FLOLAC 2009

Hardware Equivalence and Property Verification

Problem Set

Due on 2009/7/7 9:10am

- EC 1 (Commutativity between Cofactor and Boolean Operations) (10pt) Given two Boolean functions f and g and a Boolean variable v, prove or disprove the following equalities:
 - (a) $(\neg f)_v = \neg (f_v)$
 - (b) $(f \lor g)_v = (f_v) \lor (g_v)$

EC 2 (Quantified Boolean Formula) (20pt)

- For Boolean functions f and g, show that
- (a) $\forall x(f(x,y) \land g(x,z)) = \forall xf(x,y) \land \forall xg(x,z)$
- (b) $\exists x (f(x,y) \land g(x,z)) \neq \exists x f(x,y) \land \exists x g(x,z)$
- (c) $\neg \forall x f(x, y) = \exists x \neg f(x, y)$
- (d) $\forall x \exists y f(x, y) \neq \exists y \forall x f(x, y)$

EC 3 (Reachability Analysis) (30pt)

- Given the two FSMs M_1 and M_2 with state transition graphs of Slide 46, let • x be the input variable,
 - y_1 and y_2 be the output variables of M_1 and M_2 , respectively, and
 - p(p') be the current-state (next-state) variable of M_1 , and q_1 and $q_2(q'_1)$ and q'_2) be the current-state (next-state) variables of M_2 .

Suppose we encode state s_0 as 0 (i.e., with characteristic function $\neg p$), s_1 as 1 (i.e., p), state t_0 as 00 (i.e., $\neg q_1 \neg q_2$), state t_1 as 01 (i.e., $\neg q_1q_2$), state t_2 as 10 (i.e., $q_1 \neg q_2$), state t_3 as 11 (i.e., q_1q_2).

- (a) What is the state-transition function δ of M_1 ? What are the state-transition functions δ_1 and δ_2 of M_2 ?
- (b) What is the transition relation T_{\exists} of the product machine?
- (c) What is the output function of the product machine?
- (d) What is the characteristic function of the initial state of the product machine? (Assume s_0 (t_0) is the initial state of M_1 (M_2).)
- (e) Compute the characteristic function of the "bad" states of the product machine. (Write down the quantified Boolean formula as well as its quantifier-free formula after quantification.)
- (f) Compute the characteristic function of the one-step reachable states from the initial state using image computation.

EC 4 (Existential Quantification) (due on 7/8)

Given an arbitrary quantified Boolean formula $\exists z f(x, y, z)$, suppose we would like to find some function g(x, y) such that f(x, y, g(x, y)) equals $\exists z f(x, y, z)$. What is the condition for g in terms of f? (What are the smallest onset, smallest offset, and largest don't-care set of g?)