

Linear Temporal Logic and Büchi Automata

Yih-Kuen Tsay

Department of Information Management National Taiwan University

FLOLAC 2009

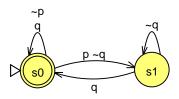
Outline

- Introduction
- 😚 Propositional Temporal Logic (PTL)
- Quantified Propositional Temporal Logic (QPTL)
- Basic Properties
- From Temporal Formulae to Automata
 - On-the-fly Translation
 - Tableau Construction
- Concluding Remarks
- References

Introduction

- We have seen how automata, in particular Büchi automata, may be used to describe the behaviors of a concurrent system.
- Büchi automata "localize" temporal dependency between occurrences of events (represented by propositions) to relations between states and tend to be of lower level.
- We will study an alternative formalism, namely linear temporal logic.
- Temporal logic formulae describe temporal dependency without explicit references to time points and are in general more abstract.

Introduction (cont.)



- The above Büchi automaton says that, whenever p holds at some point in time, q must hold at the same time or will hold at a later time.
- It may not be easy to see that this indeed is the case.
- In linear temporal logic, this can easily be expressed as $\Box(p \to \Diamond q)$, which reads "always p implies eventually q".

PTL: The Future Only

- We first look at the future fragment of Propositional Temporal Logic (PTL).
- Future operators include (next), ◊ (eventually), □ (always), \mathcal{U} (until), and \mathcal{W} (wait-for).
- igcep With \mathcal{W} replaced by \mathcal{R} (release), this fragment is often referred to as LTL (linear temporal logic) in the model checking community.
- Let V be a set of boolean variables.
- The future PTL formulae are defined inductively as follows:
 - Every variable $p \in V$ is a PTL formula.
 - $ilde{*}$ If f and g are PTL formulae, then so are $\neg f$, $f \lor g$, $f \land g$, $\bigcirc f$, $\Diamond f$, $\Box f$, $f \mathcal{U} g$, and $f \mathcal{W} g$.
 - $(\neg f \lor g \text{ is also written as } f \to g \text{ and } (f \to g) \land (g \to f) \text{ as } f \leftrightarrow g.)$
- \bigcirc Examples: $\Box(\neg C_0 \lor \neg C_1), \Box(T_1 \to \Diamond C_1).$

5 / 42

- A PTL formula is interpreted over an infinite sequence of states $\sigma = s_0 s_1 s_2 \cdots$, relative to a position in that sequence.
- \odot A state is a subset of V, containing exactly those variables that evaluate to true in that state.
- If each possible subset of V is treated as a symbol, then a sequence of states can also be viewed as an infinite word over 2^V.
- The semantics of PTL in terms of $(\sigma, i) \models f$ (f holds at the i-th position of σ) is given below.
- We say that a sequence σ satisfies a PTL formula f or σ is a model of f, denoted $\sigma \models f$, if $(\sigma, 0) \models f$.

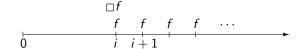
- \bigcirc For a boolean variable p,
 - $(\sigma,i) \models p \iff p \in s_i$
- For boolean operators,
 - $\red{\hspace{-0.1cm} =}\hspace{0.1cm} (\sigma,i) \models \neg f \iff (\sigma,i) \models f \text{ does not hold}$
 - $\stackrel{ ext{!}}{=} (\sigma, i) \models f \lor g \iff (\sigma, i) \models f \text{ or } (\sigma, i) \models g$

- For future temporal operators,
 - $\stackrel{\text{\tiny{$}}}{=} (\sigma, i) \models \bigcirc f \iff (\sigma, i+1) \models f$

$$\begin{array}{cccc}
 & \bigcirc f & f \\
\hline
0 & i & i+1
\end{array}$$

 $(\sigma, i) \models \Diamond f \iff \text{for some } j \geq i, (\sigma, j) \models f$

 $(\sigma,i) \models \Box f \iff \text{for all } j \geq i, (\sigma,j) \models f$



- For future temporal operators (cont.),
 - $(\sigma, i) \models f \ \mathcal{U} g \iff \text{for some } k \ge i, \ (\sigma, k) \models g \text{ and for all } j, \\ i \le j < k, \ (\sigma, j) \models f$

- * $(\sigma, i) \models f \ \mathcal{W} g \iff (\text{for some } k \geq i, (\sigma, k) \models g \text{ and for all } j, i \leq j < k, (\sigma, j) \models f) \text{ or (for all } j \geq i, (\sigma, j) \models f)$ $f \ \mathcal{W} g \text{ holds at position } i \text{ if and only if } f \ \mathcal{U} g \text{ or } \Box f \text{ holds at position } i$
- When \mathcal{R} is preferred over \mathcal{W} , $(\sigma, i) \models p \mathcal{R} q \iff$ for all $j \ge 0$, $(\sigma, i) \not\models p$ for every i < j implies $(\sigma, j) \models q$.

PTL: Adding the Past

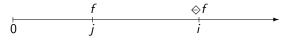
- We now add the past fragment.
- **③** Past operators include \bigcirc (before), \bigcirc (previous), \diamondsuit (once), \boxdot (so-far), \mathcal{S} (since), and \mathcal{B} (back-to).
- The full PTL formulae are defined inductively as follows:
 - $\stackrel{*}{=}$ Every variable $p \in V$ is a PTL formula.
 - If f and g are PTL formulae, then so are $\neg f$, $f \lor g$, $f \land g$, $\bigcirc f$, $\Diamond f$, $\Box f$, $f \lor g$, $f \lor g$, $\odot f$, $\odot f$, $\ominus f$, $G \lor g$, and $G \lor g$. $G \lor g$ is also written as $G \lor g$ and $G \lor g$ and $G \lor g$.
- Examples:
 - $p = \Box(p \to \Diamond q)$ says "every p is preceded by a q."
 - $ilde{*} \ \square(\, \diamondsuit
 eg p o \, \diamondsuit q)$ is another way of saying $p \ \mathcal{W} \ q!$

PTL: Adding the Past (cont.)

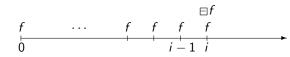
- For past temporal operators,
 - $(\sigma, i) \models \odot f \iff i = 0 \text{ or } (\sigma, i 1) \models f$
 - $(\sigma, i) \models \bigcirc f \iff i > 0 \text{ and } (\sigma, i 1) \models f$

The difference between $\odot f$ and $\odot f$ occurs at position 0.

$$\stackrel{ to}{=} (\sigma,i) \models \Leftrightarrow f \iff \text{for some } j,\ 0 \leq j \leq i,\ (\sigma,j) \models f$$

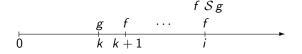


$$ilde{*} \ (\sigma,i) \models \ \boxminus f \iff ext{for all } j, \ 0 \leq j \leq i, \ (\sigma,j) \models f$$



PTL: Adding the Past (cont.)

- For past temporal operators (cont.),
 - $(\sigma,i) \models f \ \mathcal{S} g \iff$ for some k, $0 \le k \le i$, $(\sigma,k) \models g$ and for all j, $k < j \le i$, $(\sigma,j) \models f$



 $(\sigma,i) \models f \ \mathcal{B} g \iff$ (for some k, $0 \le k \le i$, $(\sigma,k) \models g$ and for all j, $k < j \le i$, $(\sigma,j) \models f$) or (for all j, $0 \le j \le i$, $(\sigma,j) \models f$) $(\sigma,i) \models g \mapsto g$ holds at position i if and only if $f \ \mathcal{S} g$ or $f \mapsto g$ holds at position $f \mapsto g \mapsto g$

QPTL

- Quantified Propositional Temporal Logic (QPTL) is PTL extended with quantification over boolean variables (so, every PTL formula is also a QPTL formula):
 - **If** *f* is a QPTL formula and $x \in V$, then $\forall x$: *f* and $\exists x$: *f* are QPTL formulae.
- Let $\sigma = s_0 s_1 \cdots$ and $\sigma' = s_0' s_1' \cdots$ be two sequences of states.
- We say that σ' is a x-variant of σ if, for every $i \geq 0$, s'_i differs from s_i at most in the valuation of x, i.e., the symmetric set difference of s'_i and s_i is either $\{x\}$ or empty.
- The semantics of QPTL is defined by extending that of PTL with additional semantic definitions for the quantifiers:
 - $(\sigma,i) \models \exists x : f \iff (\sigma',i) \models f$ for some x-variant σ' of σ
 - $ilde{*}(\sigma,i)\models \forall x\colon f\iff (\sigma',i)\models f$ for all x-variant σ' of σ

Equivalence and Congruence

- \bigcirc A formula p is valid, denoted $\models p$, if $\sigma \models p$ for every σ .
- Two formulae p and q are equivalent if $\models p \leftrightarrow q$, i.e., $\sigma \models p$ if and only if $\sigma \models q$ for every σ .
- Two formulae p and q are congruent, denoted $p \cong q$, if $\models \Box(p \leftrightarrow q)$.
- Congruence is a stronger relation than equivalence:
 - ***** $p \lor \neg p$ and $\neg \ominus (p \lor \neg p)$ are equivalent, as they are both true at position 0 of every model.
 - Nowever, they are not congruent; $p \lor \neg p$ holds at all positions of every model, while $\neg \ominus (p \lor \neg p)$ holds only at position 0.

Congruences

A minimal set of operators:

$$\neg, \lor, \bigcirc, \ \mathcal{W}, \odot, \ \mathcal{B}$$

Other operators could be encoded:

Weak vs. strong operators:

Congruences (cont.)

Duality:

$$\neg \bigcirc p \cong \bigcirc \neg p \qquad \qquad \neg \bigcirc p \cong \bigcirc \neg p \\ \neg \bigcirc p \cong \bigcirc \neg p \qquad \qquad \neg \bigcirc p \cong \bigcirc \neg p \\ \neg \bigcirc p \cong \bigcirc \neg p \qquad \qquad \neg \bigcirc p \cong \bigcirc \neg p \\ \neg \Box p \cong \Diamond \neg p \qquad \qquad \neg \Box p \cong \Diamond \neg p \\ \neg (p \ \mathcal{U} \ q) \cong (\neg q) \ \mathcal{W} (\neg p \land \neg q) \qquad \neg (p \ \mathcal{S} \ q) \cong (\neg q) \ \mathcal{B} (\neg p \land \neg q) \\ \neg (p \ \mathcal{U} \ q) \cong (\neg p) \ \mathcal{R} (\neg q) \qquad \neg (p \ \mathcal{B} \ q) \cong (\neg q) \ \mathcal{S} (\neg p \land \neg q) \\ \neg (p \ \mathcal{R} \ q) \cong (\neg p) \ \mathcal{U} (\neg q) \qquad \neg \forall x \colon p \cong \exists x \colon \neg p$$

- A formula is in the negation normal form if negation only occurs in front of an atomic proposition.
- Every PTL/QPTL formula can be converted into an equivalent formula in the negation normal form.

Congruences (cont.)

Expansion formulae:

$$\Box p \cong p \land \bigcirc \Box p
\Diamond p \cong p \lor \bigcirc \Diamond p
p U q \cong q \lor (p \land \bigcirc (p U q))
p W q \cong q \lor (p \land \bigcirc (p W q))
p R q \cong (q \land p) \lor (q \land \bigcirc (p R q))$$

$$\Box p \cong p \land \bigcirc \Box p
\Diamond p \cong p \lor \bigcirc \Diamond p
p S q \cong q \lor (p \land \bigcirc (p S q))
p B q \cong q \lor (p \land \bigcirc (p B q))$$

These expansion formulae are essential in translation of a temporal formula into an equivalent Büchi automaton.

Congruences (cont.)

Idempotence:

Expressiveness

Theorem

PTL is strictly less expressive than Büchi automata.

Proof.

- Every PTL formula can be translated into an equivalent Büchi automaton.
- **2** "p holds at every even position" is recognizable by a Büchi automaton, but cannot be expressed in PTL.

Theorem

QPTL is expressively equivalent to Büchi automata (and hence ω -regular expressions and S1S).

Simple On-the-fly Translation

- This is a tableau-based algorithm for obtaining a Büchi automaton from an LTL (future PTL) formula.
- The algorithm is geared towards being used in model checking in an on-the-fly fashion: It is possible to detect that a property does not hold by only constructing part of the model and of the automaton.
- The algorithm can also be used to check the validity of a temporal logic assertion.
- $\label{eq:power_problem}$ To apply the translation algorithm, we first convert the formula φ into the *negation normal form*.

Data Structure of an Automaton Node

- ID: A string that identifies the node.
- Incoming: The incoming edges represented by the IDs of the nodes with an outgoing edge leading to the current node.
- New: A set of subformulae that must hold at the current state and have not yet been processed.
- Old: The subformulae that must hold in the node and have already been processed.
- Next: The subformulae that must hold in all states that are immediate successors of states satisfying the properties in Old.

The Algorithm

- The algorithm starts with a single node, which has a single incoming edge labeled *init* (i.e., from an initial node) and expands the nodes in an DFS manner.
- This starting node has initially one new obligation in New, namely φ , and Old and Next are initially empty.
- With the current node N, the algorithm checks if there are unprocessed obligations left in New.
- If not, the current node is fully processed and ready to be added to *Nodes*.
- If there already is a node in Nodes with the same obligations in both its Old and Next fields, the incoming edges of N are incorporated into those of the existing node.

The Algorithm (cont.)

- If no such node exists in *Nodes*, then the current node *N* is added to this list, and a new current node is formed for its successor as follows:
 - **1** There is initially one edge from N to the new node.
 - 2 New is set initially to the Next field of N.
 - Old and Next of the new node are initially empty.
- lacktriangle When processing the current node, a formula η in New is removed from this list.
- lacktriangle In the case that η is a literal (a proposition or the negation of a proposition), then
 - \red if $\neg \eta$ is in *Old*, the current node is discarded;
 - $t ilde{*}$ otherwise, η is added to $extit{Old}$.

The Algorithm (cont.)

- When η is not a literal, the current node can be split into two or not split, and new formulae can be added to the fields *New* and *Next*.
- \odot The exact actions depend on the form of η :
 - $\red \eta = p \wedge q$, then both p and q are added to $\red New$.
 - * $\eta = p \lor q$, then the node is split, adding p to New of one copy, and q to the other.
 - * $\eta = p \ \mathcal{U} \ q \ (\cong q \lor (p \land \bigcirc (p \ \mathcal{R} \ q)))$, then the node is split. For the first copy, p is added to New and $p \ \mathcal{U} \ q$ to Next. For the other copy, q is added to New.
 - $ilde * \eta = p \mathrel{\mathcal{R}} q \; (\cong (q \land p) \lor (q \land \bigcirc (p \mathrel{\mathcal{R}} q)))$, similar to $\mathcal U$.
 - $\not = \eta = \bigcirc p$, then p is added to Next.

Nodes to GBA

The list of nodes in *Nodes* can now be converted into a generalized Büchi automaton $B = (\Sigma, Q, q_0, \Delta, F)$:

- **1** Σ consists of sets of propositions from AP.
- ② The set of states Q includes the nodes in *Nodes* and the additional initial state q_0 .
- $(r, \alpha, r') \in \Delta$ iff $r \in Incoming(r')$ and α satisfies the conjunction of the negated and nonnegated propositions in Old(r')
- q_0 is the initial state, playing the role of *init*.
- F contains a separate set F_i of states for each subformula of the form $p \ \mathcal{U} \ q$; F_i contains all the states r such that either $q \in Old(r)$ or $p \ \mathcal{U} \ q \notin Old(r)$.

Tableau Construction

- We next study the Tableau Construction as described in [Manna and Pnueli 1995], which handles both future and past temporal operators.
- More efficient constructions exist, but this construction is relatively easy to understand.
- A tableau is a graphical representation of all models/sequences that satisfy the given temporal logic formula.
- The construction results in essentially a GBA, but leaving propositions on the states (rather than moving them to the incoming edges of a state).
- Our presentation will be slightly different, to make the resulting GBA more apparent.

Expansion Formulae

- The requirement that a temporal formula holds at a position *j* of a model can often be decomposed into requirements that
 - 🌞 a simpler formula holds at the same position and
 - $\stackrel{\text{\tiny{$\emptyset$}}}{=}$ some other formula holds either at j+1 or j-1.
- For this decomposition, we have the following expansion formulae:

$$\Box p \cong p \land \bigcirc \Box p \qquad \qquad \Box p \cong p \land \otimes \Box p
\Diamond p \cong p \lor \bigcirc \Diamond p \qquad \qquad \Diamond p \cong p \lor \ominus \Diamond p
p U q \cong q \lor (p \land \bigcirc (p U q)) \qquad p S q \cong q \lor (p \land \ominus (p S q))
p W q \cong q \lor (p \land \bigcirc (p W q)) \qquad p B q \cong q \lor (p \land \ominus (p B q))$$

Note: this construction does not deal with $\,\mathcal{R}\,$.

Closure

- We define the closure of a formula φ , denoted by Φ_{φ} , as the smallest set of formulae satisfying the following requirements:

 - $t ilde{*}$ For every $p \in \Phi_{arphi}$, if q a subformula of p then $q \in \Phi_{arphi}$.
 - $\red{\hspace{-0.1cm} =}\hspace{-0.1cm} \mathsf{For} \; \mathsf{every} \; p \in \Phi_{\varphi}, \; \neg p \in \Phi_{\varphi}.$
 - $ilde{*}$ For every $\psi \in \{\Box p, \Diamond p, p \ \mathcal{U} \ q, p \ \mathcal{W} \ q\}$, if $\psi \in \Phi_{\varphi}$ then $\bigcirc \psi \in \Phi_{\varphi}$.
 - $ilde{ hinspace}$ For every $\psi \in \{ \, \Leftrightarrow \! \mathsf{p}, \mathsf{p} \, \, \mathcal{S} \, \mathsf{q} \}$, if $\psi \in \Phi_{\varphi}$ then $\, \ominus \! \psi \in \Phi_{\varphi}.$
 - $ilde{ top}$ For every $\psi \in \{\, oxdot p, p \; \mathcal{B} \, q\}$, if $\psi \in \Phi_{arphi}$ then $\, igotimes_{\psi} \in \Phi_{arphi} .$
- \bullet So, the closure Φ_{φ} of a formula φ includes all formulae that are relevant to the truth of φ .

Classification of Formulae

α	$K(\alpha)$
$p \wedge q$	p, q
$\Box p$	$p, \bigcirc \Box p$
$ \Box p$	$p, \otimes \Box p$

β	$K_1(\beta)$	$K_2(\beta)$
$p \lor q$	р	q
$\Diamond p$	р	$\bigcirc \Diamond p$
<i>⇔</i> p	р	⊝⇔p
$p \mathcal{U} q$	q	$p, \bigcirc (p \ \mathcal{U} \ q)$
$p \mathcal{W} q$	q	$p, \bigcirc (p \mathcal{W} q)$
p S q	q	$p, \ominus(p \mathcal{S} q)$
$p \mathcal{B} q$	q	$p, \odot (p \mathcal{B} q)$

- An α -formula φ holds at position j iff all the $K(\varphi)$ -formulae hold at j.
- A β -formula ψ holds at position j iff either $K_1(\psi)$ or all the $K_2(\psi)$ -formulae (or both) hold at j.

Atoms

- We define an atom over φ to be a subset $A \subseteq \Phi_{\varphi}$ satisfying the following requirements:
 - $\stackrel{\text{$\rlap$$}}{=} R_{sat}$: the conjunction of all state formulae in A is satisfiable.
 - \not R_{\neg} : for every $p \in \Phi_{\varphi}$, $p \in A$ iff $\neg p \notin A$.
 - $ilde{ ilde{ heta}}$ R_lpha : for every lpha-formula $m{p}\in\Phi_arphi$, $m{p}\in A$ iff $K(m{p})\subseteq A$.
 - * R_{β} : for every β -formula $p \in \Phi_{\varphi}$, $p \in A$ iff either $K_1(p) \in A$ or $K_2(p) \subseteq A$ (or both).
- **⊙** For example, if atom A contains the formula $\neg \diamondsuit p$, it must also contain the formulae $\neg p$ and $\neg \bigcirc \diamondsuit p$.

Mutually Satisfiable Formulae

- A set of formulae $S \subseteq \Phi_{\varphi}$ is called mutually satisfiable if there exists a model σ and a position $j \geq 0$, such that every formula $p \in S$ holds at position j of σ .
- The intended meaning of an atom is that it represents a maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions)

Let $S \subseteq \Phi_{\varphi}$ be a mutually satisfiable set of formulae. Then there exists a φ -atom A such that $S \subseteq A$.

It is important to realize that inclusion in an atom is only a necessary condition for mutual satisfiability (e.g., $\{\bigcirc p \lor \bigcirc \neg p, \bigcirc p, \bigcirc \neg p, p\}$ is an atom for the formula $\bigcirc p \lor \bigcirc \neg p$).

Basic Formulae

- **③** A formula is called basic if it is either a proposition or has the form $\bigcirc p$, $\bigcirc p$, or $\bigcirc p$.
- Basic formulae are important because their presence or absence in an atom uniquely determines all other closure formulae in the same atom.
- Let Φ_{φ}^+ denote the set of formulae in Φ_{φ} that are not of the form $\neg \psi$.

Algorithm (atom construction)

- Find all basic formulae $p_1, \dots, p_b \in \Phi_{\varphi}^+$.
- 2 Construct all 2^b combinations.
- Complete each combination into a full atom.

Example

§ Consider the formula $\varphi_1 : \Box p \land \Diamond \neg p$ whose basic formulae are

$$p, \bigcirc \Box p, \bigcirc \Diamond \neg p.$$

lacktriangle Following is the list of all atoms of $arphi_1$:

The Tableau

• Given a formula φ , we construct a directed graph T_{φ} , called the tableau of φ , by the following algorithm.

Algorithm (tableau construction)

- **1** The nodes of T_{arphi} are the atoms of arphi .
- Atom A is connected to atom B by a directed edge if all of the following are satisfied:

 - \bullet R_{\bigcirc} : For every $\bigcirc p \in \Phi_{\varphi}$, $p \in A$ iff $\bigcirc p \in B$.
 - $m{\omega} \ R_{\bigodot}$: For every $\bigodot p \in \Phi_{\varphi}$, $p \in A$ iff $\bigodot p \in B$.
- An atom is called initial if it does not contain a formula of the form $\ominus p$ or $\neg \ominus p$ ($\cong \ominus \neg p$).

Example

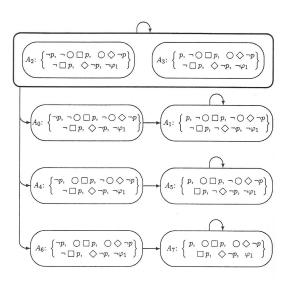


Figure: Tableau T_{φ_1} for $\varphi_1 = \Box p \land \Diamond \neg p$. Source: [Manna and Pnueli 1995].

From the Tableau to a GBA

- \odot Create an initial node and link it to every initial atom that contains φ .
- Label each directed edge with the atomic propositions that are contained in the ending atom.
- Add a set of atoms to the accepting set for each subformula of the following form:

 - $otin p \mathcal{U} q$: atoms with q or $\neg (p \mathcal{U} q)$.
 - $\stackrel{ ext{!}}{=} \neg \Box \neg q \ (\cong \Diamond q)$: atoms with q or $\Box \neg q$.
 - $ilde{*}$ $\neg(\neg q \ \mathcal{W} \ p) \ (\cong \neg p \ \mathcal{U} \ (q \land \neg p))$: atoms with q or $\neg q \ \mathcal{W} \ p$.
 - $\not = \neg \Box q \ (\cong \Diamond \neg q)$: atoms with $\neg q$ or $\Box q$.
 - $ilde{*} \neg (q \ \mathcal{W} \ p) \ (\cong \neg p \ \mathcal{U} \ (\neg q \land \neg p))$: atoms with $\neg q$ or $q \ \mathcal{W} \ p$.

Correctness: Models vs. Paths

For a model σ , the infinite atom path $\pi_{\sigma}: A_0, A_1, \cdots$ in T_{φ} is said to be induced by σ if, for every position $j \geq 0$ and every closure formula $p \in \Phi_{\varphi}$,

$$(\sigma,j) \models p \text{ iff } p \in A_j.$$

Claim (models induce paths)

Consider a formula φ and its tableau T_{φ} . For every model $\sigma: s_0, s_1, \cdots$, there exists an infinite atom path $\pi_{\sigma}: A_0, A_1, \cdots$ in T_{φ} induced by σ .

Furthermore, A_0 is an initial atom, and if $\sigma \models \varphi$ then $\varphi \in A_0$.

Correctness: Promising Formulae

lacktriangle A formula $\psi \in \Phi_{\varphi}$ is said to promise the formula r if ψ has one of the following forms:

$$\Diamond r, \ p \ \mathcal{U} \ r, \ \neg \Box \neg r, \ \neg (\neg r \ \mathcal{W} \ p).$$

or if r is the negation $\neg q$ and ψ has one of the forms:

$$\neg \Box q$$
, $\neg (q \mathcal{W} p)$.

Claim (promise fulfillment by models)

Let σ be a model and ψ , a formula promising r. Then, σ contains infinitely many positions i > 0 such that

$$(\sigma,j) \models \neg \psi \text{ or } (\sigma,j) \models r.$$

Correctness: Fulfilling Paths

- ♦ Atom A fulfills a formula ψ that promises r if $\neg \psi \in A$ or $r \in A$.
- lacktriangledown eta : A_0,A_1,\cdots in the tableau \mathcal{T}_{arphi} is called fulfilling:
 - $\overset{\text{@}}{=}$ A_0 is an initial atom.
 - * For every promising formula $\psi \in \Phi_{\varphi}$, π contains infinitely many atoms A_j that fulfill ψ .

Claim (models induce fulfilling paths)

If $\pi_{\sigma}: A_0, A_1, \cdots$ is a path induced by a model σ , then π_{σ} is fulfilling.

Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)

If $\pi: A_0, A_1, \cdots$ is a fulfilling path in T_{φ} , there exists a model σ inducing π , i.e., $\pi = \pi_{\sigma}$ and, for every $\psi \in \Phi_{\varphi}$ and every $j \geq 0$,

$$(\sigma,j) \models \psi \text{ iff } \psi \in A_j.$$

Proposition (satisfiability and fulfilling paths)

Formula φ is satisfiable iff the tableau T_{φ} contains a fulfilling path $\pi = A_0, A_1, \cdots$ such that A_0 is an initial φ -atom.

Concluding Remarks

- \odot PTL can be extended in other ways to be as expressive as Büchi automata, i.e., to express all ω -regular properties.
- For example, the industry standard IEEE 1850 Property Specification Language (PSL) is based on an extension that adds classic regular expressions.
- Regarding translation of a temporal formula into an equivalent Büchi automaton, there have been quite a few algorithms proposed in the past.
- How to obtain an automaton as small as possible remains interesting, for both theoretical and practical reasons.

References

- E.M. Clarke, O. Grumberg, and D.A. Peled. *Model Checking*, The MIT Press, 1999.
- E.A. Emerson. Temporal and modal logic, Handbook of Theoretical Computer Science (Vol. B), MIT Press, 1990.
- G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer, 1992.
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer, 1995.