2 for n-place predicate parameter P, ⊧U Pt1⋯tn[s] if
⟨s(t1), . . . , s(tn)⟩ ∈ PU
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Satisfaction ⊧U φ[s] II

Other wffs. Define
1 ⊧U ¬φ[s] if /⊧U φ[s]
2 ⊧U (φ→ ψ)[s] if /⊧U φ[s] or ⊧U ψ[s]
3 ⊧U ∀xφ[s] if for every d ∈ ∣U∣, we have ⊧U φ[s(x ∣d)] where

s(x ∣d)(y) = {
s(y) if y ≠ x
d if y = x
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Logical Implication

Definition

Let Γ be a set of wffs, φ a wff. Γ logically implies φ (Γ ⊧ φ) if for every
structure U and every function s ∶ V → ∣U∣ such that U satisfies every
member of Γ with s, U also satisfies φ with s

φ and ψ are logically equivalent (φ ⊧â ψ) if φ ⊧ ψ and ψ ⊧ φ

A wff φ is valid if ∅ ⊧ φ (or just ⊧ φ)
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Relevant Valuation

Theorem

Assume s1, s2 ∶ V → ∣U∣ such that s1 and s2 agree at all variables occurring
free in φ. Then ⊧U φ[s1] iff ⊧U ψ[s2].

Proof.

By induction.

φ = Pt1⋯tn. Observe s1(t) = s2(t) for any term t occurring in φ
(why?)

φ = ¬α or α → β. By inductive hypothesis

φ = ∀xψ. Then free variables in φ are free variables in ψ except x .
Thus s1(x ∣d) and s2(x ∣d) agree at free variables in ψ for any d ∈ ∣U∣.
By inductive hypothesis, ⊧U ψ[s1(x ∣d)] iff ⊧U ψ[s2(x ∣d)] for any
d ∈ ∣U∣.
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Truth and Models

Corollary

For a sentence σ, either

(a) U satisfies σ with every function s; or

(b) U does not satisfy σ with any such function

If (a) holds, we say σ is true in U or U is a model of σ

If (b) holds, we say σ is false in U

U is a model of a set Σ of sentences iff it is a model of every member
of Σ

Corollary

For a set Σ; τ of sentences. Σ ⊧ τ iff every model of Σ is a model of τ
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Logical and Tautological Implications

Consider the problem of determining ⊧ φ when
▸ φ is in sentential logic; and
▸ φ is in first-order logic

For sentential logic, there is an effective procedure
▸ by truth table

For first-order logic, we have to consider all structures
▸ there are infinitely many structures!
▸ the validity problem is in fact undecidable
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Notational Convention

By our notational convention, the following statements can be proved
▸ ⊧U (α ∧ β)[s] iff ⊧U α[s] and ⊧U β[s]; similarly for ∨ and ↔
▸ ⊧U ∃xα[s] iff there is some d ∈ ∣U∣ such that ⊧U α[s(x ∣d)]
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Definability of Structures

Let Σ be a set of sentences. Mod(Σ) denotes the class of all models
of Σ. That is

Mod(Σ) = {U ∶⊧U σ for all σ ∈ Σ}

A class K of structures is an elementary class (EC) if K = Mod(τ)
for some sentence τ . K is an elementary class in the wider sense
(EC∆) if K = Mod(Σ) for some set Σ of sentences
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Examples

A structure (A,R) with R ⊆ A ×A is an ordered set if R is transitive
and satisfies trichotomy condition

▸ that is, exactly one of ⟨a,b⟩ ∈ R, a = b, ⟨b, a⟩ ∈ R holds

The class of nonempty ordered sets is an elementary class

τ = ∀x∀y∀z(xRy → yRz → xRz) ∧

∀x∀y(xRy ∨ x ≈ y ∨ yRx) ∧

∀x∀y(xRy → ¬yRx)

The class of infinite sets is EC∆

λ2 = ∃x∃yx /≈ y

λ3 = ∃x∃y∃z(x /≈ y ∧ x /≈ z ∧ y /≈ z)

⋯

Σ = {λ2, λ3, . . . ,}
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Definability within a Structure

Fix a structure U

Let φ be a formula with free variables v1, . . . , vk

For a1, . . . , ak ∈ ∣U∣, ⊧U φ[[a1, . . . , ak]] means that U satisfies φ with
some s ∶ V → ∣U∣ where s(vi) = ai for 1 ≤ i ≤ k

The k-ary relation defined by φ is the relation

{⟨a1, . . . , ak⟩ ∶⊧U φ[[a1, . . . , ak]]}

A k-ary relation on ∣U∣ is definable if there is a formula defining it
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Examples

Consider the language of number theory with the intended structure
N = (N,0,S ,+,−, ⋅)
The ordering relation {⟨m,n⟩ ∶ m < n} is defined by ∃v3v1 + Sv3 ≈ v2

For any n ∈ N, {n} is definable. For instance, {2} is defined by
v1 ≈ SS0

▸ we hence say n is a definable element in N

The set of primes is definable. Consider

∃v3S0 + Sv3 ≈ v1∧

∀v2∀v3(v1 ≈ v2 ⋅ v3 → v2 ≈ S0 ∨ v3 ≈ S0)
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Homomorphisms

Let U and B be structures. A mapping h ∶ ∣U∣→ ∣B∣ is a
homomorphism if

▸ For each n-place predicate symbol P and n-tuple ⟨a1, . . . , an⟩ ∈ ∣U∣
n,

⟨a1, . . . , an⟩ ∈ PU iff ⟨h(a1), . . . ,h(an)⟩ ∈ PB

▸ For each n-place function symbol f and n-tuple ⟨a1, . . . , an⟩ ∈ ∣U∣
n,

h(f U
(a1, . . . , an)) = f B

(h(a1), . . . ,h(an))

If h is one-to-one, it is called an isomorphism

If there is an isomorphism of U onto B, we say U and B are
isomorphic (in notation, U ≅ B)
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Examples

Consider (Z+,<+Z) and (N,<N). The function h(n) = n − 1 is an
isomorphism from (Z+,<+Z) onto (N,<N)

Consider two structures U and B with ∣U∣ ⊆ ∣B∣. The identity map
(i(n) = n) is an isomorphism of U into B iff

▸ PU is the restriction of PB to ∣U∣ for every predicate symbol P; and
▸ f U is the restriction of f B to ∣U∣ for every function symbol f

In this case, we say U is a substructure of B, and B is an extension
of U

(Z+,<+Z) is a substructure of (N,<N)
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Homomorphism Theorem

Theorem

Let h be a homomorphism of U into B, and s ∶ V → ∣U∣.

1 For any term t, h(s(t)) = h ○ s(t);

2 For any quantifier-free formula α without equality symbol, ⊧U α[s] iff
⊧B a[h ○ s];

3 If h is one-to-one, then 2 holds even when α contains equality symbol;

4 If h is onto, then 2 holds even when α has quantifiers.
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Proof of Homomorphism Theorem I

1 By induction on t.

2 For atomic formula such as Pt, we have

⊧U Pt[s] ⇔ s(t) ∈ PU

⇔ h(s(t)) ∈ PB

⇔ h ○ s(t) ∈ PB

⇔ ⊧B Pt[h ○ s].

Other quantifier-free formulae without equality symbols can be proved
by induction.
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Proof of Homomorphism Theorem II
3 If h is one-to-one, we have

⊧U u ≈ t[s] ⇔ s(u) = s(t)

⇔ h(s(u)) = h(s(t))

⇔ h ○ s(u) = h ○ s(t)

⇔ ⊧B u ≈ t[h ○ s].

Other cases are proved by induction.

4 By induction hypothesis, ⊧U φ[s]⇔⊧B φ[h ○ s] for any s.

⊧B ∀xφ[h ○ s] ⇔ ⊧B φ[(h ○ s)(x ∣b)] for every b ∈ ∣B∣

⇔ ⊧B φ[(h ○ s)(x ∣h(a))] for every a ∈ ∣U∣

⇔ ⊧B φ[h ○ (s(x ∣a))] for every a ∈ ∣U∣

⇔ ⊧U φ[s(x ∣a)] for every a ∈ ∣U∣

⇔ ⊧U ∀xφ[s].
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Elementary Equivalence

Two structures U and B are elementarily equivalent (U ≡ B) if for
every sentence σ,

⊧U σ ⇔ ⊧B σ.

By Homomorphism Theorem, two isomorphic structures are
elementarily equivalent

▸ but two elementarily equivalent structures are not necessarily
isomorphic, e.g. (R,<R) and (Q,<Q)

The identity map from (Z+,<+Z) into (N,<N) is an isomorphism. We
have

⊧(Z+,<+Z) ∀v2(v1 /≈ v2 → v1 < v2)[[v1 ↦ 1]]

but

/⊧(N,<N) ∀v2(v1 /≈ v2 → v1 < v2)[[v1 ↦ 1]]
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Generalization and Substitution

A wff φ is a generalization of ψ if for some n ≥ 0 and variables
x1, . . . , xn, φ = ∀x1⋯∀xnψ

For variable x and term t, write αx
t for the formula obtained by

replacing x with t. Formally,
1 for atomic α, αx

t is obtained by α by replacing the variable x by t;
2 (¬α)x

t = (¬αx
t );

3 (α → β)x
t = (αx

t → βx
t );

4 (∀yα)x
t = {

∀yα if x = y
∀y(αx

t ) if x ≠ y

t is substitutable for x in α if
1 for atomic α, t is always substitutable for x in α;
2 t is substitutable for x in (¬α) if it is substitutable for x in α; t is

substitutable for x in (α → β) if it is substitutable for x in both α and
β;

3 t is substitutable for x in ∀yα if

1 x does not occur free in ∀yα; or
2 y does not occur in t and t is substitable for x in α
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More about Substitution

Consider γ = ∀v2Bv1v2

Then γv1
v2
= ∀v2Bv2v2

▸ however, v2 is not substitutable for v1 in γ (why?)

When an axiom of the form ∀xα is instantiated, we have αx
t for some

term t

But the substitution cannot be performed arbitrarily
▸ thus we have to check whether t is substitutable for x in α
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Logical Axioms Λ

The logical axioms Λ are generalizations of wffs of the following forms:

1 tautologies;

2 ∀xα → αx
t where t is substitutable for x in α;

3 ∀x(α → β)→ (∀xα → ∀xβ);

4 α → ∀xα where x does not occur free in α;

5 x ≈ x ;

6 x ≈ y → (α → α′) where α is atomic and α′ is obtained from α by
replacing x in zero or more places by y
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Modus Ponens

(Modus ponens) From α and α → β, we may infer β:

α, α → β

β

A set ∆ of formulae is closed under modus ponens if whenever α and
α → β are in ∆, then β is in ∆

φ is a theorem of Γ (Γ ⊢ φ) if φ belongs to the set generated from
Γ ∪ Λ by modus ponens

Definition

A deduction of φ from Γ is a sequence ⟨α0, . . . , αn⟩ of formulae such that
αn = φ and for each i ≤ n,

αi ∈ Γ ∪ Λ; or

for some j , k < i , αi is obtained by modus ponens from αj and
αk(= αj → αi)
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Theorem and Deduction

Theorem

There exists a deduction of α from Γ iff α is a theorem of Γ.

Proof.

If there is a deduction ⟨a0, . . . , an⟩, then each αi belongs to the set
generated from Γ ∪ Λ by modus ponens. Hence Γ ⊢ αn(= φ).
Conversely, every formula in Γ ∪ Λ has a deduction. Moreover, every
formula obtained from Γ ∪ Λ by modus ponens has a deduction. Hence,
every formula generated from Γ ∪ Λ by modus ponens has a deduction.
Particularly, the theorem φ of Γ has a deduction.

We therefore say φ is deducible from Γ if Γ ⊢ φ.
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Tautologies

A tautology in first-order logic is a wff obtained from a tautology in
sentential logic by replacing each sentence symbol with a wff of
first-order language

∀x[(∀y¬Py → ¬Px)→ (Px → ¬∀y¬Py)]

is obtained from

(A→ ¬B)→ (B → ¬A)

by generalization
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More about Tautologies

Divide wffs in first-order language in two groups
1 Prime formulae are the atomic formulae and those of the form ∀xα
2 Non-prime formulae are those of the form ¬α or α → β

Now take prime formulae as sentence symbols. Any tautology of the
(new) sentential logic is a tautology in first-order language

Consider (∀y¬Py → ¬Px)→ (Px → ¬∀¬Px)
▸ there are two prime formulae: ∀y¬Py and Px
▸ it remains to check whether (A→ ¬B)→ (B → ¬A) is a tautology

By taking prime formulae as sentence symbols, first-order formulae
are also wffs of sentential logic. Concepts for sentential logic are
applicable.

▸ it makes sense, for instance, to say “tautologically implies” in
first-order language.
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Deduction and Tautologically Implication

Theorem

Γ ⊢ φ iff Γ ∪ Λ tautologically implies φ

Proof.

Observe that {α,α → β} tautologically implies β. Now suppose there is a
truth assignment ν satisfying Γ ∪ Λ. We can prove ν satisfies any theorem
of Γ by induction on the length of deduction. The inductive step uses the
observation.
Conversely, assume Γ ∪ Λ tautologically implies φ. By compactness
theorem (for sentential logic), there is a finite subset
{γ1, . . . , γm, λ1, . . . , λn} tautologically implying φ. Hence,

γ1 → ⋯→ γm → λ1 → ⋯→ λn → φ

is a tautology (why?) and hence in Λ. Applying modus ponens, we have
φ.
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Examples of Theorems

⊢ Px → ∃yPy

∀y¬Py → ¬Px (∀y¬Py → ¬Px)→ (Px → ¬∀y¬Py)

Px → ¬∀y¬Py

⊢ ∀x(Px → ∃yPy)

∀x(∀y¬Py → ¬Px)

∀x[(∀y¬Py → ¬Px)→
(Px → ¬∀y¬Py)]

∀x(α → β)→
(∀xα → ∀xβ)

∀x(∀y¬Py → ¬Px)→ ∀x(Px → ¬∀y¬Py)

∀x(Px → ¬∀y¬Py)

where α is ∀y¬Py → ¬Px and β is Px → ¬∀y¬Py .
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Theorems and Metatheorems

Note that the word “theorem” has two different meanings

In Γ ⊢ α, we say α is a “theorem”
▸ properties derived from Γ, at the object level

We also say the following is a “theorem”

Theorem

Γ ⊢ φ iff Γ ∪ Λ tautologically implies φ

▸ properties about arbitrary Γ, at the meta level
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Generalization Theorem I

Theorem (generalization)

If Γ ⊢ φ and x does not occur free in any formula in Γ, then Γ ⊢ ∀xφ
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Generalization Theorem II
Proof.

Fix a set Γ and a variable x not free in Γ. If T = {φ ∶ Γ ⊢ ∀xφ} includes
Γ ∪ Λ and is closed under modus ponens, then every theorem φ of Γ
belongs to T . Hence Γ ⊢ ∀xφ for any theorem φ.

ψ ∈ Λ. Hence ∀xψ ∈ Λ. Thus Γ ⊢ ∀xψ and ψ ∈ T

ψ ∈ Γ. Then x does not occur free in ψ. ψ → ∀xψ ∈ Λ (axiom
group 4). We have

ψ ψ → ∀xψ

∀xψ
Suppose φ and φ→ ψ. By induction hypothesis, Γ ⊢ ∀xφ and
Γ ⊢ ∀x(φ→ ψ). We have

∀xφ

∀x(φ→ ψ) ∀x(φ→ ψ)→ (∀xφ→ ∀xψ)

∀xφ→ ∀xψ

∀xψ
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Remark

Informally, when we prove x from Γ and Γ does not
restrict x , we should have ∀x x

▸ this is exactly Generalization Theorem

Axiom group 3 and 4 are crucial in the proof

x must not occur free in Γ
▸ Px /⊧ ∀xPx , one should not have Px ⊢ ∀xPx

For applications, let us show ∀x∀yα ⊢ ∀y∀xα
By axiom group 2 (twice) and ∀x∀yα, we have ∀x∀yα ⊢ α. By
applying Generalization Theorem (twice), we have ∀x∀yα ⊢ ∀y∀xα
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Rule T

Lemma (Rule T)

If Γ ⊢ α1, . . . ,Γ ⊢ αn and {α1, . . . , αn} tautologically implies β, then Γ ⊢ β

Proof.

α1 → ⋯→ αn → β is a tautology and hence a logical axiom. Apply modus
ponens.
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Deduction Theorem I

Theorem

If Γ ∪ {γ} ⊢ φ, Γ ⊢ γ → φ

Proof.

(First proof)

Γ ∪ {γ} ⊢ φ iff Γ ∪ {γ} ∪ Λ tautologically implies φ

iff Γ ∪ Λ tautologically implies γ → φ

iff Γ ⊢ γ → φ
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Deduction Theorem II

Proof.

(Second proof)
We show that Γ ⊢ γ → φ when Γ ∪ {γ} ⊢ φ.

φ = γ. Clearly, Γ ⊢ γ → φ

φ ∈ Λ ∪ Γ. We have Γ ⊢ φ. Moreover, φ→ (γ → φ) is a tautology.
(why?) By modus ponens, Γ ⊢ γ → φ

φ is obtained from ψ and ψ → φ by modus ponens. By inductive
hypothesis, Γ ⊢ γ → ψ and Γ ⊢ γ → (ψ → φ). Moreover,
{γ → ψ, γ → (ψ → φ)} tautologically implies γ → φ. By rule T,
Γ ⊢ γ → φ
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Contraposition

Corollary (contraposition)

Γ ∪ {φ} ⊢ ¬ψ iff Γ ∪ {ψ} ⊢ ¬φ

Proof.

Γ ∪ {φ} ⊢ ¬ψ ⇒ Γ ⊢ φ→ ¬ψ (Deduction Theorem)

⇒ Γ ⊢ ψ → ¬φ

(φ→ ¬ψ tautologically implies ψ → ¬φ, Rule T)

⇒ Γ ∪ {ψ} ⊢ ¬φ (modus ponens)

The converse is obtained by symmetry.
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Inconsistency

A set Γ of formulae is inconsistent if both Γ ⊢ β and Γ ⊢ ¬β for some
β

In this case, Γ ⊢ α for any formula α
▸ β → ¬β → α is a tautology
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Reductio ad Absurdum

Corollary (reductio ad absurdum)

If Γ ∪ {φ} is inconsistent, Γ ⊢ ¬φ.

Proof.

By Deduction Theorem, Γ ⊢ φ→ β and Γ ⊢ φ→ ¬β for some β. Moreover,
{φ→ β,φ→ ¬β} tautologically implies ¬φ.
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Example

Example

Show ⊢ ∃x∀yφ→ ∀y∃xφ

Proof.

⊢ ∃x∀yφ→ ∀y∃xφ

if ∃x∀yφ ⊢ ∀y∃xφ (Deduction Theorem)

if ∃x∀yφ ⊢ ∃xφ (Generalization Theorem)

if ¬∀x¬∀yφ ⊢ ¬∀x¬φ (Definition)

if ∀x¬φ ⊢ ∀x¬∀yφ (contraposition)

if ∀x¬φ ⊢ ¬∀yφ (Generalization Theorem)

if {∀x¬φ,∀yφ} is inconsistent (reductio ad absurdum)

if ∀x¬φ ⊢ ¬φ and ∀yφ ⊢ φ (axiom group 2)
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Deduction Strategy

Given Γ ⊢ φ, how to find a proof of it?

φ = (ψ → θ). This is the same as Γ ∪ {φ} ⊢ θ (Deduction Theorem)

φ = ∀xψ. This is the same as Γ ⊢ ψ after variable renaming
(Generalization Theorem)

φ is a negation.
▸ φ = ¬(ψ → θ). This is the same as Γ ⊢ ψ and Γ ⊢ ¬θ (rule T)
▸ φ = ¬¬ψ. This is the same as Γ ⊢ ψ (rule T)
▸ φ = ¬∀xψ. It suffices to show Γ ⊢ ¬ψx

t for some t substitutable for x in
φ (reductio ad absurdum).
☀ but it is not always possible, e.g. ⊢ ¬∀x¬(Px → ∀yPy)
☀ this is case, we may use contraposition and reductio ad absurdum
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Examples I

Example

If x does not occur free in α, show ⊢ (α → ∀xβ)↔ ∀x(α → β)

Proof.

It suffices to show ⊢ (α → ∀xβ)→ ∀x(α → β) and
⊢ ∀x(α → β)→ (α → ∀xβ) (rule T).

⊢ (α → ∀xβ)→ ∀x(α → β). It suffices to show {α → ∀xβ,α} ⊢ β
(Deduction and Generalization Theorems). But this follows by modus
ponens and axiom group 2

⊢ ∀x(α → β)→ (α → ∀xβ). By Deduction and Generalization
Theorems, it suffices to show {∀x(α → β), α} ⊢ β. But this follows
by axiom group 2 and modus ponens.
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Examples II

Example (Eq2)

Show ⊢ ∀x∀y(x ≈ y → y ≈ x)

Proof.

1 ⊢ x ≈ y → x ≈ x → y ≈ x . Ax 6

2 ⊢ x ≈ x . Ax 5

3 ⊢ x ≈ y → y ≈ x . 1, 2, T

4 ⊢ ∀x∀y(x ≈ y → y ≈ x). 3, gen

Note that this is not a formal proof of ∀x∀y(x ≈ y → y ≈ x). This is an
informal proof which shows that a formal proof exists
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Examples III

Example

Show ⊢ x ≈ y → ∀zPxz → ∀zPyz

Proof.

1 ⊢ x ≈ y → Pxz → Pyz . Ax 6

2 ⊢ ∀zPxz → Pxz . Ax 2

3 ⊢ x ≈ y → ∀zPxz → Pyz . 1, 2, T

4 {x ≈ y ,∀zPxz} ⊢ Pyz . 3, MP

5 {x ≈ y ,∀zPxz} ⊢ ∀zPyz . 4, gen

6 ⊢ x ≈ y → ∀zPxz → ∀zPyz 5, ded
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Generalization on Constants

Theorem

Assume that Γ ⊢ φ and c is a constant symbol not in Γ. Then there is a
variable y (not in φ) such that Γ ⊢ ∀yφc

y . Moreover, there is a deduction
of ∀yφc

y from Γ where c does not appear.

Proof.

Let ⟨α0, . . . , αn⟩ be a deduction of φ from Γ. Let y be a variable not in
any of αi ’s. We claim ⟨(α0)

c
y , . . . , (αn)

c
y ⟩ is a deduction of φc

y .

αk ∈ Γ. Then (αk)
c
y = αk ∈ Γ.

αk is a logical axiom. Then (αk)
c
y is also a logical axiom.

αk is obtained from αi and αj = αi → αk . Then (αk)
c
y is obtained by

(αi)
c
y and (αj)

c
y = (αi)

c
y → (αk)

c
y .

Thus, Γ ⊢ φc
y . By Generalization Theorem, Γ ⊢ ∀yφc

y . Moreover, c does
not appear in the deduction of ∀yφc

y from Γ.
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Applications I

Corollary

Assume Γ ⊢ φx
c and c does not occur in Γ or φ. Then Γ ⊢ ∀xφ and there is

a deduction of ∀xφ where c does not occur.

Proof.

By the previous theorem, there is a deduction of ∀y(φx
c)

c
y without c .

Since c does not occur in φ, (φx
c)

c
y = φ

x
y . Observe that (∀yφx

y)→ (φx
y)

y
x is

an axiom (axiom group 2). Moreover, (φx
y)

y
x = φ (by induction). Thus,

∀yφx
y ⊢ ∀xφ (Generalization Theorem).

Corollary (rule EI)

Assume c does not occur in φ, ψ, or Γ. If Γ ∪ {φx
c} ⊢ ψ, then

Γ ∪ {∃xφ} ⊢ ψ. Moreover, there is a deduction of ψ from Γ ∪ {∃xφ}
without c.
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Applications II

Proof.

By contraposition, we have Γ ∪ {¬ψ} ⊢ ¬φx
c . By the previous corollary,

Γ ∪ {¬ψ} ⊢ ∀x¬φ. Applying contraposition again, we have
Γ ∪ {∃xφ} ⊢ ψ.

“EI” stands for “existential instantiation.”
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Example

Example

Show ⊢ ∃x∀yφ→ ∀y∃xφ

Proof.

⊢ ∃x∀yφ→ ∀y∃xφ

if ∃x∀yφ ⊢ ∀y∃xφ (Deduction Theorem)

if ∀yφx
c ⊢ ∀y∃xφ (rule EI)

if ∀yφx
c ⊢ ∃xφ (Generalization Theorem)

if φx
c ⊢ ∃xφ (∀yφx

c ⊢ φ
x
c and rule T)

if ∀x¬φ ⊢ ¬φx
c (contraposition)

if ⊢ ∀x¬φ→ ¬φx
c and ∀x¬φ ⊢ ∀x¬φ (MP)
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Alphabetic Variants

Theorem

Let φ be a formula, t a term, and x a variable. Then there is a formula φ′

such that (1) φ ⊢ φ′ and φ′ ⊢ φ; (2) t is substitutable for x in φ′.

Proof.

Fix x and t. Construct φ′ as follows. If φ is atomic, φ′ = φ; (¬φ)′ = ¬φ′;
and (φ→ ψ)′ = φ′ → ψ′. Finally, define (∀yφ)′ = ∀z(φ′)y

z where z is a
fresh variable not in φ′, t, or x . Note that t is substitutable for x in (φ′)y

z

for z is fresh.
By inductive hypothesis, φ ⊢ φ′. Thus ∀yφ ⊢ ∀yφ′ (why?). Moreover,
∀yφ′ ⊢ (φ′)y

z . Hence ∀yφ′ ⊢ ∀z(φ′)y
z by generalization. ∀yφ ⊢ ∀z(φ′)y

z .
Conversely, ∀z(φ′)y

z ⊢ ((φ′)y
z )

z
y . Since ((φ′)y

z )
z
y = φ

′ and φ′ ⊢ φ (inductive
hypothesis), ∀z(φ′)y

z ⊢ φ. Finally, ∀z(φ′)y
z ⊢ ∀yφ.
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Equality

Eq1 ⊢ ∀xx ≈ x

Eq2 ⊢ ∀x∀y(x ≈ y → y ≈ x)

Eq3 ⊢ ∀x∀y∀z(x ≈ y → y ≈ z → x ≈ z)

Eq4 ⊢ ∀x1∀x2∀y1∀y2(x1 ≈ y1 → x2 ≈ yx → Px1x2 → Py1y2). Similarly for
n-place predicates

Eq5 ⊢ ∀x1∀x2∀y1∀y2(x1 ≈ y1 → x2 ≈ yx → fx1x2 ≈ fy1y2). Similarly for
n-place functions
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Soundness and Completeness

Soundness.

Γ ⊢ φ⇒ Γ ⊧ φ

Completeness.

Γ ⊧ φ⇒ Γ ⊢ φ
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Substitution Lemma I

Lemma (Substitution)

If t is substitutable for x in φ, then

⊧U φ
x
t [s] iff ⊧U φ[s(x ∣s(t))].

Proof.

By induction on φ.

φ is atomic. Consider, for instance,

⊧U Pux
t [s] iff s(ux

t ) ∈ PU

iff s(x ∣s(t))(u) ∈ PU (induction on term u)

iff ⊧U Pu[s(x ∣s(t))]
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Substitution Lemma II

Proof (cont’d).

φ = ¬ψ or ψ → θ. Follow by induction hypothesis.

φ = ∀yψ and x does not occur free in φ. Since φx
t is φ, the result

follows.

φ = ∀yψ and x does occur free in φ. Since t is substitutable for x in
φ, y does not occur in t. Hence s(t) = s(y ∣d)(t) for any d ∈ ∣U∣.
Thus

⊧U φ
x
t [s] iff for all d ,⊧U ψ

x
t [s(y ∣d)]

iff for all d ,⊧U ψ[s(y ∣d)(x ∣s(y ∣d)(t))] (I.H.)

iff for all d ,⊧U ψ[s(y ∣d)(x ∣s(t))]

(y does not occur in t)

iff ⊧U φ[s(x ∣s(t))].
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Soundness Theorem I

Lemma

Every logical axiom is valid.

Proof.

We examine each axiom group as follows.

Let U be a structure and s ∶ V → ∣U∣. Define a truth assignment ν on
prime formulae γ by

ν(γ) = T iff ⊧U γ[s].

Then ν(α) = T iff ⊧U α[s] for any formula α. Particularly, if ∅
tautologically implies α, then ⊧ α.
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Soundness Theorem II

Proof (cont’d).

Consider, for example, ∀xPx → Pt. Assume ⊧U ∀xPx[s]. We have
⊧U Px[s(x ∣d)] for any d ∈ ∣U∣. Particularly, ⊧U Px[s(x ∣s(t))]. By
Substitution Lemma, ⊧U Pt[s]. Thus ⊧U ∀xPx → Pt.

Assume ⊧U ∀x(α → β) and ⊧U ∀xα. For any d ∈ ∣U∣,
⊧U α → β[s(x ∣d)] and ⊧U α[s(x ∣d)]. Hence ⊧U β[s(x ∣d)] as
required.

Assume x does not occur free in α and ⊧U α[s]. Then ⊧U α[s(x ∣d)]

as required.

Trivial, for ⊧U x ≈ x[s] iff s(x) = s(x).
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Soundness Theorem III

Proof (cont’d).

Assume α is atomic and α′ is obtained from α by replacing x at some
places by y . Suppose ⊧U x ≈ y[s] and ⊧U α[s]. We have s(x) = s(y).
Hence for any term t and t ′ obtained from t by replacing x at some
places y , we have s(t) = s(t ′) by induction on t. The result follows
by case analysis on α.
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Soundness Theorem

Theorem

If Γ ⊢ φ, Γ ⊧ φ.

Proof.

By induction on the deduction.

φ is a logical axiom. Hence ⊧ φ. Thus Γ ⊧ φ.

φ ∈ Γ. Clearly, Γ ⊧ φ.

φ is obtained from φ and ψ → φ. By inductive hypothesis, Γ ⊧ ψ and
Γ ⊧ ψ → φ. Since {ψ,ψ → φ} tautologically implies φ, we have Γ ⊧ φ.
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Applications

Corollary

If ⊢ φ↔ ψ, φ and ψ are logically equivalent.

Proof.

⊢ φ→ ψ implies φ ⊢ ψ (modus ponens). Thus φ ⊧ ψ (soundness). By
symmetry, ψ ⊧ φ.

Corollary

If φ′ is an alphabetic variant of φ, φ and φ′ are logically equivalent.

Proof.

By the definition of alphabetic variant.
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Satisfiability and Consistency

We say Γ is satisfiable if there is some U and s such that U satisfies
every member of Γ with s

Corollary

If Γ is satisfiable, Γ is consistent.

Proof.

Suppose Γ is inconsistent. Thus Γ ⊢ φ and Γ ⊢ ¬φ for some φ. By
soundness theorem, Γ ⊧ φ and Γ ⊧ ¬φ. Since Γ is satisfiable, ⊧U φ[s] and
⊧U ¬φ[s].
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Completeness Theorem

Lemma

The following are equivalent:

If Γ ⊧ φ, Γ ⊢ φ

Any consistent set of formulae is satisfiable

Proof.

Suppose Γ is a consistent set of formulae but Γ is not satisfiable. Since Γ
is not satisfiable, we have Γ ⊧ φ for any φ vacuously. Thus, Γ ⊢ φ for any
φ. Particularly, Γ ⊢ φ and Γ ⊢ ¬φ. A contradiction.
Conversely, suppose Γ ⊧ φ. Then Γ ∪ {¬φ} is unsatisfiable and hence
inconsistent. Thus Γ ∪ {¬φ} ⊢ ψ and Γ ∪ {¬φ} ⊢ ¬ψ for some ψ. We have
Γ∪{¬φ} ⊢ ψ ∧¬ψ. By Deduction Theorem, Γ ⊢ ¬φ→ (ψ ∧¬ψ). Note that
⊢ (¬φ→ (ψ ∧ ¬ψ))→ φ (why?). We have Γ ⊢ φ by modus ponens.

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 84 / 97



Completeness Theorem I

Theorem (Gödel, 1930)

Any consistent set of formulae is satisfiable.

Sketch. (Step 1).

Let Γ be a consistent set of wffs in a countable language.
Expand the language with a countably infinite set of new constant
symbols. Then Γ remains consistent in the new language.

Details. (Step 1).

Otherwise, there is a β such that Γ ⊢ β ∧ ¬β in the new language. Since
the deduction uses only finitely many new constants, we replace these new
constants by variables (generalization on constants) and obtain β′. Then
we have Γ ⊢ β′ ∧ ¬β′ in the original language. A contradiction.
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Completeness Theorem II

Sketch. (Step 2).

For each wff φ in the new language and each variable x , consider wffs of
the form

¬∀xφ→ ¬φx
c

where c is a new constant. We can have consistent Γ ∪Θ for some set Θ
of wffs in such form.
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Completeness Theorem III

Details. (Step 2).

Let ⟨φ1, x1⟩, . . . , ⟨φn, xn⟩, . . . be an enumeration. Define θn to be

¬∀xnφn → ¬(φn)
xn
cn

where cn is the first new constant symbol not occurring in φn nor in θk for
k < n. Let Θ = {θ1, . . . , θn, . . .}.
If Γ ∪Θ is inconsistent, there is a least m ≥ 0 such that
Γ ∪ {θ1, . . . , θm, θm+1} is inconsistent (because deduction is finite). By
RAA, Γ ∪ {θ1, . . . , θm} ⊢ ¬θm+1. Let θm+1 = ¬∀xψ → ¬ψx

c . Then

Γ ∪ {θ1, . . . , θm} ⊢ ¬∀xψ and Γ ∪ {θ1, . . . , θm} ⊢ ψx
c

Since c does not occur in Γ ∪ {θ1, . . . , θm}, we have
Γ ∪ {θ1, . . . , θm} ⊢ ∀xψ by generalization on constants. A contradiction to
the minimality of m (or consistency of Γ).
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Completeness Theorem IV

Sketch (Step 3).

We extend Γ ∪Θ to a maximal consistent set ∆ such that for any wff φ
either φ ∈ ∆ or ¬φ ∈ ∆. Observe that ∆ ⊢ φ implies ∆ /⊢ ¬φ (consistency).
Hence ¬φ /∈ ∆. Thus φ ∈ ∆ (maximality).

Details (Step 3).

Let Λ be the set of logical axioms in the new language. Since Γ ∪Θ is
consistent, there is no β such that Γ ∪Θ ∪ Λ tautologically implies both β
and ¬β (why?). There is a truth assignment ν for prime formulae which
satisfies Γ ∪Θ ∪ Λ (why?). Define ∆ = {φ ∶ ν(φ) = T}. Then for any φ,
either φ ∈ ∆ or ¬φ ∈ ∆. Moreover

∆ ⊢ φ ⇒ ∆ ∪ Λ(= ∆) tautologically implies φ

⇒ ν(φ) = T ⇒ φ ∈ ∆.

∆ cannot be inconsistent.
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Completeness Theorem V

Sketch (Step 4).

Define a structure U as follows

∣U∣ = the set of all terms in the new language

⟨u, t⟩ ∈ EU iff u ≈ t ∈ ∆

For each n-place predicate symbol P, ⟨t1, . . . , tn⟩ ∈ PU iff Pt1⋯tn ∈ ∆

For each n-place function symbol f , define f U
(t1, . . . , tn) = ft1⋯tn

Let s ∶ V → ∣U∣ be the identity function. Then s(t) = t for all t. For any
wff φ, let φ∗ be the result of replacing all ≈ in φ by E . We have ⊧U φ

∗
[s]

iff φ ∈ ∆.
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Completeness Theorem VI

Details (Step 4).

We prove ⊧U φ
∗
[s] iff φ ∈ ∆ by induction. Difficult cases are:

⊧U Pt[s] iff s(t) ∈ PU iff t ∈ PU iff Pt ∈ ∆

⊧U (¬φ)∗[s] iff /⊧U φ
∗
[s] iff φ /∈ ∆ (I.H.) iff ¬φ ∈ ∆ (maximality)

⊧U (φ→ ψ)∗[s] iff /⊧U φ
∗
[s] or ⊧U ψ

∗
[s]

iff φ /∈ ∆ or ψ ∈ ∆ (I.H.)

iff ¬φ ∈ ∆ or ψ ∈ ∆

⇒ ∆ ⊢ φ→ ψ (rule T)

⇒ φ /∈ ∆ or [φ ∈ ∆ and ∆ ⊢ ψ] (case analysis)

⇒ φ /∈ ∆ or ψ ∈ ∆
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Completeness Theorem VII

Details (Step 4)(cont’d).

Recall θ = ¬∀xφ→ ¬φx
c ∈ ∆.

⊧U ∀xφ∗[s] ⇒ ⊧U φ
∗
[s(x ∣c)]

⇒ ⊧U (φ∗)x
c [s] (substitution lemma)

⇒ ⊧U (φx
c)
∗
[s] ⇒ φx

c ∈ ∆ ⇒ ¬φx
c /∈ ∆

⇒ ¬∀xφ /∈ ∆ (θ ∈ ∆) ⇒ ∀xφ ∈ ∆.

/⊧U ∀xφ∗[s] ⇒ /⊧U φ
∗
[s(x ∣t)] for some t

⇒ /⊧U ψ
∗
[s(x ∣t)] for some alphabetic variant ψ

⇒ /⊧U (ψx
t )

∗
[s] (substitution lemma)

⇒ ψx
t /∈ ∆ ⇒ ∀xψ /∈ ∆ (∀xψ → ψx

t ∈ ∆)

⇒ ∀xφ /∈ ∆.
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Completeness Theorem VIII

Sketch (Step 5).

If Γ contains equality, consider the quotient structure U/E :

Define [t] = {s ∶ ⟨s, t⟩ ∈ EU
}. Observe that EU is a congruence

relation:
▸ E U is a equivalence relation on ∣U∣

▸ ⟨t1, . . . , tn⟩ ∈ PU and ⟨ti , t
′

i ⟩ ∈ E U for 1 ≤ i ≤ n, then ⟨t ′1, . . . , t
′

n⟩ ∈ PU

▸ ⟨ti , t
′

i ⟩ ∈ E U for 1 ≤ i ≤ n, then ⟨f U
(t1, . . . , tn), f

U
(t ′1, . . . , t

′

n)⟩ ∈ E U

∣U/E ∣ = {[t] ∶ t a term }

⟨[t1], . . . , [tn]⟩ ∈ PU/E iff ⟨t1, . . . , tn⟩ ∈ PU

f U/E
([t1], . . . , [tn]) = [f U

(t1, . . . , tn)]. Particularly, cU/E
= [cU

]

Let h(t) = [t] be the natural map from ∣U∣ to ∣U/E ∣. h is a homomorphism
of U onto U/E . For any φ,

φ ∈ ∆ ⇔ ⊧U φ
∗
[s] ⇔ ⊧U/E φ

∗
[h ○ s] ⇔ ⊧U φ[h ○ s]
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Completeness Theorem IX

Details (Step 5).

Recall ⟨t, t ′⟩ ∈ EU iff t = t ′ ∈ ∆ iff ∆ ⊢ t = t ′. Hence EU is a congruence
relation on U, and both PU/E and f U/E are well-defined.
Clearly, h is a homomorphism of U onto U/E . Moreover, ⟨[t], [t ′]⟩ ∈ EU/E

iff ⟨t, t ′⟩ ∈ EU iff [t] = [t ′]. Thus

φ ∈ ∆ ⇔ ⊧U φ
∗
[s] (Step 4)

⇔ ⊧U/E φ
∗
[h ○ s] (homomorphism theorem)

⇔ ⊧U φ[h ○ s] (above)
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Completeness Theorem X

Details (Step 6).

Restrict U/E to the original language. The restricted U/E satisfies every
member of Γ with h ○ s. Γ is satisfiable.

Remark. If the original language is uncountable, a modified proof still
works. We only add sufficiently many new constant symbols
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Compactness Theorem

Theorem (Compactness)

1 If Γ ⊧ φ, then Γ0 ⊧ φ for some finite Γ0 ⊆ Γ;

2 If every finite subset Γ0 of Γ is satisfiable, Γ is satisfiable.

Proof.
1 Observe Γ ⊧ φ implies Γ ⊢ φ. Since deductions are finite, Γ0 ⊢ φ for

some finite Γ0 ⊆ Γ. Hence Γ0 ⊧ φ by soundness theorem.

2 Suppose every finite subset of Γ is satisfiable, every finite subset of Γ
is consistent (soundness theorem). Since deductions are finite, Γ is
consistent. By completeness theorem, Γ is satisfiable.
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History

Kurt Gödel’s 1930 doctoral dissertation contains the completeness
theorem for countable languages. Compactness theorem was a
corollary.

Anatolii Mal’cev showed the compactness theorem for uncountable
languages in 1941.

Our proof of completeness theorem is based on Leon Henkin’s 1949
dissertation.
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