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The Language

@ The following symbols are used in sentential logic

Symbol Name Remark
( left parenthesis punctuation
) right parenthesis punctuation
- negation symbol not
A conjunction symbol and
v disjuction symbol or (inclusive)
- condition symbol if _, then
~ biconditional symbol if and only if
A1 first sentence symbol
Ao second sentence symbol
An nth sentence symbol

@ The set of sentence symbols will be denoted by .¥

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 3/97



Well-Formed Formulae (wff’s)

@ A set S of expressions is inductive if it has the following properties.
e A well-formed formula (wff) is defined as follows:

» every sentence symbol is a wff;
» if expressions « and 3 are wff’s, then so are (-a), (a A B), (aVv ),

(a—B), and (a < B).
@ The set of wffs generated from .7 is denoted by .7

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 4 /97



Truth Assignments

e Fix a set {T,F} of truth values

@ A truth assignment is a function

v: - {T,F}
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Extended Truth Assignment

o Define the extension 7:.% - {T,F} by

v(A)
v((=a))

v((anp))
v((av p))
V(> p))

v((a <))
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v(A)
T ifv(a)=F
F  otherwise
T fv(a)=Tandv(B)=T
F  otherwise
T fv(a)=Torv(B)=T
F  otherwise
F ifv(a)=Tand 7(8)=F
T otherwise
T ifv(a)=7(8)
F  otherwise
Elementary Logic July 1, 2009
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Tautology

@ A truth assignment v satisfies a wff ¢ if 7(¢) =T

o Let X be a set of wffs and ¢ a wff. ¥ tautologically implies ¢ (X & ¢)
if every truth assignment satisfies every member of ¥ also satisfies ¢

@ ¢ is a tautology if @ = ¢

o If o =7 and 7 = g, we say ¢ and 7 are tautologically equivalent
(o ==7)

» ok 7 stands for {o} =7
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Omitting Parentheses

To reduce the number of parentheses, we use the following convention:

@ The outmost parentheses need not be explicitly mentioned. “"AA B”
means (AA B)

@ The negation symbol applies to as little as possible. “~=A A B" means
(-A)A B

@ The conjunction and disjunction symbols also apply to as little as
possible. “AAB - -Cv D" means (AAB) - ((-C)v D)

@ Where one connective symbol is used repeatedly, grouping to the
right. “A— B - C" means A— (B - ()
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Boolean Functions

o A k-place Boolean function is a function from {T,F}* into {T,F}

@ Suppose a wff o has sentence symbols among A;,...,A,. The
Boolean function B[ realized by « is defined by

B (X1,....X») = 7(a)

where v(A;) = X; € {T,F} foreach i=1,...,n

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 9 /97



Facts about B”

Theorem

Let o and [3 be wffs whose sentence symbols are among As, ..., A,.
Q@ o= iffforall X e {T,F}", BI(X) = T implies Bj(X) =T
Q@ ar=piff By =Bj
©Q =« iffran B} ={T}

Proof.

Observe that « = 3 iff for all 27 truth assignments v, U(«) = T implies

7(8) = T. O
4
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Completeness of Connectives

Theorem

Let G be an n-place Boolean function with n > 1. There is a wff o such
that G = B]]

Proof.

If ran G = {F}, let a = A1 A -A;.
Otherwise, let G have the value T at X; = (Xj1, Xj2, ..., Xin) for
i=1,... k. Define

g = {Aj if Xj=T

A if Xj=F
Yi = Bia A A Bin
It is straightforward to show G = B O
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Disjunctive Normal Form

o A literal is either a sentence symbol A or its negation -A
@ A wff « is in disjunctive normal form if

G = Y1VY2V -V

where

Vi = BirABi2ABin
and (j; is a literal
Corollary

For any wff ¢, there is a tautologically equivalent wff « in disjunctive
normal form
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Compactness

o A set ¥ of wffs is satisfiable if there is a truth assignment which
satisfies every member of X
@ X is finitely satisfiable if every finite subset of X is satisfiable

@ In mathematics, compactness relates finite and infinite features
» A set is compact if any open cover has a finite subcover
% bounded closed sets are compact; bounded open sets are not.
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Proof of Compactness

Theorem
A set X of wifs is satisfiable iff it is finitely satisfiable

Proof.

Let g, 1, ... be an enumeration of wffs. Define

Ny = X

A i Apu{ani} if this is finitely satisfiable
nl = A,u{-an1} otherwise

Let A =uUp,A,. Then (1) X ¢ A; (2) for any wff o, either o€ A or
—a € A; and (3) A is finitely satisfiable.
Define a truth assignment v by v(A) =T if Ae A for every sentence

symbol A. Then v satisfies ¢ iff ¢ € A. Since & ¢ A, v satisfies every
member of X.

Ol
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Applications of Compactness

Corollary
If X = 7, there is a finite Xg € X such that Lo E T

Proof.
Suppose X i T for every finite £o € X. Then Xou {7} is not satisfiable

for any finite Yo € X. Hence X U {7} is not finitely satisfiable. Thus
Y u{r} is not satisfiable. Therefore ¥ # 7. O

v
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The Language

o Logical symbols
» parentheses: (, )
» sentential connectives: —, —
» variables: vq, vo, ...
» equality symbol (optional): ~
@ Parameters
» quantifier symbol: V
» predicate symbols: n-place predicate symbols
» constant symbols (or O-place function symbols)
» function symbols: n-place function symbols
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Examples of First-Order Language

@ Pure predicate language
» equality: no
» n-place predicate symbols: Af, A7, ...
» constant symbols: aj, as, ...
» n-place function symbols (n > 0): none
@ Language of set theory
» equality: yes
» predicate parameters:
» constant symbols: & (sometimes)
» function symbols: none
@ Language of elementary number theory
» equality: yes
» predicate parameters: <
» constant symbols: 0
» 1-place function symbols: S
» 2-place function symbols: +, x, and E
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Examples

@ “There is no set of which every set is a member.”

=(=Vwvi(=Yv2 € vu11))

or —|(E|V1(VV2 € V2V1))

@ “For any two sets, there is a set whose members are exactly the two
given sets.”

VvivodvaVva(e vavs <» vaviV » vavo)
@ “Any nonzero natural number is the successor of some number.”

Vvi(=~v0 > 3vy » viSw)

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 18 / 97



Terms

@ Terms are generated by variables, constant symbols, and function
symbols

@ Examples:

+»S0 informally, w+1

55550 informally, 4

+EviSSO0Ew,SSS0  informally,  vP +v3
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Atomic Formulae

@ An atomic formula is an expression of the form
Ptl“‘tn

where P is an n-place predicate symbol (or equality), and t1,...,t,
are terms

@ Examples:

~v1S0 informally, v =1

€ wvs informally, vy €3

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 20 / 97



Well-Formed Formulae

@ The set of well-formed formulae (wff, or formulae) is generated from
the atomic formulae by connective symbols (-, —) and the quantifier
symbol (V)

» =y, v — 6, Yv;y are wifs provided 7, are

o Example:

Vvi((=Yvz(=€w3vy)) = (=Vva(e vavy) -
(=Vva(e vava = (=€ van1)))))
informally

Vvi((3vavz e vy) = (SVwvava e vi = (=Vvava e vo > va ¢ vy)))

@ Nonexample: —vs
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Free Variables

@ Let x be a variable and a a wff
@ We say x occurs free in «v if
» x is a symbol in @ when « is atomic
» x occurs free in 3 when « is =3
» x occurs free in B or in v when ais § — 7y
» x occurs free in B and x # v; when « is Vv;[3
@ If no variable occurs free in the wff a, we say « is a sentence
@ Examples:
» Vva(Ava = Bwy) and Vv3(Pvs — Vv3Qvs) are sentences
» vy occurs free in (Vv Avy) - By
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Abbreviations

@ Let a and @ be formulae and x a variable

e (a v ) abbreviates ((-~a) — (3)

o (aA[3) abbreviates (-(a — (=03)))

o (a < [3) abbreviates ((a = ) A (8 = «)); that is,

(=((a=B) = (=(F = a))))

@ dxa abbreviates (=Vx(-a))

@ u~ t abbreviates ~ ut (and similarly for other 2-place predicate
symbols)

@ u # t abbreviates (- ~ ut) (and similarly for other 2-place predicate
symbols)
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Precedences

@ Outermost parentheses may be dropped.
» Vxa > Bis (Yxa - ()
@ -, V, and 3 apply to as little as possible.

» A Bis () AB)
» Vxo — ﬂ is ((VXOL) _’/8)

@ A and v apply to as little as possible, subject to above
»manf s (((me) AB) =)

@ When connective is used repeatedly, group them to the right
ra>foqisa—(-9)
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Notation Conventions

Predicate symbols: A, B, C, etc. Also €, <
Variables: v;, u, x, y, etc.

Function symbols: f, g, h, etc. Also S, +, etc.
Constant symbols: a, b, c, etc. Also 0

Terms: u, t

Formulae: «, 3, v, etc.
Sentences: o, T, etc.

@ Set of formulae: X, A, T, etc.
@ Structures: U, B, etc.
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Structures

@ A structure U for a first-order language is a function whose domain is
the set of parameters such that

@ 4l assigns to V a nonempty set 4|, called the universe of il

@ 4l assigns to each n-place predicate symbol P an n-ary relation
PY cju”

© 4 assigns to each constant symbol ¢ a member c* € |4

@ 4l assigns to each n-place function symbol f an n-ary function
Fr U — Y]

o Note that |4] is nonempty and f** is not a partially-defined function
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Examples of Structures

@ In the language for set theory. Define
» |U| = the set of natural numbers
» et = {{m,n):m<n}

o Consider IxVy-y € x
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Examples of Structures

@ In the language for set theory. Define
» |U| = the set of natural numbers
» et = {{m,n):m<n}
o Consider IxVy-y € x
» there is a natural number such that no natural number is smaller
@ Informally, we would like to say IxVy-y € x is true in £l or il is a
model of the sentence
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Satisfaction kg ¢[s] |

Let ¢ be a wff, 4 a structure, and s: V — 4| from the set V of variables
to the universe of 4

o Terms. Define the extension 5: T — |4| from terms to the universe by
@ for variable x, 5(x) = s(x)
@ for constant symbol ¢, 5(c) = ct
@ ifty,...,t, are terms and f is an n-place function symbol,
g(ftl"'tn) = fu(g(tl)a s 7§(tn))
@ Atomic formulae. Define
Q =y~ tltg[s] if g(fl) Ig(tg)
@ for n-place predicate parameter P, g Pty---t,[s] if
(5(t1),...,5(ty)) e P¥
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Satisfaction kg ¢[s] Il

@ Other wffs. Define

Q =y —¢[s] if #u ¢[s]
Q Fu (¢ > ¥)[s] if yu ¢[s] or Ey P[s]
O Ey Vx¢[s] if for every d € 4|, we have g @[s(x|d)] where

sl - {5 1
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Logical Implication

Definition

Let ' be a set of wffs, ¢ a wff. T logically implies ¢ (I' & ¢) if for every
structure $1 and every function s: V — || such that i satisfies every
member of I with s, 4 also satisfies ¢ with s

@ ¢ and v are logically equivalent (¢ =) if ¢ =1 and ¥ = ¢
o A wff ¢ is valid if @& ¢ (or just = ¢)
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Relevant Valuation

Theorem

Assume s1,s;: V — |U| such that s; and s, agree at all variables occurring
free in ¢. Then g ¢[s1] iff EgY[sz].

Proof.
By induction.

@ ¢ = Pty---t,. Observe 51(t) =5;(t) for any term t occurring in ¢
(why?)

@ ¢ = -« or a — 3. By inductive hypothesis

@ ¢ =Vxv. Then free variables in ¢ are free variables in 1) except x.
Thus s1(x|d) and sy(x|d) agree at free variables in 1) for any d € |4].
By inductive hypothesis, =g [ s1(x|d)] iff =y [s2(x|d)] for any

d e |U].
O
v
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Truth and Models

Corollary
For a sentence o, either
(a) U satisfies o with every function s; or

(b) 4l does not satisfy o with any such function

e If (a) holds, we say o is true in 4l or {l is a model of &
o If (b) holds, we say o is false in U

o il is a model of a set X of sentences iff it is a model of every member
of X

Corollary

For a set ;T of sentences. ¥ & T iff every model of ¥ is a model of T J
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Logical and Tautological Implications

@ Consider the problem of determining = ¢ when

» ¢ is in sentential logic; and
» ¢ is in first-order logic
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Logical and Tautological Implications

@ Consider the problem of determining = ¢ when
» ¢ is in sentential logic; and
» ¢ is in first-order logic

o For sentential logic, there is an effective procedure
» by truth table
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Logical and Tautological Implications

@ Consider the problem of determining = ¢ when
» ¢ is in sentential logic; and
» ¢ is in first-order logic
o For sentential logic, there is an effective procedure
» by truth table
@ For first-order logic, we have to consider all structures
» there are infinitely many structures!
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Logical and Tautological Implications

@ Consider the problem of determining = ¢ when
» ¢ is in sentential logic; and
» ¢ is in first-order logic
o For sentential logic, there is an effective procedure
» by truth table
@ For first-order logic, we have to consider all structures

» there are infinitely many structures!
» the validity problem is in fact undecidable
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Notational Convention

@ By our notational convention, the following statements can be proved
» ey (anB)[s] iff ey afs] and ey B[s]; similarly for v and <
» Ey 3xa[s] iff there is some d € |4] such that £y afs(x|d)]
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Definability of Structures

@ Let X be a set of sentences. Mod(X) denotes the class of all models
of X. That is

Mod(X) = {U:=yo foralloeX}

@ A class J of structures is an elementary class (EC) if 2# = Mod(7)
for some sentence 7. JZ is an elementary class in the wider sense
(ECa) if £ =Mod(X) for some set ¥ of sentences
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Examples

@ A structure (A, R) with R € Ax A is an ordered set if R is transitive
and satisfies trichotomy condition

» that is, exactly one of (a,b) € R, a=b, (b,a) € R holds

@ The class of nonempty ordered sets is an elementary class

T = VYxVyVz(xRy - yRz - xRz) A
VxVy(xRy v x =y Vv yRx) A
VxVy(xRy - -yRx)

@ The class of infinite sets is ECp

A2 = Ixdyxdy
Az = IxIydz(xtyax¢zaytz)
o= {AAs. )
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Definability within a Structure

Fix a structure 4

Let ¢ be a formula with free variables v1, ..., vk

For a1,...,ak € ||, Ey ¢[a1,...,ak] means that i satisfies ¢ with
some s: V — || where s(v;) =a; for 1 <i<k

The k-ary relation defined by ¢ is the relation

{<a17 o "ak> :':Ll ¢|[al7 i '7ak]|}
A k-ary relation on || is definable if there is a formula defining it
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Examples

@ Consider the language of number theory with the intended structure
N=(N,0,5,+,—,)
@ The ordering relation {(m, n) : m < n} is defined by Jvzv; + Svz ~ v,
e For any ne N, {n} is definable. For instance, {2} is defined by
v ~ S50

» we hence say n is a definable element in N

@ The set of primes is definable. Consider

Jv350 + Svz ~ viA
VwoVvs(vi » va-v3 = vp » S0V vz » S0)
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Homomorphisms

o Let 4 and B be structures. A mapping h: |U| > |B| is a
homomorphism if

» For each n-place predicate symbol P and n-tuple (ay,...,a,) € |4,
(a1,...,a,) € PLiff (h(a1),...,h(a,)) e PP
» For each n-place function symbol f and n-tuple (ay,...,a,) € |4,

h(fu(ah' . 'uan)) = f%(h(al)w . '7h(al‘l))
o If his one-to-one, it is called an isomorphism

@ If there is an isomorphism of 4l onto B, we say il and B are
isomorphic (in notation, {l = B)
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Examples

e Consider (Z*,<}) and (N, <y). The function h(n) =n—1is an
isomorphism from (Z*, <;) onto (N, <y)
o Consider two structures i and B with |U| € |%B|. The identity map
(i(n) = n) is an isomorphism of i into B iff
» P* is the restriction of P® to |8l| for every predicate symbol P; and
» f* is the restriction of f® to |4| for every function symbol f

@ In this case, we say 4l is a substructure of B, and B is an extension
of U

e (Z*,<3) is a substructure of (N, <y)
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Homomorphism Theorem

Theorem
Let h be a homomorphism of il into B, and s: V — |4|.
@ For any term t, h(5(t)) = hos(t);
@ For any quantifier-free formula o without equality symbol, =y «[s] iff
Eq a[hos];
© If h is one-to-one, then 2 holds even when « contains equality symbol;

@ If h is onto, then 2 holds even when « has quantifiers.

v
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Proof of Homomorphism Theorem |

© By induction on t.
@ For atomic formula such as Pt, we have

5(t) e PY

h(s(t)) e P®
hos(t)eP®
Ex Pt[hOS].

Esr Pt[s]

U

Other quantifier-free formulae without equality symbols can be proved

by induction.
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Proof of Homomorphism Theorem ||
© If his one-to-one, we have

Eq u s t[s] 5(u) = 5(t)
h(s(u)) = h(s(t))
hos(u) =hos(t)

Eg u~tlhos].

A

Other cases are proved by induction.

@ By induction hypothesis, Eg ¢[s] <>Eg ¢[ho s] for any s.

o Vx¢[hos] Ex ¢[(hos)(x|b)] for every b € |B]
o ¢[(hos)(x|h(a))] for every a e |4
Ex ¢[ho (s(x|a))] for every a €|
Ey @[s(x]a)] for every a e |4

Ey Vx¢[s].

g 8000
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Elementary Equivalence

@ Two structures i and B are elementarily equivalent (4 = B) if for
every sentence o,

Fyo < FEgo.

@ By Homomorphism Theorem, two isomorphic structures are
elementarily equivalent

» but two elementarily equivalent structures are not necessarily
isomorphic, e.g. (R,<g) and (Q,<g)

@ The identity map from (Z*,<}) into (N, <y) is an isomorphism. We
have

':(Z+,<£) VVZ(V]_ 7é Vo = vy < V2)|[V1 — 1]]
but

Fa) VV2(vi # vo = vi <wo)[vi = 1]
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Generalization and Substitution

o A wff ¢ is a generalization of ¢ if for some n >0 and variables
X1y ey Xp, @ =VYX1-VX00
@ For variable x and term t, write o} for the formula obtained by
replacing x with t. Formally,
Q for atomic «, o is obtained by « by replacing the variable x by t;
Q (-a)f = (=e7);
Q (a-pB)f=(of = BY);
X Vya if x=
Q (vya):i= { Vi(af) ifx;t))j
@ t is substitutable for x in « if
@ for atomic a, t is always substitutable for x in «;
@ t is substitutable for x in (-«) if it is substitutable for x in «; t is
substitutable for x in (o — () if it is substitutable for x in both « and

© t is substitutable for x in Yy« if

@ x does not occur free in Vya; or
@ y does not occur in t and t is substitable for x in «
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More about Substitution

o Consider v = VYwaBvivy
@ Then fyle =VwvuBww
» however, v, is not substitutable for v; in v (why?)
@ When an axiom of the form Vxa is instantiated, we have af for some
term t
@ But the substitution cannot be performed arbitrarily

» thus we have to check whether t is substitutable for x in «
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Logical Axioms A

The logical axioms A are generalizations of wffs of the following forms:
© tautologies;
@ Vxa — af where t is substitutable for x in o;
Q@ Vx(a - f) - (Vxa - Vxp3);
@ o — Vxa where x does not occur free in «;
Q xw~x;

Q@ x~y— (a—a') where « is atomic and o' is obtained from « by
replacing x in zero or more places by y
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Modus Ponens

@ (Modus ponens) From « and o — 3, we may infer (3
a, a—>

B

@ A set A of formulae is closed under modus ponens if whenever o and
a— 3 arein A, then Bisin A

@ ¢ is a theorem of [ (I' - ¢) if ¢ belongs to the set generated from
I"uA by modus ponens

Definition
A deduction of ¢ from [ is a sequence («p, ..., an) of formulae such that
ap = ¢ and for each j < n,

@ ajelUA; or

o for some j, k < i, «; is obtained by modus ponens from «; and
ak(=aj > a;)
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Theorem and Deduction

Theorem

There exists a deduction of o from I iff o« is a theorem of I.

Proof.

If there is a deduction (ag, ..., a,), then each a; belongs to the set
generated from ' U A by modus ponens. Hence ' + ay(= ¢).

Conversely, every formula in ' U A has a deduction. Moreover, every
formula obtained from I' U A by modus ponens has a deduction. Hence,
every formula generated from ' U A by modus ponens has a deduction.
Particularly, the theorem ¢ of I' has a deduction. Ol

v

We therefore say ¢ is deducible from [ if I+ ¢.
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Tautologies

@ A tautology in first-order logic is a wff obtained from a tautology in
sentential logic by replacing each sentence symbol with a wff of
first-order language

Vx[(Vy=Py - =Px) - (Px > =Vy-Py)]
is obtained from
(A~ -B) ~ (B~ -A)

by generalization
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More about Tautologies

@ Divide wffs in first-order language in two groups
@ Prime formulae are the atomic formulae and those of the form Vxa
@ Non-prime formulae are those of the form -« or a —
@ Now take prime formulae as sentence symbols. Any tautology of the
(new) sentential logic is a tautology in first-order language
e Consider (Vy—Py - =Px) - (Px - =Y-Px)
» there are two prime formulae: Yy—Py and Px
» it remains to check whether (A - -=B) — (B — -A) is a tautology

@ By taking prime formulae as sentence symbols, first-order formulae
are also wffs of sentential logic. Concepts for sentential logic are
applicable.

» it makes sense, for instance, to say “tautologically implies” in
first-order language.
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Deduction and Tautologically Implication

Theorem
I+ ¢ iff T U tautologically implies ¢

Proof.

Observe that {«,a — 3} tautologically implies 3. Now suppose there is a
truth assignment v satisfying ' uA. We can prove v satisfies any theorem
of I' by induction on the length of deduction. The inductive step uses the
observation.

Conversely, assume I' U A tautologically implies ¢. By compactness
theorem (for sentential logic), there is a finite subset

{7, sYm,A1,--.,An} tautologically implying ¢. Hence,

M Y > AL Ay 8

is a tautology (why?) and hence in A. Applying modus ponens, we have

¢. O

v
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Examples of Theorems

@ - Px — JyPy
Vy-Py - -Px (Vy-=Py - =Px) - (Px > =Vy-Py)
Px - =Vy-Py
e + Vx(Px — JyPy)
Vx[(Vy-Py - =Px) > Vx(a— 08) >
(Px »> =Vy=Py)] (Vxa > ¥Vx[3)
Vx(Yy-Py - =Px) Vx(Vy-Py - =Px) = Vx(Px - =Yy-Py)

Vx(Px — =VYy-Py)
where a is Yy-Py - -Px and 3 is Px - -Vy-Py.
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Theorems and Metatheorems

@ Note that the word “theorem” has two different meanings
o InT F«, we say o is a “theorem”

@ We also say the following is a “theorem”

Theorem
I~ ¢ iff T U tautologically implies ¢
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Theorems and Metatheorems

@ Note that the word “theorem” has two different meanings
o InT F«, we say o is a “theorem”
» properties derived from [, at the object level

@ We also say the following is a “theorem”

Theorem
I~ ¢ iff T U tautologically implies ¢

» properties about arbitrary I', at the meta level
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Generalization Theorem |

Theorem (generalization)

If T + ¢ and x does not occur free in any formula in T, then I + Vx¢

Bow-Yaw Wang (Academia Sinica)
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Generalization Theorem |l
Proof.
Fix a set I and a variable x not free in . If T ={¢:T + Vx¢} includes

IFUA and is closed under modus ponens, then every theorem ¢ of '
belongs to T. Hence I - Vx¢ for any theorem ¢.

@ e Hence Vxyp e A. Thus '~ Vxip and pe T

@ 1 el. Then x does not occur free in 1. ¥ — Vxih € A (axiom
group 4). We have
Y - Vxy
Vxap
@ Suppose ¢ and ¢ — 1. By induction hypothesis, [ - Vx¢ and
I Vx(¢ —>1). We have
Vx(¢ > 1)  Vx(¢ > 9) > (Vx¢ > Vxih)
Vxo Vx¢p — Vxi
Vx
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Remark

@ Informally, when we prove X from I' and I does not
restrict x, we should have Vx X
» this is exactly Generalization Theorem

@ Axiom group 3 and 4 are crucial in the proof
@ x must not occur free in I’
» Px i VxPx, one should not have Px - VxPx

@ For applications, let us show VxVya + VyVxa
By axiom group 2 (twice) and VYxVy«, we have VxVya + a. By
applying Generalization Theorem (twice), we have VxVya + Yy Vxa
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Rule T

Lemma (Rule T)
IfT+ay,....,T+a, and {a1,...,a,} tautologically implies 3, then T + (3

Proof.
a1 = -+ > ap — [ is a tautology and hence a logical axiom. Apply modus
ponens. []

v
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Deduction Theorem |

Theorem
fro{y}ro, Fr-y—>¢

Proof.
(First proof)

Fru{y}re¢ iff Tu{y}uA tautologically implies ¢
iff UA tautologically implies v - ¢
iff THy—>¢

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 59 / 97



Deduction Theorem Il

Proof.

(Second proof)

We show that ' -~y — ¢ when U {v} + ¢.
@ p=-. Clearly, T v —> ¢

@ peANuTl. We have I + ¢. Moreover, ¢ — (7 — ¢) is a tautology.
(why?) By modus ponens, I' -~y — ¢

@ ¢ is obtained from v and 1) - ¢ by modus ponens. By inductive
hypothesis, ' -~ — ¢ and I + v - (¢ > ¢). Moreover,

{y =1,y —> (¢ > ¢)} tautologically implies v - ¢. By rule T,
Fr-y->9
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Contraposition

Corollary (contraposition)

Fru{o} -y iffTu{Y}+-¢p

Proof.

Fru{¢} -1 = T+ ¢— -1 (Deduction Theorem)
= [+H1Y->-0¢
(¢ - =1 tautologically implies ¢ — —¢, Rule T
= T u{¢Y}+r —¢ (modus ponens)

The converse is obtained by symmetry. [
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Inconsistency

@ A set I of formulae is inconsistent if both '+ 3 and I + -3 for some

B
@ In this case, [ + « for any formula «
» - -0 — «is a tautology
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Reductio ad Absurdum

Corollary (reductio ad absurdum)
IfT u{¢} is inconsistent, [ - —¢.

Proof.
By Deduction Theorem, '~ ¢ — 3 and I ~ ¢ — -3 for some 3. Moreover,
{¢ = B,¢p - =} tautologically implies —¢. 0

v
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Example

Example
Show + IxVy¢p - Vydxep

Proof.

FIxVy¢ - Vydxeo
if 3xVy¢+ Vy3xeé (Deduction Theorem)
if 3IxVy¢ + Ix¢ (Generalization Theorem)
if =“Vx-Vy¢r+ -Vx-¢ (Definition)
if Vx-¢ + Vx=Vy¢ (contraposition)
if Vx-¢ + -Vy¢ (Generalization Theorem)
if {Vx-¢,Vyo} is inconsistent (reductio ad absurdum)
if Vx=¢F -¢ and Vyo + ¢ (axiom group 2)
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Deduction Strategy

Given I + ¢, how to find a proof of it?
@ ¢ = (v —0). This is the same as U {¢} + 6 (Deduction Theorem)

@ ¢ =Vxy. This is the same as [ + 1) after variable renaming
(Generalization Theorem)
@ ¢ is a negation.
» ¢ ==(1p > 0). This is the same as '+ and T+ =6 (rule T)
» ¢ =--1). This is the same as [+ ¢ (rule T)

» ¢ =-Vxy. It suffices to show I = —t)} for some t substitutable for x in
¢ (reductio ad absurdum).

% but it is not always possible, e.g. - -Vx—=(Px — VYyPy)
% this is case, we may use contraposition and reductio ad absurdum
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Examples |

Example

If x does not occur free in «, show + (a — Vx3) < Vx(a > 3)

Proof.

It suffices to show + (a - Vx3) — Vx(a — 3) and
FVx(a - B) - (a— VxB) (rule T).

o + (a— VxB) - Vx(a - 3). It suffices to show {a — Vxf3,a} + 3
(Deduction and Generalization Theorems). But this follows by modus
ponens and axiom group 2

o + Vx(a— ) - (o> Vxf3). By Deduction and Generalization
Theorems, it suffices to show {Vx(a - 3),a} + (. But this follows
by axiom group 2 and modus ponens.

O]

v
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Examples |l

Example (Eq2)
Show + VxVy(x » y = y ~ x)

Proof.

QO +-xry—->xmx—>y~xx. Ax6
Q@ +—x~x. Ax5
Qr-xry-o>ynx. 1,2 T

Q HVxVy(x~y—>yw~x). 3 gen

O]

Note that this is not a formal proof of VxVy(x ~y — y ~ x). This is an
informal proof which shows that a formal proof exists

v
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Examples Il

Example
Show + x ~ y — VzPxz — VzPyz

Proof.

Q@ FHx~ny—>Pxz— Pyz. Ax6

Q + VzPxz - Pxz. Ax 2

Q +-xny—>VzPxz— Pyz. 1,2, T
Q {xw~y,VzPxz}+ Pyz. 3, MP

Q@ {xw~y,VzPxz}+ VzPyz. 4, gen
Q +Hxw~y—>VzPxz > VzPyz 5, ded
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Generalization on Constants

Theorem

Assume that I + ¢ and c is a constant symbol not in . Then there is a
variable y (not in ¢) such that T + V¥ y¢y,. Moreover, there is a deduction
of Vy¢y, from I' where c does not appear.

Proof.
Let (ao,...,a,) be a deduction of ¢ from I'. Let y be a variable not in
any of a;'s. We claim ((ao)y,- -, (an)y) is a deduction of ¢7.

o apel. Then (ay)y =axel.
@ oy is a logical axiom. Then (ay)y is also a logical axiom.
® «y is obtained from «; and o = aj - ay. Then (ak)f, is obtained by
(ai)y and (o))} = (i)}, = (ak)y-
Thus, T+ ¢§. By Generalization Theorem, I' - Vy@y. Moreover, ¢ does
not appear in the deduction of Vy@y from I O

v
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Applications |

Corollary

Assume [ = ¢% and ¢ does not occur in [ or ¢. Then I ~ Vx¢ and there is
a deduction of Yx¢ where ¢ does not occur.

v

Proof.

By the previous theorem, there is a deduction of Vy(#7)j without c.
Since ¢ does not occur in ¢, (¢7)y = ¢y. Observe that (Vy¢}) — (¢} Y is
an axiom (axiom group 2). Moreover, (¢})X% = ¢ (by induction). Thus,
Vy¢y + Vx¢ (Generalization Theorem). Ol

v

Corollary (rule El)

Assume ¢ does not occur in ¢, 1, or [. If T U{¢%} + 1), then
['u{3x¢} + 1. Moreover, there is a deduction of 1) from ' U {Ix¢}
without c.
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Applications |l

Proof.

By contraposition, we have [' U {-%} + =¢%. By the previous corollary,
Fu{-=Y} + VYx-¢. Applying contraposition again, we have
Fu{3xe}+ 1. O

“EI" stands for “existential instantiation.”
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Example

Example
Show + AxVyp — VyIxg¢

Proof.

FIxVy¢ — Vydxe
if 3xVy¢+ Vy3x¢ (Deduction Theorem)
if Vyo¢rr Vydxe (rule El)
if Vy¢Z+ Ix¢é (Generalization Theorem)
if ¢+ 3x¢ (Vyd* - ¢ and rule T)
if Vx-¢ - ¢ (contraposition)
if +Vx=¢—> -¢F and Vx-¢ + Vx-¢ (MP)
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Alphabetic Variants

Theorem

Let ¢ be a formula, t a term, and x a variable. Then there is a formula ¢'
such that (1) ¢+ ¢" and ¢' + ¢; (2) t is substitutable for x in ¢'.

Proof.

Fix x and t. Construct ¢’ as follows. If ¢ is atomic, ¢’ = ¢; (=¢)’' = =¢;
and (¢ - )" = ¢’ - ', Finally, define (Vy¢)' = Vz(¢')% where z is a
fresh variable not in ¢’, t, or x. Note that t is substitutable for x in (¢')J
for z is fresh.

By inductive hypothesis, ¢ + ¢'. Thus Vy¢ + Vy¢' (why?). Moreover,
Vy¢' + (¢')%. Hence Vyd' + Vz(¢')% by generalization. Yy + Vz(¢')%.
Conversely, Vz(¢')% = ((¢')%);- Since ((¢")7)3 = ¢’ and ¢’ ¢ (inductive
hypothesis), Vz(¢')% + ¢. Finally, Vz(¢')} + Vya. O

v
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Equality

Eql + Vxx » x
Eq2 H VxVy(x~y —> y ~ x)
Eq3 + VxVyVz(x vy > y~z—> xwn2)

Eqd H VxiVxoVy1Vya(x1 » y1 = xo » yx = Pxyxo = Py1ys). Similarly for
n-place predicates

Eqh H Vx1VxoVy1Vya(x1 & y1 = xo » yx = fxixo ~ fy1yn). Similarly for
n-place functions
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Soundness and Completeness

@ Soundness.

Fr-¢p=>TEod
o Completeness.

Fre¢g=>T+o

Bow-Yaw Wang (Academia Sinica)
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Substitution Lemma |

Lemma (Substitution)
If t is substitutable for x in ¢, then

Fu ¢F[s] iff Ey o[s(x[s(t))].

Proof.
By induction on ¢.
@ ¢ is atomic. Consider, for instance,

Ey PuX[s] iff s(u))eP"

iff  s(x[5(t))(u) € P¥ (induction on term u)
iff =y Pu[s(x|5(t))]
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Substitution Lemma Il

Proof (cont'd).
@ ¢ = -1 or ¢ — 0. Follow by induction hypothesis.

@ ¢ =Vy1 and x does not occur free in ¢. Since ¢5 is ¢, the result
follows.

@ ¢ =Vy1 and x does occur free in ¢. Since t is substitutable for x in
¢, y does not occur in t. Hence 5(t) = s(y|d)(t) for any d € |4
Thus

Ey @7 [s] iff forall d, g ¥5[s(y|d)]
iff for all d, =g ¢[s(y|d)(x|s(y|d)(t))] (I.H.)
iff for all d, =y ¥[s(y|d)(x|5(t))]
(y does not occur in t)

iff =y o[s(x[5(t))].

O]

v
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Soundness Theorem |

Lemma
Every logical axiom is valid.

Proof.
We examine each axiom group as follows.

o Let 4 be a structure and s: V — |4l|. Define a truth assignment v on
prime formulae ~ by

v(y) =T iff =y~y[s].
Then 7(«) = T iff Eg a[s] for any formula a. Particularly, if @
tautologically implies «, then E «.
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Soundness Theorem Il

Proof (cont'd).

o Consider, for example, YxPx — Pt. Assume kg VxPx[s]. We have
Ey Px[s(x|d)] for any d € |U|. Particularly, £¢ Px[s(x[5(t))]. By
Substitution Lemma, ¢ Pt[s]. Thus kg VxPx — Pt.

@ Assume kg Vx(a — () and £y Vxa. For any d € |4,

Ey a— B[s(x|d)] and kg a[s(x|d)]. Hence =y B[s(x|d)] as
required.

@ Assume x does not occur free in a and =y «[s]. Then =y a[s(x|d)]
as required.

@ Trivial, for £ x ~ x[s] iff s(x) = s(x).
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Soundness Theorem IlI

Proof (cont'd).

@ Assume « is atomic and o' is obtained from « by replacing x at some
places by y. Suppose ¢ x » y[s] and g afs]. We have s(x) =s(y).
Hence for any term t and t’ obtained from t by replacing x at some

places y, we have 5(t) =35(t") by induction on t. The result follows
by case analysis on .

Ol

o
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Soundness Theorem

Theorem
IFT -6, T Eg.

Proof.

By induction on the deduction.
@ ¢ is a logical axiom. Hence = ¢. Thus I = ¢.
@ ¢pel. Clearly, I' E ¢.

@ ¢ is obtained from ¢ and 1 — ¢. By inductive hypothesis, I = v and
=1 — ¢. Since {1,¢ - ¢} tautologically implies ¢, we have I = ¢.

O]

v
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Applications

Corollary
If = ¢ <, ¢ and y) are logically equivalent.

Proof.
+ ¢ — 1 implies ¢ + 1) (modus ponens). Thus ¢ = ¢ (soundness). By

symmetry, ¥ & ¢. DJ
Corollary

If ¢' is an alphabetic variant of ¢, ¢ and ¢' are logically equivalent. )
Proof.

By the definition of alphabetic variant. Ol
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Satisfiability and Consistency

o We say [ is satisfiable if there is some 4 and s such that i satisfies
every member of [ with s

Corollary

If T is satisfiable, I is consistent.

Proof.

Suppose I is inconsistent. Thus I' - ¢ and I + =¢ for some ¢. By
soundness theorem, [ = ¢ and I £ —¢. Since I is satisfiable, =g ¢[s] and

Esr —l(ﬁ[S]. []

v
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Completeness Theorem

Lemma
The following are equivalent:
o IfTEgp, -0

@ Any consistent set of formulae is satisfiable

Proof.

Suppose I is a consistent set of formulae but I is not satisfiable. Since I
is not satisfiable, we have I E ¢ for any ¢ vacuously. Thus, I + ¢ for any
¢. Particularly, ' - ¢ and I + =¢. A contradiction.

Conversely, suppose ' = ¢. Then I'u {=¢} is unsatisfiable and hence
inconsistent. Thus U {=¢} 1 and [ U {=¢} - =1y for some 1). We have
Fru{-¢} + 1 A—1p. By Deduction Theorem, ' - —=¢p — (1) A—1)). Note that
F (=g = (Y A=) = ¢ (why?). We have I + ¢ by modus ponens. O

v
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Completeness Theorem |

Theorem (Godel, 1930)

Any consistent set of formulae is satisfiable.

Sketch. (Step 1).

Let ' be a consistent set of wffs in a countable language.

Expand the language with a countably infinite set of new constant
symbols. Then I remains consistent in the new language.
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Completeness Theorem |

Theorem (Godel, 1930)

Any consistent set of formulae is satisfiable.

Sketch. (Step 1).

Let ' be a consistent set of wffs in a countable language.
Expand the language with a countably infinite set of new constant
symbols. Then I remains consistent in the new language.

Details. (Step 1).

Otherwise, there is a 8 such that ' = 3 A =3 in the new language. Since
the deduction uses only finitely many new constants, we replace these new
constants by variables (generalization on constants) and obtain 3’. Then
we have I+ 3’ A =" in the original language. A contradiction.
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Completeness Theorem I

Sketch. (Step 2).

For each wff ¢ in the new language and each variable x, consider wffs of
the form

—Vx¢p > =

where ¢ is a new constant. We can have consistent [ U © for some set ©
of wffs in such form.
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Completeness Theorem IlI

Details. (Step 2).

Let (¢1,x1),...,{Pn,Xn), ... be an enumeration. Define 0, to be

—|VX,,¢,, — —\(¢n )C<Z

where ¢, is the first new constant symbol not occurring in ¢, nor in 6 for
k<n. Let ©={61,...,6p,...}.

If ' U® is inconsistent, there is a least m > 0 such that
Fu{bi,...,0m,0ms1} is inconsistent (because deduction is finite). By
RAA, Tu{b1,...,0m} + —=Omi1. Let Oppi1 = =Vxh > =X, Then

FU{61,....0m}F-Yxth and TU{fy,....0m} >

Since ¢ does not occur in FTu{#;,...,0,}, we have
Fu{bi,...,0m} + Vxi by generalization on constants. A contradiction to
the minimality of m (or consistency of ).

v
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Completeness Theorem IV
Sketch (Step 3).

We extend I' u © to a maximal consistent set A such that for any wff ¢
either ¢ € A or ¢ € A. Observe that A + ¢ implies A it ~¢ (consistency).
Hence —¢ ¢ A. Thus ¢ € A (maximality).
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Completeness Theorem IV
Sketch (Step 3).

We extend I' u © to a maximal consistent set A such that for any wff ¢
either ¢ € A or —¢ € A. Observe that A - ¢ implies A i —~¢ (consistency).
Hence —¢ ¢ A. Thus ¢ € A (maximality).

Details (Step 3).

Let A be the set of logical axioms in the new language. Since Tu© is
consistent, there is no § such that ' u © u A tautologically implies both 3
and - (why?). There is a truth assignment v for prime formulae which
satisfies T U@© U A (why?). Define A ={¢:7(¢) = T}. Then for any ¢,
either ¢ € A or =¢ € A. Moreover

Ar¢ = AUN(=A) tautologically implies ¢
= 7(p)=T = ¢eA.

A cannot be inconsistent.

v
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Completeness Theorem V

Sketch (Step 4).
Define a structure 4 as follows
@ |U| = the set of all terms in the new language
o (ut)e ENiff umte A
@ For each n-place predicate symbol P, (t1,...,t,) € P*iff Pt;---t, € A
@ For each n-place function symbol f, define fu(tl, ceiytp) = ity

Let s: V — || be the identity function. Then 5(t) =t for all t. For any

wff ¢, let ¢* be the result of replacing all ~ in ¢ by E. We have ¢ ¢*[s]
iff ¢ € A.

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 89 / 97



Completeness Theorem VI

Details (Step 4).

We prove =g ¢*[s] iff ¢ € A by induction. Difficult cases are:
o kg Pt[s] iff 5(t) e PYiff t € P iff Pte A

o Ey (=) [s] iff gy d*[s] iff ¢ ¢ A (1LH.) iff =¢p € A (maximality)

Fyu (¢ —>) [s] iff
iff
iff

Y

Y

Fu@”[s] or Ey 7 [s]
dp¢AoripeA (LH)
—pelAoripel

A+ ¢—1(rule T)

o ¢Aor[pel and A+ 1] (case analysis)

pENorpe

v
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Completeness Theorem VII
Details (Step 4)(cont'd).
@ Recall 0 = -Vx¢p - -¢% € A.

Ey Vxo™[s] Ey ¢ [s(x|c)]

Eu (¢")5[s] (substitution lemma)
Fu(95)'[s] = dceD = g fA
-Vxp ¢ A (0eA) = VxpeA.

Vel

Ho Vxo*[s] #y 0" [s(x|t)] for some t

#y " [s(x|t)] for some alphabetic variant 1)
#o (UF)"[s] (substitution lemma)

Ui A = Vxyp A (Vx> i e A)

Vxo ¢ A.

L

y
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Completeness Theorem VIII
Sketch (Step 5).

If ' contains equality, consider the quotient structure {/E:

o Define [t] = {s: (s, t) e E¥}. Observe that E% is a congruence
relation:

EY is a equivalence relation on ||
(ti,...,t,y e PYand (t;, t/) e E¥ for 1<i<n, then (t],..., ¢t )ePu
(ti,t!y e E¥ for 1< i< n, then (FY(ty,..., t0), FA(t],... t})) €

o |U/E|={[t]:taterm }
o ([t1],...,[tn]) € PYEiff (t1,... t,) e P4
o FYE([t],...,[tn]) = [F4(t1,-..,tn)]. Particularly, c¥E = [c¥]

Let h(t) = [t] be the natural map from |4 to |Ll/E|. h is a homomorphism

of 4l onto H/E. For any ¢,

peA & Fy¢'[s] < Fyeo[hos] < Eyd[hos]

v
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Completeness Theorem IX

Details (Step 5).

Recall (t,t') e E¥iff t =t' € A iff A+t =1t". Hence E¥ is a congruence
relation on Y, and both PYE and FYE are well-defined.

Clearly, h is a homomorphism of ${ onto $/E. Moreover, ([t],[t']) € E*Y/E
iff (t,t') e EYiff [t] = [t']. Thus

pe < Eyq¢’[s] (Step 4)
< FyE ¢ [hos] (homomorphism theorem)
< kg ¢[hos] (above)

Bow-Yaw Wang (Academia Sinica) Elementary Logic July 1, 2009 93 /97



Completeness Theorem X

Details (Step 6).

Restrict U/E to the original language. The restricted /E satisfies every
member of I with hos. I is satisfiable. Ol

@ Remark. If the original language is uncountable, a modified proof still
works. We only add sufficiently many new constant symbols
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Compactness Theorem

Theorem (Compactness)
Q IfT = ¢, then g = ¢ for some finite Tg € T;
@ If every finite subset g of I is satisfiable, I is satisfiable.

Proof.
© Observe I E ¢ implies T + ¢. Since deductions are finite, 'y - ¢ for
some finite g €. Hence [y = ¢ by soundness theorem.
@ Suppose every finite subset of I is satisfiable, every finite subset of '
is consistent (soundness theorem). Since deductions are finite, I is
consistent. By completeness theorem, I is satisfiable.
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History

@ Kurt Godel's 1930 doctoral dissertation contains the completeness
theorem for countable languages. Compactness theorem was a
corollary.

@ Anatolii Mal'cev showed the compactness theorem for uncountable
languages in 1941.

@ Our proof of completeness theorem is based on Leon Henkin's 1949
dissertation.
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