

Büchi Complementation

Yih-Kuen Tsay (with help from Chi-Jian Luo) Department of Information Management National Taiwan University

FLOLAC 2009

2009/7/9 Yih-Kuen Tsay 1/53

SVVRL 🛞 IM.NTU

Outline

- Introduction
- Why Is Büchi Complementation Hard?
- Complementation via Determinization
 - Muller-Schupp Construction
 - Safra's Construction
 - Safra-Piterman Construction
- Other Approaches
- Concluding Remarks
- References

Introduction

- Languages recognizable by (nondeterministic)
 Büchi automata are called ω-regular languages.
- The class of ω-regular languages is closed under intersection and complementation (and hence all boolean operations).
- Deterministic Büchi automata are strictly less expressive.
- The complement of a deterministic Büchi automaton may not be deterministic.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

3/53

SVVRL 🚳 IM.NTU

SVVRL MIM.NTU

Introduction (cont.)

- While intersection is rather straightforward, complementation is much harder and still a current research topic.
- A complementation construction is also useful for checking language containment (and hence equivalence) between two automata:

$$L(A) \subseteq L(B) \equiv L(A) \cap L(\overline{B}) = \phi.$$

■ The language containment test is essential in the automata-theoretic approach to model checking (more about this later ...).

Complementation of an NFA

- Translate the given nondeterministic finite automaton (NFA) *N* into an equivalent deterministic finite automaton (DFA) *D* via the subset construction.
- Take the dual of *D* to get a DFA *D'* for the complement language.
- This works because languages recognizable by DFA's are closed under complementation.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

5/53

SVVRL 6 IM.NTU

Example of NFA Complementation

L(N) = (a+b)*aa*, which equals (a+b)*a.

NFA N

 An equivalent DFA D by the subset construction.

DFA D

There are two unreachable states in D.

6/53

Subset Construction for Finite Words

■ Formally, from NFA $N=(S_N, \Sigma, \delta_N, q_0, F_N)$, we construct an equivalent DFA $D=(S_D, \Sigma, \delta_D, \{q_0\}, F_D)$ as follows:

$$\square S_D = 2^{S_N}$$

$$\Box$$
 $\delta_D(S,a) = \bigcup_{s \in S} \delta_N(s,a)$

$$\Box F_D = \{ S \in S_D \mid S \cap F_N \neq \phi \}$$

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

7/53

SVVRL 🛞 IM.NTU

ω-Automata

- \blacksquare ω -automata are finite automata on infinite words.
- Büchi automata are one type of ω-automata.
- Formally, a (nondeterministic) ω-automaton B is represented as a five-tuple B=(Σ , S, S, δ , Acc):
 - \Box Σ : a finite alphabet (set of symbols)
 - □ S: a finite set of states (or locations)
 - □ s_0 ∈S: the initial state
 - $\Box \delta: S \times \Sigma \rightarrow 2^S$
 - □ *Acc*: the acceptance condition
- When δ is actually a function from $S \times \Sigma$ to S, the automaton is said to be *deterministic*.

8/53

Runs and Languages of ω-Automata

- A run of an ω-automaton B on a word $w = w_1w_2...$ is an infinite sequence of states $s_0s_1...$ ∈ S^ω such that for all $j \ge 0$ we have $s_{i+1} \in \delta(s_i, w_{i+1})$.
- For a run *r*, let Inf(*r*) denote the set of states that occur infinitely many times in *r*.
- A word w is accepted by B if there exists an accepting run of B on w that satisfies the acceptance condition.
- The language of B, denoted L(B), is the set of all words accepted by B.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

9/53

SVVRL 66 IM.NTU

Büchi and Other ω-Automata

Büchi automata:

$$Acc = F \subseteq S$$
.

A run *r* is accepting iff $Inf(r) \cap F \neq \phi$.

Parity automata:

$$Acc = \{F_0, F_1, ..., F_k\}, F_i \subseteq S.$$

A run r is accepting iff the smallest i such that $Inf(r) \cap F_i \neq \phi$ is even.

SVVRL 🛞 IM.NTU

Büchi and Other ω-Automata (cont.)

Rabin automata:

$$Acc = \{(E_1, F_1), (E_2, F_2), ..., (E_k, F_k)\}, E_i, F_i \subseteq S.$$

A run r is accepting iff for some i, $Inf(r) \cap E_i = \phi$ and $Inf(r) \cap F_i \neq \phi$.

Streett automata:

$$Acc = \{(E_1, F_1), (E_2, F_2), ..., (E_k, F_k)\}, E_i, F_i \subseteq S.$$

A run r is accepting iff for all i, $Inf(r) \cap E_i \neq \phi$ or $Inf(r) \cap F_i = \phi$.

 Rabin automata and Streett automata are the dual of each other.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

11 / 53

- SVVRL 🎆 IM.NTU

Convenient Acronyms

- DBW (or DBA): deterministic Büchi automata
- NBW: nondeterministic Büchi automata
- DPW: deterministic parity automata
- DRW: deterministic Rabin automata
- DSW: deterministic Streett automata
- etc.

2009/7/9 Yih-Kuen Tsay

Note: replace W with T, for tree automata.

SVVRL @ IM.NTU

An Example of Büchi Automaton

- B = ({a, b}, {q0, q1}, {q0}, T, {q1})
 - \Box T(q0,a) = {q0, q1}
 - \Box T(q0,b) = {q0}
 - \neg T(q1,a) = {q1}
 - \Box T(q1,b) = { }

- Apparently, B is nondeterministic.
- $L(B) = (a+b)*a^{\omega}$ (or "FG a" or "<>[]a").

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

13 / 53

SVVRL 🛞 IM.NTU

Subset Construction for Infinite Words

- If we use the subset construction to construct a DBW D from an NBW N, the two automata may not be language equivalent.
- By construction, the accepting states of the DBW D are those that contain an accepting state of the original NBW N.
- D may accept some words that are rejected by N, as shown by the following example.
- Thus, this method is not sound.

Naive Subset Construction

 NBW N defines the language: (a+b)*a^ω ("eventually always a").

- N accepts words like ababa^ω and bbba^ω.
- N rejects words like $(ab)^{\omega}$ and $bb(ba)^{\omega}$.

A DBW D by the naive subset construction.

(unreachable states removed)

- D accepts every word that is accepted by N.
- However, D also accepts some words that are rejected by N, e.g., (ab)ω.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

15 / 53

SVVRL 📆 IM.NTU

Another Subset Construction

- This subset construction keeps more detailed information of accepting states visited in a run.
- A state of D is called a breakpoint if the state does not contain any unmark state of N.
- The construction will mark an accepting state of N and every state that has a marked predecessor.
- A word w is accepted if D identifies infinitely many breakpoints while reading w.
- This does not work, either; see the example next.

Another Subset Construction (cont.)

• The constructed automaton also has a run on a^{ω} , which is accepting.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

17 / 53

18/53

SVVRL 🛞 IM.NTU

Another Subset Construction (cont.)

- This automaton also accepts the input word b^{ω} .
- However, the single run of the constructed automaton on b^{ω} is rejecting:

■ Therefore, this construction is incomplete, missing words that should be accepted.

Duality Does Not Apply

■ If we take the dual of a given DBW D to get DBW D', then it is possible that $L(D) \cap L(D') \neq \phi$, e.g., (ab) $^{\omega}$.

Note: DBW is not closed under complementation, e.g., $((a+b)*a)^{\omega}$ (or GF a).

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

19/53

– SVVRL 🎆 IM.NTU

Muller-Schupp Construction

- We shall now study three constructions for Büchi complementation.
- Stages in Muller-Schupp construction:
 - □ NBW \rightarrow DRW \rightarrow (complete) DSW \rightarrow NBW
 - ☐ The DSW is the complement of the DRW, by taking the dual view.
- The determinization part uses Muller-Schupp trees to construct the DRW.
- A Muller-Schupp tree (MS tree) is a finite strictly binary tree, which has precisely two children for each node except the leave nodes.

Run Trees vs. Run DAG's

• In Figure (a) is an example run tree r_w and in (b) is the corresponding run DAG r_d .

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

21/53

SVVRL 6 IM.NTU

MS Trees

- In a run tree r_w , we partition the children of a node v into two classes, the left child which carries an accepting state and the right one which carries a nonaccepting state.
- Let us refer to the new tree as t_1 .
- Claim: r_w has an accepting path iff t_1 has a path branching left infinitely often.

MS Trees (cont.)

For every state s on each level in t_1 , if we only keep the leftmost s, we obtain another new tree t_2

■ Claim: t₁ has a path branching left infinitely often iff t_2 has a path branching left infinitely often.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

23 / 53

SVVRL MIM.NTU

SVVRL MIM.NTU

MS Trees (cont.)

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

Three Colors for the Nodes

- Three colors are used to identify whether a node is accepting or not.
 - □ A node is *red* if the run path that the node represents has no accepting state.
 - A node is *yellow* if it has visited an accepting state before but it does not visit an accepting state in this step.
 - □ A node is *green* if it visits an accepting state in this step or it merges a green or yellow son.

2009/7/9 Yih-Kuen Tsay

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

25 / 53

26 / 53

SVVRL 🛞 IM.NTU

An Example of MS Construction

FLOLAC 2009: Büchi Complementation

An Example of MS Construction (cont.)

An Example of Rejecting a Word

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

28 / 53

SVVRL MIM.NTU

SVVRL MIM.NTU

The Detail of Determinization

- Let $A = (\Sigma, S, s_0, \delta, F')$ be an NBW with n states.
- An equivalent DRW $D = (\Sigma, S', s_0', \delta', Acc)$:
 - □ S': a set of MS trees.
 - \circ s_n': an initial MS tree with only one node numbered 1, which is labeled {s_o} and colored red,
 - transforms an MS tree using the steps described next.
 - \triangle Acc = {(E₁,F₁), (E₂,F₂), ..., (E_{4n},F_{4n})}:
 - E_i = the set of MS trees without node *i*.
 - F_i = the set of MS trees with green node i.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

29/53

SVVRL MIM.NTU

Detail of the Determinization (cont.)

- Steps to compute the next MS-tree state:
 - □ Change color green to yellow for every tree node.
 - \square Replace the label of every node with $\bigcup_{s \in I} \delta(s, a)$.
 - □ Create a left child with label L ∩ F and a right child with label L \ F.
 - Merge the same states into the leftmost one for each level in the tree.
 - □ Remove every node with an empty label.
 - □ Mark green every node that has only one child with color green or yellow.

Safra's Construction

- Stages of the complementation:
 - □ NBW \rightarrow DRW \rightarrow (complement) DSW \rightarrow NBW
- Safra trees are used to construct the DRW.
- Safra trees are labeled ordered trees.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

31/53

SVVRL MIM.NTU

Safra Trees

– SVVRL 🛞 IM.NTU

An Example of Construction

SVVRL 🛞 IM.NTU

An Example of Construction (cont.)

An Example of Rejecting a Word

Detail of the Determinization

- Let $A = (\Sigma, S, s_0, \delta, F)$ be an NBW with n states.
- An equivalent DRW $D = (\Sigma, S', s_0', \delta', Acc')$:
 - □ S': a set of Safra trees,
 - \circ s₀': an initial Safra tree with only one node numbered 1 which is labeled {s₀},

 - $\triangle Acc' = \{(E_1, F_1), (E_2, F_2), ..., (E_{2n}, F_{2n})\}:$
 - E_i = the set of Safra trees without node i.
 - F_i = the set of Safra trees with marked node i.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

37 / 53

SVVRL 66 IM.NTU

Detail of the Determinization (cont.)

- Steps to compute the next Safra-tree state:
 - □ Remove the mark of every tree node.
 - $\ \square$ Create a new child with label L \cap F.

 - Merge the same states into the leftmost one for each level in the tree.
 - □ Remove every node with an empty label.
 - Mark every node whose label equals the union of the labels of its children and remove its children.

Safra-Piterman Construction

- Stages of the complementation:
 - □ NBW \rightarrow DPW \rightarrow (complement) DPW \rightarrow NBW
- The determinization part uses compact Safra trees to construct the DPW.
- Compact Safra trees are Safra trees, but use two different kinds of techniques:
 - Dynamic names
 - Recording only the smallest marked name (called f)
 and removed name (called e)

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

39 / 53

SVVRL MIM.NTU

Dynamic Names

- The construction renames the tree at the final step and get a new tree.
- But it does not change the marks of the smallest e and f.

An Example of Construction

SVVRL 🛞 IM.NTU

An Example of Construction (cont.)

The Determinization

- Let $A = (\Sigma, S, s_0, \delta, F)$ be an NBW with n states.
- An equivalent DPW $D = (\Sigma, S', s_0', \delta', Acc')$:
 - □ S': the set of compact Safra trees,
 - s₀': an initial compact Safra tree with only one node numbered 1, which is labeled {s₀} and has e=2 and f=1,

 - □ The acceptance condition $Acc' = \{F_0, F_1, ..., F_{4n}\}$:
 - $F_0 = \{s \in S' | f = 1\}.$
 - $F_{2i+1} = \{s \in S' | e = i+2 \text{ and } f \ge e\}.$
 - $F_{2i+2} = \{s \in S' | f = i+2 \text{ and } e > f\}.$
 - i={0,1,2,..., 2n-1}.

1009/7/9 Yih-Kuen Tsay

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

43 / 53

SVVRL 6 IM.NTU

The Determinization (cont.)

- Steps to compute the next compact Safra-tree state:
 - □ Replace the label of every node with $\bigcup_{s \in L} \delta(s, a)$.
 - \Box Create a new child with label L \cap F.
 - Merge the same states into the leftmost one for each level in the tree.
 - □ For every node, whose label equals the union of the labels of its children, remove its children and assign the smallest number of these nodes to *f*.
 - □ Remove every node with an empty label and set *e* to the smallest number of removed node.

Comparison

- We define a modified Safra's construction, which is similar to the original one, except that we exchange the step of computing successors and the step of creating children.
- Let us compare these four algorithms: Safra, modified Safra, Safra-Piterman, Muller-Schupp.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

45 / 53

SVVRL 🛞 IM.NTU

Some Observations

- Modified Safra trees are slightly better than Safra trees, because a modified Safra tree is usually one step ahead of the corresponding Safra tree.
- Safra-Piterman trees are usually better than modified Safra trees, because a Safra-Piterman tree only cares about the smallest marked name in the tree.
- Modified Safra trees are sometimes better than Safra-Piterman trees, because the rename step spends some time and adds some states.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

48 / 53

Some Observations (cont.)

- Muller-Schupp trees are the largest, because they contain more redundant data.
- Safra-Piterman construction performs better than others, because DPW can be translated into NBW more efficiently.
- Muller-Schupp construction helps to understand other algorithms.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

49/53

Other Complementation Algorithms

- [Thomas]
 - □ NBW → APW → (complement) NBW
 APW: alternating parity automaton
- [Kupferman and Vardi]
 - □ NBW → (complement) UCBW → VWAA → NBW
 UCBW: universal co-Büchi automaton
 VWAA: very weak alternating automaton
- There is also a construction (by Kurshan) for DBW complementation, which is quite efficient.

Concluding Remarks

- Büchi complementation is expensive.
- The automata-theoretic approach to model checking tries to avoid it:
 - □ The system is modeled as a Büchi automaton A.
 - □ A desired property is given by a PTL formula *f*.
 - \Box Let $B_f(B_{\sim f})$ denote a Büchi automaton equivalent to $f(\sim f)$.
 - □ The model checking problem translates into $L(A) \subseteq L(B_f)$ or $L(A) \cap L(B_{\sim f}) = \emptyset$ or $L(A \times B_{\sim f}) = \emptyset$.
 - □ So, with PTL to automata translation, the expensive complementation procedure is avoided.
- The well-used model checker SPIN, for example, adopts the automata-theoretic approach and asks the user to express properties in LTL.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

51/53

SVVRL 66 IM.NTU

Concluding Remarks (cont'd)

- When the B in A⊆ B is given by an arbitrary Büchi automaton, complementation cannot be avoided.
- However, complementation of B may be done "on demand".
- When the containment does not hold, one might find a counterexample before going through the full procedure of complementation.
- There are algorithms for checking language containment based on this idea.
- This line of research is still ongoing.

References

- E. Grädel, W. Thomas, and T. Wilke. *Automata, Logics, and Infinite Games* (LNCS 2500), Springer, 2002.
- O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak, *ACM Transactions on Computational Logic*, 2(3), 2001.
- D.E. Muller and P.E. Schupp, Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra, TCS, Vol. 141, 1995.
- N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata, *LICS* 2006.
- A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with applications to temporal logic, TCS, Vol. 49, 1987.
- S. Safra. On the Complexity of ω-automta, *FOCS* 1988.
- W. Thomas. Automata on infinite objects, *Handbook of Theoretical Computer Science* (Vol. B), 1990.

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

53 / 53

