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The Language

@ The following symbols are used in sentential logic

Symbol Name

Remark

( left parenthesis punctuation

) right parenthesis punctuation
- negation symbol not

A conjunction symbol and

v disjuction symbol or (inclusive)
- condition symbol if _, then
- biconditional symbol if and only if
Ag first sentence symbol

A second sentence symbol

An nth sentence symbol

@ The set of sentence symbols will be denoted by .7
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Well-Formed Formulae (wff's)

@ A set S of expressions is inductive if it has the following properties.

o A well-formed formula (wff) is defined as follows:

> every sentence symbol is

» if expressions a and (3 are wff's, then so are (-a), (a A ), (Vv ),

(o= f), and (a < 3).

a wff;

o The set of wffs generated from .7 is denoted by .
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Truth Assignments

o Fix a set {T,F} of truth values

@ A truth assignment is a function
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Tautology

@ A truth assignment v satisfies a wff ¢ if 7(¢) =T

o Let ¥ be a set of wffs and ¢ a wff. ¥ tautologically implies ¢ (X & ¢)
if every truth assignment satisfies every member of ¥ also satisfies ¢

@ ¢ is a tautology if @k ¢

v > {T,F} o If o 7 and 7 E o, we say ¢ and T are tautologically equivalent
(o ==7)
» o =7 stands for {oc} E T
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Extended Truth Assignment

Omitting Parentheses

o Define the extension 7:.7 — {T,F} by

T(A) =
v((-a))

v((anp)) =

v((av B))

v((a—~f))

v((a < 3))
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To reduce the number of parentheses, we use the following convention:

if 7(04)_= F @ The outmost parentheses need not be explicitly mentioned. “AA B”
otherwise means (A A B)

ifv(a)=Tand v(3)=T @ The negation symbol applies to as little as possible. “-A A B" means
otherwise (-A)AB

ifv(a)=Torv(B)=T @ The conjunction and disjunction symbols also apply to as little as
otherwise possible. "AAB - =Cv D" means (AAB) - ((-C)v D)

if 7(a) =T and 7(3) = F @ Where one connective symbol is used repeatedly, grouping to the
otherwise right. "A— B — C" means A— (B - C)

it () = v(p)

otherwise
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Boolean Functions

@ A k-place Boolean function is a function from {T,F}* into {T,F}

@ Suppose a wff a has sentence symbols among Aj,...,A,. The
Boolean function B/ realized by « is defined by

B(X1,....X») = w(a)

where v(A;) = X; € {T,F} foreach i=1,... n
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Facts about B

Theorem

Let o and 3 be wffs whose sentence symbols are among A1, ..., An.
Q o= ifffor all X e {T,F}", BI(X) = T implies Bj(X) = T
Q@ ar=piff Bl =Bj
Q =« iffran B] ={T}

Proof.

Observe that a = 3 iff for all 27 truth assignments v, 7(«) = T implies
v(pB)=T. O]
Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 10 / 97

Completeness of Connectives

Theorem

Let G be an n-place Boolean function with n> 1. There is a wff o such
that G = B}

Proof.

If ran G = {F}, let a = A1 A -A;.

Otherwise, let G have the value T at X; = (Xi1, Xi2, - -, Xin) for
i=1,..., k. Define

B = {Aj if X;;=T

SA; i X =F

Yi = Bir A ABin

Q@ = Y1V Vo
It is straightforward to show G = B[ O
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Disjunctive Normal Form

o A literal is either a sentence symbol A or its negation -A

e A wff « is in disjunctive normal form if

a = Y1V Ve Vg

where

Vi = Bir ABi2 ABin;
and (3 is a literal

Corollary

For any wff ¢, there is a tautologically equivalent wff o in disjunctive
normal form
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Compactness

o A set ¥ of wffs is satisfiable if there is a truth assignment which
satisfies every member of X

@ Y is finitely satisfiable if every finite subset of ¥ is satisfiable

@ In mathematics, compactness relates finite and infinite features
» A set is compact if any open cover has a finite subcover
% bounded closed sets are compact; bounded open sets are not.
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Proof of Compactness
Theorem
A set ¥ of wffs is satisfiable iff it is finitely satisfiable
Proof.
Let g, a1, ... be an enumeration of wffs. Define

Ny = X

A B Apu{ani} if this is finitely satisfiable

nl = Apu{-ap1} otherwise
Let A =u,A,. Then (1) X ¢ A; (2) for any wff o, either € A or
—a € A; and (3) A is finitely satisfiable.
Define a truth assignment v by v(A) =T if A€ A for every sentence
symbol A. Then v satisfies ¢ iff ¢ € A. Since ¥ € A, v satisfies every
member of ¥. my
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Applications of Compactness

Corollary
If X = 7, there is a finite Yo € X such that Yo = T

Proof.

Suppose X # 7 for every finite Yo € X. Then XouU {7} is not satisfiable
for any finite Yo € X. Hence X U {7} is not finitely satisfiable. Thus
Y u {7} is not satisfiable. Therefore ¥ 7.

O

v
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The Language

@ Logical symbols
» parentheses: (, )
» sentential connectives: —, —
» variables: vq, vo, ...
» equality symbol (optional): »
o Parameters
» quantifier symbol: V
» predicate symbols: n-place predicate symbols
» constant symbols (or O-place function symbols)
» function symbols: n-place function symbols
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Examples of First-Order Language Terms

@ Pure predicate language
» equality: no
» n-place predicate symbols: A7, A7, ...
» constant symbols: aj, a2, ... @ Terms are generated by variables, constant symbols, and function
» n-place function symbols (n>0): none symbols

@ Language of set theory
» equality: yes
» predicate parameters: € - 11,50 informally, vy +1
» constant symbols: & (sometimes) .
» function symbols: none 55550  informally, 4

@ Language of elementary number theory +Ev; 550Ev, 5550 informally, V12 + V23

» equality: yes

» predicate parameters: <

» constant symbols: 0

» 1-place function symbols: S

» 2-place function symbols: +, x, and E

o Examples:
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Examples Atomic Formulae

@ “There is no set of which every set is a member.”
@ An atomic formula is an expression of the form
=(=Vvi(=VYva € vavy))

or —|(E|V1(VV2 € V2V1)) Ptl"'tn
@ “For any two sets, there is a set whose members are exactly the two where P is an n-place predicate symbol (or equality), and t1,..., t,
given sets.” are terms
@ Examples:

VvivadvsVva(€ vavs <m vaviVv = vavp)
~v1S0 informally, v;=1

@ “Any nonzero natural number is th r of some number.” .
y nonzero natural number is the successor of some numbe €vovs informally, vp e v3

Vvi(=~vi0 > Jvo » viSwy)
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Well-Formed Formulae Abbreviations

@ The set of well-formed formulae (wff, or formulae) is generated from @ Let o and (3 be formulae and x a variable
the atomic formulae by connective symbols (-, —) and the quantifier o (av 3) abbreviates ((-a) — 3)
symbol (V) .
» =y, v — 9, Vvy are wifs provided ~, 6§ are ° (anf) abbrewa.tes (=l > (=6))) _
o Example: o (a < [3) abbreviates ((a = ) A (8 - «)); that is,
-((a = — (= -
Vur((Yva(- € vsun)) = (=¥ va(€ vava) — (~((a=8) > (=(8~>a))))
(=Vva(e vava = (=€ vgv1))))) @ Ixa abbreviates (-Vx(-a))
informally @ u~ t abbreviates ~ ut (and similarly for other 2-place predicate
Vvi((Bvavz e vi) > (=Vwaw e vy > (=Vvgvg e vo > vg ¢ v1))) symbols)
@ u # t abbreviates (-~ ut) (and similarly for other 2-place predicate
@ Nonexample: —vs symbols)
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Free Variables Precedences
@ Let x be a variable and « a wif @ QOutermost parentheses may be dropped.
@ We say x occurs free in « if > Vxa - B is (Yxa - f3)
> x is a symbol in o when « is atomic @ —, V, and 3 apply to as little as possible.
» x occurs free in 3 when « is -3 v —anBis ((~a) AB)
» x occurs free in B or in v when avis - 7y . Vxa - B is ((Vxa) - 8)

» x occurs free in 3 and x # v; when a is Vv; . . .
f ' il @ A and Vv apply to as little as possible, subject to above

»manf—yis (((a) AB) =)
@ When connective is used repeatedly, group them to the right
ra—>Boyisa—>(8-7)

@ If no variable occurs free in the wff «, we say « is a sentence

o Examples:

» Yva(Ava = Bvy) and Vv3(Pvs — Yv3Qvs) are sentences
» vy occurs free in (YviAvy) - By
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Notation Conventions Examples of Structures

@ Predicate symbols: A, B, C, etc. Also €, <
e Variables: v;, u, x, y, etc. @ In the language for set theory. Define
@ Function symbols: f, g, h, etc. Also S, +, etc. » |4| = the set of natural numbers

ST .
e Constant symbols: a, b, c, etc. Also 0 <= {{m,n) s m < n}

o Consider IxVy-y e x

o Terms: u, t . .

» there is a natural number such that no natural number is smaller
e Formulae: «, 3, 7, etc.

@ Informally, we would like to say IxVy-y € x is true in L or 4L is a

@ Sentences: o, T, etc. model of the sentence

@ Set of formulae: X, A, T, etc.
@ Structures: U, B, etc.
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Structures Satisfaction kg @[s] |

Let ¢ be a wff, 4 a structure, and s: V — |U] from the set V of variables

@ A structure Y for a first-order language is a function whose domain is to the universe of i

the set of parameters such that e Terms. Define the extension 5: T — |U| from terms to the universe by
Q u ass!gns to V a nonempty set. |f], called the universe of . @ for variable x, 5(x) = s(x)
Q iluasggn: to each n-place predicate symbol P an n-ary relation @ for constant symbol ¢, 5(c) = !
Pt c |il| @ if t1,...,t, are terms and f is an n-place function symbol,
© 4 assigns to each constant symbol ¢ a member c* € |4 5(ft1-ty) = FA(3(t) 3(ty))
@ 4 assigns to each n-place function symbol f an n-ary function N Lo
Fi 4 — 4| e Atomic formulae. Define

Q Fu~ tity[s] if 5(t1) =35(t2)
@ for n-place predicate parameter P, =g Pty --t,[s] if
(3(t1),...,5(tn)) e P¥

o Note that |4| is nonempty and f* is not a partially-defined function
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Satisfaction =y ¢[s] Il

@ Other wffs. Define

Q =y ~¢[s] if u ¢[s]
Q Fu (¢~ ¥)[s] if ty ¢[s] or Fy Y[s]
© =y Vx@[s] if for every d € |4], we have =y ¢[s(x|d)] where

s(d)(y) = {‘;(” A
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Logical Implication

Definition
Let I' be a set of wffs, ¢ a wff. T logically implies ¢ (I' E ¢) if for every

structure 4l and every function s: V — 4| such that 4l satisfies every
member of [ with s, I also satisfies ¢ with s

@ ¢ and © are logically equivalent (¢ E= 1) if 1 and ¥ = ¢
o A wff ¢ is valid if @ ¢ (or just = @)
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Relevant Valuation

Theorem

Assume si,sp - V — |U| such that s; and s, agree at all variables occurring
free in ¢. Then ey ¢[s1] iff =y P[s2].

Proof.
By induction.
@ ¢ = Pt;---t,. Observe 51(t) =5,(t) for any term t occurring in ¢
(why?)
@ ¢ =-a or a — 3. By inductive hypothesis
@ ¢ = VYx1p. Then free variables in ¢ are free variables in 1 except x.

Thus s1(x|d) and sy(x|d) agree at free variables in ¢ for any d € |4|.

By inductive hypothesis, =g ¢[s1(x|d)] iff £y ¥[s2(x|d)] for any
d ey

O

4
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Truth and Models

Corollary

For a sentence o, either

(a) U satisfies o with every function s; or

(b) 4 does not satisfy o with any such function

e If (a) holds, we say ¢ is true in 4 or 4l is a model of o
e If (b) holds, we say o is false in 4

@ il is a model of a set X of sentences iff it is a model of every member
of

Corollary J

For a set ¥; T of sentences. ¥ & T iff every model of ¥ is a model of T
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Logical and Tautological Implications Definability of Structures

o Consider the problem of determining = ¢ when @ Let T be a set of sentences. Mod(X) denotes the class of all models
» ¢ is in sentential logic; and of ¥. That is
» ¢ is in first-order logic

o For sentential logic, there is an effective procedure Mod(X) = {U:yo foralloeX}
» by truth table

o For first-order logic, we have to consider all structures @ A class % of structures is an elementary class (EC) if # = Mod(T)

+ there are infinitely many structures! for some sentence 7. % is an elementary class in the wider sense

» the validity problem is in fact undecidable (ECa) if X =Mod(Z) for some set T of sentences
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Notational Convention Examples

@ A structure (A, R) with R Ax A is an ordered set if R is transitive
and satisfies trichotomy condition

» that is, exactly one of (a,b) € R, a= b, (b,a) € R holds

@ The class of nonempty ordered sets is an elementary class

@ By our notational convention, the following statements can be proved T = VxVyVz(xRy - yRz > xRz)
» By (aAB)[s] iff By afs] and £y B[s]; similarly for v and < VxVy(xRy v x~yVyRx)A

» g Ixa[s] iff there is some d € 4| such that kg a[s(x|d)] VxVy(xRy — -yRx)

@ The class of infinite sets is ECp

Ao = Ixdyx¢y
A3 = 3IxIydz(x¢yAx¢zay#z)
Y = { Mo, A3,...,}
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Definability within a Structure

o Fix a structure 4
@ Let ¢ be a formula with free variables vy, ..., v
@ For aj,...,ak €|, Eg @dfa1,...,ax] means that 4 satisfies ¢ with

some s: V — |U| where s(v;) =a; for 1 <i<k

The k-ary relation defined by ¢ is the relation
{(a17 .. ‘7ak> :':il ¢|[31, .. ’7ak]|}

A k-ary relation on |U| is definable if there is a formula defining it
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Examples

@ Consider the language of number theory with the intended structure
N = (N1075a+7_7')
@ The ordering relation {(m, n): m < n} is defined by Jv3v; + Svz » v,

e For any neN, {n} is definable. For instance, {2} is defined by
ViR 550

» we hence say n is a definable element in N

@ The set of primes is definable. Consider

E|V350 + 5V3 ~VINA

YwaVvs(vi ~ va-v3 > vo » SOV vz » S0)
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Homomorphisms

o Let 4 and B be structures. A mapping h: |U| - |B]| is a
homomorphism if

» For each n-place predicate symbol P and n-tuple (ay,...,a,) €|4",
(a1,...,a,) € P*iff (h(a1),...,h(a,)) € P®
» For each n-place function symbol f and n-tuple (a1, ..., a,) € |Y4]",

h(fu(al, ceeyap)) = f%(h(al), ...,h(ap))
@ If h is one-to-one, it is called an isomorphism

o If there is an isomorphism of 4 onto B, we say 4l and ‘B are
isomorphic (in notation, il = B)
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Examples

e Consider (Z*,<}) and (N, <y). The function h(n) =n-1is an
isomorphism from (Z*,<;) onto (N, <y)
o Consider two structures 4 and B with || € [B|. The identity map
(i(n) = n) is an isomorphism of l into B iff
» P% is the restriction of P to |U| for every predicate symbol P; and
» % is the restriction of f® to |U| for every function symbol f

@ In this case, we say U is a substructure of 9B, and B is an extension
of il

e (Z*,<;) is a substructure of (N, <y)
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Homomorphism Theorem

Theorem
Let h be a homomorphism of 4 into B, and s: V — |4].
@ For any term t, h(s(t)) = hos(t);
@ For any quantifier-free formula « without equality symbol, Eg a[s] iff
Eq alhos];
© If h is one-to-one, then 2 holds even when a contains equality symbol;

@ If h is onto, then 2 holds even when « has quantifiers.
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Proof of Homomorphism Theorem |

@ By induction on t.

@ For atomic formula such as Pt, we have

5(t) e PH

h(3(t)) e P®
hos(t)eP®
Ex Pt[h o S].

Ey Pt[s]

U

Other quantifier-free formulae without equality symbols can be proved
by induction.
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Proof of Homomorphism Theorem |l
© If his one-to-one, we have

Ey U~ t[s] S(u) =5(t)
h(s(u)) = h(s(t))
hros(u) = Fos(t)

Eg u~tlhos].

¢t 809

Other cases are proved by induction.

@ By induction hypothesis, ¢ ¢[s] <>Ex ¢[hos] for any s.

Eog Vxp[hos] Eo ¢[(hos)(x|b)] for every b e |B|
o ¢[(hos)(x|h(a))] for every a e |4
Ea ¢[ho (s(x|a))] for every ae |4
Eu @[s(x|a)] for every a € |4

Ey Vxo[s].

S N
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Elementary Equivalence

e Two structures $ and B are elementarily equivalent (L = B) if for
every sentence o,

Esyyo < Ego.

@ By Homomorphism Theorem, two isomorphic structures are
elementarily equivalent
» but two elementarily equivalent structures are not necessarily
isomorphic, e.g. (R,<g) and (Q,<gq)

@ The identity map from (Z*,<}) into (N, <y) is an isomorphism. We

have
':(Z+,<£) VVQ(Vl 5{5 Vo = v1 < V2)|[V]_ — 1]]
but
%(N,<N) VV2(V1 79 Vo = v1 < V2)|[V1 = ].]I
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Generalization and Substitution

o A wff ¢ is a generalization of v if for some n > 0 and variables
X1yeooy Xn @ = VX1-VX00
@ For variable x and term t, write o for the formula obtained by
replacing x with t. Formally,
@ for atomic «, «f is obtained by « by replacing the variable x by t;
Q (-o); = (maf);
O (a-pB)f =(af = B);

«_ | Yya if x=y
0 (vya); _{ Vy(af) ifxz#y

@ t is substitutable for x in a if

@ for atomic «, t is always substitutable for x in «;

@ t is substitutable for x in (=) if it is substitutable for x in «; t is
substitutable for x in (a — ) if it is substitutable for x in both « and
i

@ t is substitutable for x in Vya if

@ x does not occur free in Yya; or
@ y does not occur in t and t is substitable for x in «
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More about Substitution

@ Consider v =VwBviv,
@ Then 71 =VwvBwv,
» however, v, is not substitutable for vq in v (why?)

@ When an axiom of the form Vxa is instantiated, we have af for some
term t
@ But the substitution cannot be performed arbitrarily
» thus we have to check whether t is substitutable for x in «
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Logical Axioms A

The logical axioms A are generalizations of wffs of the following forms:
© tautologies;
@ Vxoa — of where t is substitutable for x in o;
Q@ Vx(a - fB) > (Vxa > Vxp3);
Q@ o — Vxa where x does not occur free in «;
QO x~x;

Q@ x~y— (a—a') where a is atomic and o/ is obtained from « by
replacing x in zero or more places by y
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Modus Ponens

e (Modus ponens) From « and a — 3, we may infer (3
a, a—f3

g

@ A set A of formulae is closed under modus ponens if whenever « and
o — [ arein A, then Fisin A

@ ¢ is a theorem of [ (I + ¢) if ¢ belongs to the set generated from
' uA by modus ponens

Definition
A deduction of ¢ from [ is a sequence («o,...,an) of formulae such that
ap = ¢ and for each / < n,
@ a;elUA; or
e for some j, k < i, o is obtained by modus ponens from «; and
ak(=aj = ;)
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Theorem and Deduction

Theorem
There exists a deduction of o from ' iff o is a theorem of T.

Proof.

If there is a deduction (ag, ..., an), then each a; belongs to the set
generated from U A by modus ponens. Hence I+ a,(= ¢).
Conversely, every formula in ' U A has a deduction. Moreover, every
formula obtained from I' U A by modus ponens has a deduction. Hence,
every formula generated from I' U A by modus ponens has a deduction.

Particularly, the theorem ¢ of ' has a deduction. []

We therefore say ¢ is deducible from I if [+ ¢.
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Tautologies

@ A tautology in first-order logic is a wff obtained from a tautology in
sentential logic by replacing each sentence symbol with a wff of
first-order language

Vx[(Vy-Py - =Px) - (Px - =Vy-Py)]
is obtained from
(A~ =B) = (B - -A)

by generalization
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More about Tautologies

o Divide wffs in first-order language in two groups
@ Prime formulae are the atomic formulae and those of the form Vxa
@ Non-prime formulae are those of the form -a or o - 3
@ Now take prime formulae as sentence symbols. Any tautology of the
(new) sentential logic is a tautology in first-order language
e Consider (Vy—-Py - -Px) - (Px - =V-Px)
» there are two prime formulae: Yy-Py and Px
» it remains to check whether (A - -=B) - (B - —=A) is a tautology

@ By taking prime formulae as sentence symbols, first-order formulae
are also wffs of sentential logic. Concepts for sentential logic are
applicable.

» it makes sense, for instance, to say “tautologically implies” in
first-order language.
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Deduction and Tautologically Implication

Theorem
I+~ ¢ iff T UN tautologically implies ¢

Proof.

Observe that {a, a - 3} tautologically implies 3. Now suppose there is a
truth assignment v satisfying [ U A. We can prove v satisfies any theorem
of ' by induction on the length of deduction. The inductive step uses the
observation.

Conversely, assume ' U A tautologically implies ¢. By compactness
theorem (for sentential logic), there is a finite subset
{Y1y-+yYmsA1,--.,An} tautologically implying ¢. Hence,

M Y > AL Ap

is a tautology (why?) and hence in A. Applying modus ponens, we have
}. O

4
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Examples of Theorems

o — Px — dyPy
Vy-Py - =Px (Vy=Py —» =Px) - (Px > =Vy-Py)
Px - -Vy-Py
o + Vx(Px — 3yPy)
Vx[(Yy-Py - -=Px) —» Vx(a - 3) >
(Px = =Vy-Py)] (Vxa - Vx03)

Vx(Vy-Py - =Px) Vx(Vy-Py - =Px) = Vx(Px - =Vy-Py)
Vx(Px - =Vy-Py)

where o is Vy-Py — —Px and (3 is Px - =VYy-Py.
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Theorems and Metatheorems

@ Note that the word “theorem” has two different meanings
@ InT + a, wesay o is a “theorem”
» properties derived from I', at the object level

@ We also say the following is a “theorem”

Theorem
I~ ¢ iff T UN tautologically implies ¢ J

» properties about arbitrary I, at the meta level
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Generalization Theorem |

Theorem (generalization) J

If T+ ¢ and x does not occur free in any formula in ', then I + Vx¢
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Generalization Theorem I
Proof.
Fix a set ' and a variable x not free in . If T ={¢:T + Vx¢} includes

IFUA and is closed under modus ponens, then every theorem ¢ of [
belongs to T. Hence I + Vx¢ for any theorem ¢.

@ e Hence Vxype A. Thus '+~ Vxyp and e T

@ ¢ el. Then x does not occur free in 1. ¥ — Vxih € A (axiom
group 4). We have
Y Yoy
v xa)
@ Suppose ¢ and ¢ — 1. By induction hypothesis, I - ¥x¢ and
I+ Vx(¢ — ). We have
Vx(¢ =) Vx(¢ > ¢) > (Vx¢ > Vxyh)
Vx¢ Vx¢ - VX
vV xa)
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Remark

@ Informally, when we prove X
restrict x, we should have ¥x X

» this is exactly Generalization Theorem

from I and T does not

@ Axiom group 3 and 4 are crucial in the proof
@ x must not occur free in [
» Px # VxPx, one should not have Px + VxPx

@ For applications, let us show VxVya + VyVxa
By axiom group 2 (twice) and VxVyc«, we have VxVya + a. By
applying Generalization Theorem (twice), we have VxVya + VyVxa
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Rule T

Lemma (Rule T)
IfT+ayg,...,l —a, and {a1,...,a,} tautologically implies (3, then T + (3

Proof.

ay = - = a, > [ is a tautology and hence a logical axiom. Apply modus
ponens. ]
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Deduction Theorem |

Theorem
IfrU{"y}I—qf), F|—7—>¢>

Proof.
(First proof)

Fru{y}+o¢ iff Tu{y}uA tautologically implies ¢
iff T uA tautologically implies v — ¢
iff TFy—>¢
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Deduction Theorem Il

Proof.
(Second proof)
We show that '+ v — ¢ when T U {7}  ¢.
@ ¢p=7. Clearly, T~y > ¢
@ pec ANUl. We have I' - ¢. Moreover, ¢ — (7 — ¢) is a tautology.
(why?) By modus ponens, [+~ — ¢
@ ¢ is obtained from v and ¢ — ¢ by modus ponens. By inductive
hypothesis, [ =~ - ¢ and I v - (¢ - ¢). Moreover,
{y=> 1,7y - (¥ — ¢)} tautologically implies v - ¢. By rule T,
Mey—9¢
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Contraposition

Corollary (contraposition)

Fru{o}r - iffTu{y}+-¢p

Proof.

ru{¢}+-v = T+ ¢— -1 (Deduction Theorem)
= [+FY—>-0p
(¢ - -1 tautologically implies ¢ - ¢, Rule T
= Tu{y}+ -¢ (modus ponens)

The converse is obtained by symmetry. O
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Inconsistency

@ A set I' of formulae is inconsistent if both '+ 3 and I + =3 for some
p
@ In this case, [ + « for any formula «
» - -0 — «is a tautology
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Reductio ad Absurdum

Corollary (reductio ad absurdum)
IfT u{¢} is inconsistent, T + —¢.

Proof.

By Deduction Theorem, ' = ¢ — § and ' - ¢ - -3 for some (3. Moreover,
{¢ - B, — -3} tautologically implies =¢. O
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Example

Example

Show + IxVy¢ — Vydxo

Proof.

FIxVy¢p - Vydxeo
if 3IxVyo¢+ Vydx¢ (Deduction Theorem)
if 3IxVyo¢ + Ix¢ (Generalization Theorem)
if —Vx-Vy¢F -Vx-¢ (Definition)
if Vx-¢+ Yx-Vy¢ (contraposition)
if Vx-¢+ =Vy¢ (Generalization Theorem)
if {Vx-¢,Vy¢} is inconsistent (reductio ad absurdum)
if Vx-¢+ -¢ and Vy¢ + ¢ (axiom group 2)
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Deduction Strategy

Given ' + ¢, how to find a proof of it?

@ ¢= (1 —0). This is the same as U {¢} + 6 (Deduction Theorem)

@ ¢ =Vxtp. This is the same as I - ¢ after variable renaming
(Generalization Theorem)
@ ¢ is a negation.
» ¢p==(¢p > 0). Thisis the same as [+ and I+ =0 (rule T)

» ¢ ==-—1). This is the same as [+ 1) (rule T)

» ¢ =-Vxw. It suffices to show I - —pf for some t substitutable for x in
¢ (reductio ad absurdum).

% but it is not always possible, e.g. - =Vx=(Px — VyPy)
% this is case, we may use contraposition and reductio ad absurdum
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Examples |

Example

If x does not occur free in «, show (o = Vx3) < Vx(a - )

Proof.

It suffices to show + (o - Vx3) - Vx(a — () and
FVx(a— B) > (a— VYx3) (rule T).

o (- VxpB) = Vx(a - ). It suffices to show {a — Vxf8,a} +
(Deduction and Generalization Theorems). But this follows by modus
ponens and axiom group 2

o +Vx(a— ) - (o~ Vxf3). By Deduction and Generalization
Theorems, it suffices to show {Vx(a — 3),a} + 3. But this follows
by axiom group 2 and modus ponens.

Ol

4
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Examples Il

Example (Eq2)
Show + VxVy(x~y — y » x)

Proof.

QrHx~my-o>xmx—>y~nx. Ax6
Q@ x~x. Ax5
Q+-xry—->ynx. 1,2 T

Q HVxVy(xw~my—>ynx). 3, gen

O]

v

Note that this is not a formal proof of VxVy(x ~»y — y ~ x). This is an
informal proof which shows that a formal proof exists
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Examples Il

Example
Show + x » y - VzPxz - VzPyz

Proof.

Q@ +x~y—> Pxz— Pyz. Ax6

Q + VzPxz - Pxz. Ax 2
Qr-x~ny—>VzPxz—> Pyz. 1,2, T
Q {xw~y,VzPxz} + Pyz. 3, MP

Q {xw~y,VzPxz} + VzPyz. 4, gen
Q@ +-xmry—>VzPxz - VYzPyz 5, ded
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Generalization on Constants

Theorem

Assume that I + ¢ and c is a constant symbol not in ['. Then there is a
variable y (not in ¢) such that T+ Yy¢;. Moreover, there is a deduction
of Vy¢y, from I where ¢ does not appear.

Proof.
Let (o, -..,an) be a deduction of ¢ from I'. Let y be a variable not in
any of a;'s. We claim ((ao)y, ..., (an)y) is a deduction of ¢7.

o apel. Then (ax)y =axel.

® oy is a logical axiom. Then (ay)y is also a logical axiom.

® ay is obtained from «; and «;j = a; - ak. Then (ay)j is obtained by
(ai)y and (o)) = (ai)y = (ax)y.

Thus, T+ ¢y. By Generalization Theorem, I - Vy 7. Moreover, c does

not appear in the deduction of Vy¢y from I Ol
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Applications |

Corollary

Assume I = ¢ and ¢ does not occur in I or ¢. Then I + Vx¢ and there is
a deduction of Yx¢ where ¢ does not occur.

W

Proof.

By the previous theorem, there is a deduction of Vy(¢7)} without c.
Since ¢ does not occur in ¢, (¢%)5 = ¢}. Observe that (Vyey) — (¢})X is
an axiom (axiom group 2). Moreover, (¢})% = ¢ (by induction). Thus,
Vy¢y - Vx¢ (Generalization Theorem). O

v

Corollary (rule EI)

Assume ¢ does not occur in ¢, ¢, or I'. If T U{¢%} 1), then
I'u{3x¢p} + 1. Moreover, there is a deduction of 1) from I U {3x¢}
without c.

v
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Applications Il

Proof.

By contraposition, we have ['u{-9} - —~¢%. By the previous corollary,
Fu{-v}+ Vx-¢. Applying contraposition again, we have
Fu{3Ixgp} . O

“EI" stands for “existential instantiation.”

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 71/ 97

Example

Example
Show + AxVy¢ — Vydx¢

Proof.

F3IxVy¢p - Vydxeo
if 3IxVy¢+ VyIxeo (Deduction Theorem)
if Vy¢:r Vy3dx¢ (rule El)
if Vy¢: + 3x¢ (Generalization Theorem)
if ¢%F 3Ixep (VyoX+ ¢X and rule T)
if Vx-¢ + —¢% (contraposition)
if +Vx-¢ > -¢% and Vx-¢ + Vx-¢ (MP)

O

4
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Alphabetic Variants

Theorem

Let ¢ be a formula, t a term, and x a variable. Then there is a formula ¢'
such that (1) ¢+ ¢' and ¢' + ¢; (2) t is substitutable for x in ¢'.

Proof.

Fix x and t. Construct ¢ as follows. If ¢ is atomic, ¢’ = ¢; (=¢)" = =¢;
and (¢ — ) = ¢’ —)’. Finally, define (Vy)' = Vz(¢')% where z is a
fresh variable not in ¢, t, or x. Note that t is substitutable for x in (¢')%
for z is fresh.

By inductive hypothesis, ¢ + ¢'. Thus Vy¢ + Vy¢' (why?). Moreover,
Vy¢' + (¢')%. Hence Yy’ + Vz(¢')Y by generalization. Yy~ Vz(¢')%.
Conversely, ¥z(¢") = ((¢')%);. Since ((¢")%); = ¢ and ¢ + ¢ (inductive

hypothesis), Vz(¢')% + ¢. Finally, Vz(¢')% + Vya. O
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Equality

Eql + Vxx = x
Eq2 F VxVy(x»y -y~ x)
Eq3 F VxVyVz(xmsy > ynz—>x»Zz)

Eqd H Vx1VxoVy1Vya(x1 & y1 = xo ® yx = Pxixo > Py1ys). Similarly for
n-place predicates

Eq5 + Vx1VxoVy1Vya(x1 & y1 = xo ® yx = fxixo ~ fy1y2). Similarly for
n-place functions
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Soundness and Completeness

@ Soundness.

FrMFp=TEop
@ Completeness.
Fre¢g=I+¢
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Substitution Lemma |

Lemma (Substitution)
If t is substitutable for x in ¢, then

Fu ¢F [s] iff =y @[s(x[s(t))].

Proof.
By induction on ¢.

@ ¢ is atomic. Consider, for instance,
Ey PuX[s] iff S(uX) e PY

iff  s(x[3(t))(u) € PY (induction on term u)
iff =y Pul[s(x|5(t))]
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Substitution Lemma |l Soundness Theorem Il

Proof (cont'd).
@ ¢ =-1Y or Yy - 6. Follow by induction hypothesis. Proof (cont'd).

® ¢ =Vyy and x does not occur free in ¢. Since ¢; is ¢, the result o Consider, for example, VxPx — Pt. Assume =y VxPx[s]. We have

follows. Ey Px[s(x|d)] for any d € |U]|. Particularly, g Px[s(x[5(t))]. By
@ ¢ =Vyy and x does occur free in ¢. Since t is substitutable for x in Substitution Lemma, ¢ Pt[s]. Thus gy VxPx — Pt.
¢, y does not occur in t. Hence 5(t) = s(y|d)(t) for any d € |4l]. o Assume Fy Vx(a — 3) and kg ¥xa. For any d e |4,
Thus Eya - B[s(x|d)] and £y a[s(x|d)]. Hence g B[s(x|d)] as
cu d<[s] i for all d, g X [s(yld)] required. |
iff for all d, =y B[s(y1d) (x5 1) (£))] (1L.H.) ° jsssrl;:wueirzddoes not occur free in « and g «s]. Then kg afs(x|d)]
it for all d, =y Yls(y|d) (x[5(2))] e Trivial, for ¢y x ~ x[s] iff s(x) = s(x).
(v does not occur in t)
iff =y d[s(x|s(t))]. )
DA
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Soundness Theorem | Soundness Theorem IlI
Lemma
Every logical axiom is valid. Proof (cont’d).
Proof @ Assume « is atomic and o’ is obtained from « by replacing x at some

places by y. Suppose £y x » y[s] and Eg afs]. We have s(x) = s(y).

Hence for any term t and t’ obtained from t by replacing x at some

o Let U be a structure and s: V — |U|. Define a truth assignment v on places y, we have 5(t) =5(t") by induction on t. The result follows
prime formulae v by by case analysis on «.

v(y) =T iff Eyv[s]. m
Then T(a) = T iff £g «fs] for any formula «. Particularly, if @
tautologically implies «, then E a.

We examine each axiom group as follows.

v
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Soundness Theorem

Theorem
IfT =, TE@.

Proof.

By induction on the deduction.
@ ¢ is a logical axiom. Hence £ ¢. Thus ' £ ¢.
@ pel. Clearly, T E ¢.

@ ¢ is obtained from ¢ and ¥ — ¢. By inductive hypothesis, ' E % and
['=1 — ¢. Since {¥,1 - ¢} tautologically implies ¢, we have I' £ ¢.

DJ

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 81 /97
Applications

Corollary

If = ¢ <1, ¢ and i are logically equivalent.

Proof.

+ ¢ — 1 implies ¢ 1 (modus ponens). Thus ¢ = ¢ (soundness). By
symmetry, ¥ E ¢. O
Corollary

If ¢’ is an alphabetic variant of ¢, ¢ and ¢’ are logically equivalent.

Proof.

By the definition of alphabetic variant. Ol
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Satisfiability and Consistency

o We say I is satisfiable if there is some 4 and s such that 4l satisfies
every member of [ with s

Corollary
If T is satisfiable, T is consistent.

Proof.

Suppose [ is inconsistent. Thus ' - ¢ and I - —¢ for some ¢. By
soundness theorem, I' = ¢ and I = —¢. Since I is satisfiable, E¢ ¢[s] and
E( —-qﬁ[s]. OJ

v
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Completeness Theorem

Lemma
The following are equivalent:
o IfTE), THO

@ Any consistent set of formulae is satisfiable

Proof.

Suppose [ is a consistent set of formulae but I is not satisfiable. Since I’
is not satisfiable, we have I & ¢ for any ¢ vacuously. Thus, I' — ¢ for any
¢. Particularly, '+ ¢ and ' -~ —¢. A contradiction.

Conversely, suppose I = ¢. Then I'u{=¢} is unsatisfiable and hence
inconsistent. Thus F'u {=¢} + 1 and [ U {=¢} + 1) for some . We have
Fru{-¢} + 1 A-1. By Deduction Theorem, I - =¢ - (¢) A—1)). Note that
F(=¢ —> (A=) > ¢ (why?). We have I - ¢ by modus ponens. O]

o
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Completeness Theorem |

Theorem (Godel, 1930)

Any consistent set of formulae is satisfiable.

Sketch. (Step 1).

Let ' be a consistent set of wffs in a countable language.
Expand the language with a countably infinite set of new constant
symbols. Then [ remains consistent in the new language.

Details. (Step 1).

Otherwise, there is a 8 such that '~ 8 A -0 in the new language. Since
the deduction uses only finitely many new constants, we replace these new
constants by variables (generalization on constants) and obtain 3’. Then
we have I + 8’ A =3’ in the original language. A contradiction.
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Completeness Theorem Il

Sketch. (Step 2).

For each wff ¢ in the new language and each variable x, consider wffs of
the form

-Vx¢ = —¢%

where ¢ is a new constant. We can have consistent ' u © for some set ©
of wffs in such form.
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Completeness Theorem IlI

Details. (Step 2).

Let (¢1,x1),...,(®n,Xn), ... be an enumeration. Define 6, to be

=V Xn@n = ~(¢n )éz

where ¢, is the first new constant symbol not occurring in ¢, nor in ) for
k<n. Let ©={61,...,0,,...}.

If ' u® is inconsistent, there is a least m > 0 such that
Fu{6i,...,0m,0m+1} is inconsistent (because deduction is finite). By
RAA, Tu{b1,...,0m} + —=Omi1. Let Opmi1 = =Vxp > —p%. Then

Fru{fi,...,0m}+-Yxyp and TuU{Oy,...,0m}+ X

Since ¢ does not occur in Tu{6y,...,0,}, we have
Fu{6i,...,0m} + Yx1 by generalization on constants. A contradiction to
the minimality of m (or consistency of I').

v
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Completeness Theorem IV
Sketch (Step 3).

We extend ' U © to a maximal consistent set A such that for any wff ¢
either ¢ € A or —¢ € A. Observe that A + ¢ implies A it —¢ (consistency).
Hence ¢ ¢ A. Thus ¢ € A (maximality).

Details (Step 3).

Let A be the set of logical axioms in the new language. Since TU© is
consistent, there is no 8 such that ['u® U A tautologically implies both 3
and -3 (why?). There is a truth assignment v for prime formulae which
satisfies TU© U A (why?). Define A = {¢:7(¢) = T}. Then for any ¢,
either ¢ € A or —¢ € A. Moreover

Ar+¢ = AUNA(=A) tautologically implies ¢
= U(p)=T = ¢eA.

/A cannot be inconsistent.

y
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Completeness Theorem V

Sketch (Step 4).
Define a structure 4 as follows
@ |U| = the set of all terms in the new language
o (ut)e E¥iffunteA
e For each n-place predicate symbol P, (t1,...,t,) € P iff Pty---t, € A
@ For each n-place function symbol f, define f(t1,...,t,) = fty--t,

Let s: V — |4| be the identity function. Then 5(t) =t for all t. For any
wff ¢, let ¢* be the result of replacing all ~ in ¢ by E. We have Eg ¢*[s]
iff ¢ € A
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Completeness Theorem VI

Details (Step 4).
We prove kg ¢*[s] iff ¢ € A by induction. Difficult cases are:
o g Pt[s] iff 5(t) e P iff t € P iff Pte A
o =y () [s] iff gy o [s] iff ¢ ¢ A (ILH.) iff -¢ € A (maximality)

Fu (¢~ ) [s] iff H#yod*[s]or Ey™[s]
iff ¢¢AorpeA (ILH)
iff -geAoriypeA
Ar¢—1 (ruleT)
¢ ¢Aor[peA and A+ 1] (case analysis)
0N AT RVEWA

Y

Y

Y

v
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Completeness Theorem VII

Details (Step 4)(cont'd).
@ Recall § = -Vx¢ - -¢ € A.
Fu Vx¢*[s] = Eu¢"[s(x|c)]
= Ey (¢")%[s] (substitution lemma)
= Fu(d0)'[s] = dteDA = -¢i¢A
= -Vx¢p¢A (feA) = VxgpeA.
HFu Vxo*[s] = Hyg o [s(x|t)] for some t
= Ky *[s(x|t)] for some alphabetic variant v
= Hy (¢¥7)"[s] (substitution lemma)
= YiEA => Yxp ¢ A (VYxyp - € A)
= Vxo¢¢A.
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Completeness Theorem VIII
Sketch (Step 5).

If I' contains equality, consider the quotient structure {4/E:

o Define [t] = {s: (s, t) € EY}. Observe that E* is a congruence
relation:

EY is a equivalence relation on 4|
(ti,...,to) € P! and (t;, t/) € EY for 1<i< n, then (t{,...,t,) e P4
(ti,t]) e E¥ for L<i<n, then (F4(t1,... t,), FH(¢],... t})) e EY¥

o |U/E|={[t]:taterm }

o ([t1],...,[tn]) € PYEiff (t1,... t,) e P

o FYE([t1],...,[ta]) = [F*(t1,...,t,)]. Particularly, cE = [c*]
Let h(t) = [t] be the natural map from || to |LI/E|. h is a homomorphism
of 4 onto U/E. For any ¢,

peA & Eyd'[s] o Eypd[hos] < Eydlhos]

v
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Completeness Theorem IX

Details (Step 5).

Recall (t,t') e EXiff t = t' € A iff A+t =t'". Hence E% is a congruence
relation on i, and both PYE and FYE are well-defined.

Clearly, h is a homomorphism of $f onto &I/E. Moreover, ([t],[t']) € EY/E
iff (t,t') € EXiff [t] = [t']. Thus

peN < Ey¢*[s] (Step 4)
< Fye ¢ [hos] (homomorphism theorem)
< kg ¢[hos] (above)
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Completeness Theorem X

Details (Step 6).
Restrict $1/E to the original language. The restricted /E satisfies every
member of [ with hos. I is satisfiable. 0J

@ Remark. If the original language is uncountable, a modified proof still
works. We only add sufficiently many new constant symbols
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Compactness Theorem

Theorem (Compactness)
Q@ IfT = ¢, then Ty = ¢ for some finite g CT;
@ If every finite subset Ty of [ is satisfiable, I' is satisfiable.

Proof.
@ Observe I' = ¢ implies [ + ¢. Since deductions are finite, g + ¢ for
some finite g €. Hence g E ¢ by soundness theorem.
@ Suppose every finite subset of I is satisfiable, every finite subset of I
is consistent (soundness theorem). Since deductions are finite, I is
consistent. By completeness theorem, [ is satisfiable.
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History

@ Kurt Godel's 1930 doctoral dissertation contains the completeness
theorem for countable languages. Compactness theorem was a
corollary.

@ Anatolii Mal'cev showed the compactness theorem for uncountable
languages in 1941.

@ OQur proof of completeness theorem is based on Leon Henkin's 1949
dissertation.
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