SVVRL @ IM.NTU

Blichi Complementation

Yih-Kuen Tsay

(with help from Chi-Jian Luo)
Department of Information Management
National Taiwan University

SVVRL @) IM.NTU

Introduction

Languages recognizable by (nondeterministic)
Blchi automata are called w-regular languages.

The class of w-regular languages is closed
under intersection and complementation (and
hence all boolean operations).

Deterministic Buchi automata are strictly less
expressive.

The complement of a deterministic Blichi
automaton may not be deterministic.

FLOLAC 2009
2009/7/9 Yih-Kuen Tsay 1/53 2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 3/53
SVVRL @) IM.NTU SVVRL @) IM.NTU
Outline Introduction (cont.)

Introduction
Why Is Buchi Complementation Hard?

Complementation via Determinization
o Muller-Schupp Construction

o Safra’s Construction

o Safra-Piterman Construction

Other Approaches
Concluding Remarks
References

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 2/53

While intersection is rather straightforward,
complementation is much harder and still a
current research topic.

A complementation construction is also useful
for checking language containment (and
hence equivalence) between two automata:

L(4A)c L(B)=L(A) L(B) = ¢.
The language containment test is essential in

the automata-theoretic approach to model
checking (more about this later ...).

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 4153

SVVRL @) IM.NTU

Complementation of an NFA

Translate the given nondeterministic finite
automaton (NFA) N into an equivalent
deterministic finite automaton (DFA) D via the
subset construction.

Take the dual of D to get a DFA D’ for the
complement language.

This works because languages recognizable by
DFA’s are closed under complementation.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 5/53

SVVRL @) IM.NTU

Subset Construction for Finite Words

Formally, from NFA N=(S,, 2, &,, q,, F\), we
construct an equivalent DFA D=(S,, 2, 6, {q,}, Fp)
as follows:

u SD :2SN
a 6,(8,a)=U, 6y (s,a)
O F,={SeS,|SNF, #¢}

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 7153

SVVRL) IM.NTU

Example of NFA Complementation

L(N) = (a+b)*aa*, which An equivalent DFA D by
equals (a+b)*a. the subset construction.

b a
N\ N
a
A gl @
\."/ N4
=
NFA N
DFA D
There are two unreachable states in D.
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 6/53

SVVRL 6 IM.NTU

w-Automata

w-automata are finite automata on infinite words.
Blichi automata are one type of w-automata.
Formally, a (nondeterministic) w-automaton B is
represented as a five-tuple B=(2, S, s, o, Acc):

a 2 a finite alphabet (set of symbols)

o S: a finite set of states (or locations)

0 S,ES: the initial state

a8 SxY— 25

0 Acc: the acceptance condition

When Jis actually a function from Sx > to S, the
automaton is said to be deterministic.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 8/53

SVVRL @) IM.NTU

Runs and Languages of w-Automata

A run of an w-automaton Bon aword w =

w,W, . .. is an infinite sequence of states s,s; . ..
€ S¥ such that for all j > 0 we have s;,; € 6(s;,w,,,).
For arunr, let Inf(r) denote the set of states that
occur infinitely many times in r.

A word w is accepted by B if there exists an accepting
run of B on w that satisfies the acceptance
condition.

The language of B, denoted L(B), is the set of all
words accepted by B.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 9/53

SVVRL @) IM.NTU
Blichi and Other w-Automata (cont.)

Rabin automata:

Ace={(E\, F),(E,), F,),....(E,,F})}, E F, & S.
A run ris accepting iff for some i, Inf(r) N E; =
¢ and Inf(r) N F; # ¢.
Streett automata:

Ace ={(E\, F)),(E,, F5),...(E} . F)L EL F S
A run ris accepting iff foralli, Inf(r) N E;# ¢ or
Inf(r) N F, = ¢.
Rabin automata and Streett automata are the
dual of each other.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 11/53

SVVRL ‘s_’.z}?IM.NTU
Buchi and Other w-Automata

Blichi automata:
Acc=F c S.

A run ris accepting iff Inf(r) N F= @.

Parity automata:
Acc={F F,.. F.},F. cS.

A run ris accepting iff the smallest i such that Inf(r)
N F; # @is even.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 10/53

SVVRL @) IM.NTU
Convenient Acronyms

DBW (or DBA): deterministic Blichi automata
NBW: nondeterministic Blichi automata
DPW: deterministic parity automata

DRW: deterministic Rabin automata

DSW: deterministic Streett automata

etc.

Note: replace W with T, for tree automata.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 12/53

SVVRL @) IM.NTU

An Example of Buchi Automaton

B = ({a, b}, {90, q1}, {90}, T, {q1})
0 T(q0,a) ={q0, q1}
0 T(q0,b) = {q0}

o T(qLa) ={q1} >0) ——(a)
o T(alb) ={}

Apparently, B is nondeterministic.
L(B) = (a+b)*av (or “FG a” or “<>[]a").

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 13/53

SVVRL @) IM.NTU
Naive Subset Construction

NBW N defines the A DBW D by the naive
language: (a+b)*a® subset construction.
(“eventually always a”).

a Y
/\
v\
a
[>() 5(@ (unreachable states removed)

q0
- = D accepts every word that

—
T
>

N accepts words like is accepted by N.

ababa“and bbba®. However, D also accepts

N rejects words like (ab)® some words that are

and bb(ba)v. rejected by N, e.g., (ab)®.
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 15/53

SVVRL ‘s_’,:}?IM.NTU
Subset Construction for Infinite Words

If we use the subset construction to construct a
DBW D from an NBW N, the two automata may
not be language equivalent.

By construction, the accepting states of the DBW
D are those that contain an accepting state of the
original NBW N.

D may accept some words that are rejected by N,
as shown by the following example.

Thus, this method is not sound.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 14153

SVVRL 6 IM.NTU

Another Subset Construction

This subset construction keeps more detailed
information of accepting states visited in a run.

A state of D is called a breakpoint if the state
does not contain any unmark state of N.

The construction will mark an accepting state of
N and every state that has a marked predecessor.

A word w is accepted if D identifies infinitely
many breakpoints while reading w.

This does not work, either; see the example next.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 16/53

SVVRL @) IM.NTU
Another Subset Construction (cont.)

P

A A=)
P\
o) o b
This automaton accepts the input €
word a®. >
S

The constructed automaton also has a run on a%,
which is accepting.

a breakpoint a a
[{s0}] —> [{s1,821}] —* [{s0!,52!}] —* [{s0,51,52!}] —* [{s0!;s1,52!}

a breakpoint a a
— [{s0Ls11,s21)] — [{s051,82!} | — ==

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 17/53

SVVRL @) IM.NTU

Duality Does Not Apply

If we take the dual of a given DBW D to get DBW D',
then it is possible that L(D) N L(D’) # ¢, e.g., (ab)®.

Note: DBW is not closed under complementation, e.g.,
((a+b)*a) v (or GF a).

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 19/53

SVVRL (42 IM.NTU
Another Subset Construction (cont.)

j A
This automaton also accepts the input G\\TV’V\\\

word bv. \K_zj‘/”

However, the single run of the constructed automaton
on b¥is rejecting:

b b b b
{(s0} | —» —> [{s0,52!}] — [{s0,52!}] —> -~

Therefore, this construction is incomplete, missing words
that should be accepted.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 18/53

SVVRL 6 IM.NTU

Muller-Schupp Construction

We shall now study three constructions for Blichi
complementation.

Stages in Muller-Schupp construction:

o NBW = DRW = (complete) DSW ->NBW

0 The DSW is the complement of the DRW, by taking the
dual view.

The determinization part uses Muller-Schupp

trees to construct the DRW.

A Muller-Schupp tree (MS tree) is a finite strictly
binary tree, which has precisely two children for
each node except the leave nodes.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 20/53

SVVRL @) IM.NTU

Run Trees vs. Run DAG’s

In Figure (a) is an example run tree r,,and in (b) is the
corresponding run DAG r,.

(a) (b)

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 21/53

SVVRL @) IM.NTU

MS Trees (cont.)

For every state s on each level in
t,, if we only keep the leftmost s,
we obtain another new tree t,

Claim: t; has a path branching left
infinitely often iff t, has a path
branching left infinitely often.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 23/53

SVVRL) IM.NTU

MS Trees

In a run tree r,, we partition the
children of a node v into two
classes, the left child which

wl
carries an accepting state and the
right one which carries a non-
accepting state. w2

Let us refer to the new tree as t,.

[{s5}] [{s4}] [{s1}] [{s4}]

Claim: r,, has an accepting path iff
t, has a path branching left
infinitely often.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 22/53

SVVRL @) IM.NTU

MS Trees (cont.)

1{s0}r
wl
3{s2)r
w2
2(s455)y] [islg
w3 '/' f
[4{s53g [5{s43r] 6fsl}g
A 4
(1] [s2)] [6s5)]
°
°
°
hd
[4fslig] [5{s2}1] 6{sS}g
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 24/53

SVVRL

Three Colors for the Nodes

Three colors are used to identify whether a node
is accepting or not.

o A node is red if the run path that the node represents
has no accepting state.

o Anodeis if it has visited an accepting state
before but it does not visit an accepting state in this
step.

o A node is green if it visits an accepting state in this
step or it merges a green or yellow son.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 25/53

SVVRL {0 IM.NTU
An Example of MS Construction (cont.)

compute te

crea remove merge
successors 1{q0,93}r sons 1{q0,q3}r empty 1{q0,q3}r sons 1{q0,q3}r
—

e — —_
[20}y |[3{q0.93}r] [20}y][3{q0.93}r] [3{q0.3}r] [5{a3}e][64q03r]

[5{a3}y][6{q0}1] \S{Qf}Y\\t”{qO}r\ \5{q‘3}YH6{q‘0}f\
[4la3e] a0l [4fa33e] [7ia0}] l b
compute create
successors | 1{90,g3}r | gong 1{q0,q3}r n;z;gse 1{q0,q3}r
[5{a3}y][6{q0}r] [5{q3}y][6{q0}r] [5{a3}g][6{q0}r]

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 27153

SVVRL @ IM.NTU

An Example of MS Construction

1{q0}r

|
compute create

SUCCessors sons 1{q0,q1,92}r

— [Lig0.qL.2}r] —»

2{ql}g| |3{q0.92}r

l a
compute create

merge merge
successors | 1{90,41,42,a3}r sons [1190.91,a2,03}r states [149001.02.03}r] sons [1{40,91,a2.93}r]
—

— —> —
[2fally] [3ia0.9L.a2.63}r] [2ially] [Bia0a2a3ir] [2ialje] [3ia0.q2.q3ir]
[

[4al}g] [Stal.a3}e] [64a0.a2}] [4{al}e] [5{a3}g] [6{a0.9231] [5{a3}e] [6{a0.02}r]

l a
compute creats

e merge merge
successors | 1490,41.92,g3}r sons [14909L,02.0311] grares [14909L2.030r] sons [1{90.91L,02.43}

—

—_— — —
[2{al}y] [31a0.a1,92.93}r | [24q1}y] [3{a0.a.a2.3}r] \Z{q‘l}y\ [3{q0.02.3}r] [2talie] [3{q0,02.03i1 |
[StaLa3ty] [6{a0.02ir] [4alig] | 5<q1,q3>yHé\'qo]qznuuqug\ [5{a3}y] [6{q0.a2}r] [5ta3}g] [61a0.a2}r]

[7{al.a3}e][8{q0.02}r] [7{a3}e] [8{a0.02}r] l b

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 26/53

SVVRL @ IM.NTU

An Example of Rejecting a Word

compute create

sons 1{q0,q1,q2}r

— [T{a0qLa2}r] —»

2{ql}g| [3{q0.2}r

prs compute create merge
. Successors 1{q0}r sons sons.
— — |1{q0}r

—
20y

compute create

Hoit 1{q0,q1,92}r
— [1{q04q1.q2}r] —>
2{qlje| [3{q0.2}r

compute reate

c
successors 1{q0}r sons
— —
2{}y] |3{q0ir

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 28/53

SVVRL @) IM.NTU

The Detail of Determinization

LetA=(Z, S, sy O, F) be an NBW with n states.
An equivalent DRW D = (%, S, s,”, &, Acc):
o S':a set of MS trees,

| so': an initial MS tree with only one node numbered 1,
which is labeled {s,} and colored red,

0 &": a transition function which, given an input g€X,
transforms an MS tree using the steps described next.

o Acc ={(E,,F,), (E,,F,), ..., (E4,Fsn)}:
E; = the set of MS trees without node i.
F, = the set of MS trees with green node i.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 29/53

SVVRL @) IM.NTU

Safra’s Construction

Stages of the complementation:
o NBW - DRW - (complement) DSW - NBW

Safra trees are used to construct the DRW.
Safra trees are labeled ordered trees.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 31/53

SVVRL (42 IM.NTU
Detail of the Determinization (cont.)

Steps to compute the next MS-tree state:
o Change color green to yellow for every tree node.
0 Replace the label of every node with U ¢ 6(s, a).

o Create a left child with label L N F and a right child
with label L\ F.

0 Merge the same states into the leftmost one for each
level in the tree.

o Remove every node with an empty label.

o Mark green every node that has only one child with
color green or yellow.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 30/53

SVVRL 6 IM.NTU

Safra Trees

1{s1,s2,s3}

3 A
ts5H [is4t] [is

w3

1

\ 4 v
[{s1}] [{s2}] [{s5}]

1{sl,s2,s5}

2{s1,s2}1] [3{s5}!

4{s1v,52} S{VSS}

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 32/53

An Example of Construction

a |
compute
‘ Successors

a
o}
‘ —> [1{q0,q1}
da
() («) b
create compute
sons 1{q0, q1}| successors |1{q0, q1}
e e
2{ql} 2{ql}
|

1{q0, q1} 1{q0, q1
create {q0. g1} compute {90 ql} merge remove merge
sons uCCcessors| states empty sons _1 190, g1}
2{q1}] [3{al} 2{q1}] [3{a} 2{q1} R s
2{ql}!
4{ql} 4{ql}
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 33/53

SVVRL {0 IM.NTU

An Example of Rejecting a Word

a
compute l
successors

— [Liq0.q1}]

| o

create compute
sons 1{q0, q1}| successors |1{q0,ql}
2{ql} 2{ql}
|«
1{q0, ql 1{q0, ql 1{q0, ql 1{q0, ql
create {q0, q1} compute {q0, q1} merge {q0, g1} remove {q0. 1) "

crge
sons L1190, ql}

" Rigl] Biapeo 2] Bl M 2an] (301 S Rian] _sonS

[2{q1}!]
4{ql} 4{ql} 4{ql} 4{ql}
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 35/53

SVVRL () IM.NTU
An Example of Construction (cont.)

1{q0, ql 1{q0, ql
create {90, ql} compute {90. 91} merge merge
[1{q0, q1}]
B PITTH] I ETCTH] intivegts PXTTE] I EXCTH] Ml _sons
[2{q1}!]
4{ql} 4{ql}
|
1{q0, q1 1{q0, ql
create {90. g1} compute {9091} merge merge T{q0, 41}
qY, q
e PICTH BN ETCTH ity PITTH IRETCTV] R sons
[2{q1}!]
4{ql} 4{ql}
d
b a
a
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 34/53

SVVRL () IM.NTU
An Example of Rejecting a Word
[1{q0, q13] [[1{q0} |

create compute remove
sons uccessors empt;
y 26a0] BlahPeeeo2iy] 30 ™Y oy

a
compute l
successors

— [1{q0.q1}]

a

create compute
sons 1{q0, ql1}| successors |1{q0, ql}
— —_—

2{ql} 2{ql}

l a
1 1 1 1 1 1 1 1
create {90, a1} compute {90, g1} merge {90, g1} remove merge Tr0aT]
o0 [ign] BHaDFeesoeien) Ban) 1 2ign] [307] Sy [2ign] o =;
2{ql}!
aiai} aai; aal} —

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 36/53

SVVRL @) IM.NTU

Detail of the Determinization

LetA=(Z, S, s, O, F) be an NBW with n states.
An equivalent DRW D = (%, S', s, &', Acc’):
o S': a set of Safra trees,

0 s, an initial Safra tree with only one node numbered
1 which is labeled {s,},

0 &": a transition function which, given an input g€X,
transforms a Safra tree using the steps described next,
a Acc’ ={(E,F,),(E,F)), ..., (E5, Fy)}:
E; = the set of Safra trees without node i.
F; = the set of Safra trees with marked node i.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 37/53

SVVRL @) IM.NTU

Safra-Piterman Construction

Stages of the complementation:
o NBW - DPW - (complement) DPW - NBW

The determinization part uses compact Safra
trees to construct the DPW.

Compact Safra trees are Safra trees, but use two
different kinds of techniques:
o Dynamic names

o Recording only the smallest marked name (called f)
and removed name (called e)

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 39/53

SVVRL (42 IM.NTU
Detail of the Determinization (cont.)

Steps to compute the next Safra-tree state:
Remove the mark of every tree node.

Create a new child with label L N F.

Replace the label of every node with U 8(s, a).

O 0O O DO

Merge the same states into the leftmost one for each
level in the tree.

O

Remove every node with an empty label.

o Mark every node whose label equals the union of the
labels of its children and remove its children.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 38/53

SVVRL 6 IM.NTU

Dynamic Names

The construction renames
the tree at the final step

=, 13 =2, 3
and get a new tree. Some))
. " l{Ll} rename l{Ll}
But it does not change siep —
the marks of the smallest B{L2}] [4{L3}] [2{L2}] [3{L3}]
eandf.
Pow
v
e=4, £2
Some
step [1{L1}]
—_—

3{L3)

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 40/53

SVVRL @) IM.NTU

An Example of Construction

e=2, =1

[T 0
la

e=3,f=3
compute omp o] Create

successors sons |1{q0,q1,q2}| s2

— [1{q0.91.92}| —>

|
e=3, =3 e=3, =3 e=4, =2
compute create merge
SuCCessors \l{qO,ql,qZ,qS}\ sons \l{qO,ql,qZ,q}}\ sons \l{qO,ql,qZ,q}}\s}
i B B
2{ql} 2{ql}| |3{q3} 2{ql}!| [3{q3}
4{ql} l
a
=4, £=2 e=4, £=2 e=4, £=2 e=4, £=2
create merge merge
uccessors [1190.91,92,03}] sons [1490.91.92.03}] grates [1490:91,92,03}] gons [1£90.91,92,93}s3
— P —_— —_—
2{q1}] [3{q1.q3} 2{ql}] [3{q1.q3} 2{q1}] |3{93} 2{q1}!] [3{q3}!
4{ql} 4ql}] |5{93} l b

compute

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 41/53

SVVRL @) IM.NTU

The Determinization

LetA=(Z, S, s, O, F) be an NBW with n states.
An equivalent DPW D = (%, S', s/, 8', Acc’):
o S": the set of compact Safra trees,

0 s, an initial compact Safra tree with only one node
numbered 1, which is labeled {s,} and has e=2 and f=1,

o &": a transition function which, given an input g€,
transforms a compact Safra tree as described next,
o The acceptance condition Acc”={F,F,, ..., F,,}:
Fo={ses’| f = 1}.
Fy,={s€S’| € = i+2 and f =e}.
Fy.,={s€S’| f=i+2 and e >f}.
i={0,1,2, ..., 2n-1}.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 43/53

SVVRL (42 IM.NTU
An Example of Construction (cont.)

e=4, =2 . e=4, f=2 e=2,f=3 e=2, =3
compute create merge remove
successors |1{90,q3} sons sons [1490.93}] empty [1{q0,93}] TOMAME |1{q0.q3}] 4
— —_— —_— — —
3{a3} 3{e3}! 3{e3}! 2{g3}!
| v
¢=2,£3 3,82
compute create merge
successors 149043} | sons sons 1{q0,q3} s5
— —_— —
2{q3} 2{q3}!

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 42153

SVVRL 6 IM.NTU

The Determinization (cont.)

Steps to compute the next compact Safra-tree
state:

0 Replace the label of every node with U ¢ 6(s, a).

o Create a new child with label L N F.

o Merge the same states into the leftmost one for each
level in the tree.

o For every node, whose label equals the union of the
labels of its children, remove its children and assign
the smallest number of these nodes to f.

o Remove every node with an empty label and set e to
the smallest number of removed node.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 44153

SVVRL @) IM.NTU SVVRL) IM.NTU

Comparison Comparison (cont.) Ay
input word: aaa(b)® Y
We define a modified Safra’s construction, which l a l a l 2
is similar to the original one, except that we e=d, 12
exchange the step of computing successors and loogl@a] [Hoogleey] [Halglge)]
the step of creating children. R} Be3}] MY Be3Y] a1} Big3}]
Let us compare these four algorithms: Safra, l b l b l b
modified Safra, Safra-Piterman, Muller-Schupp.
l b
e=3, =2
1190.93
6{q0}r
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 45/53 2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 47/53

SVVRL) IM.NTU SVVRL 6 IM.NTU

Comparison (cont.) Some Observations

input word: aaa(b)®
Modified

Modified Safra trees are slightly better than Safra

Safra Safta Piterman
e=2, f-1 trees, because a modified Safra tree is usually

one step ahead of the corresponding Safra tree.

| b L

Safra-Piterman trees are usually better than

e=3, 13 modified Safra trees, because a Safra-Piterman
1is0q1.q2)] ”‘ﬁz} ”qo’ﬁ” o tree only cares about the smallest marked name
in the tree.
l ! l ! l ¢ l ‘ Modified Safra trees are sometimes better than
S — \1{:;,1’1;:;3}\ S— Safra-Piterman trees, because the rename step

spends some time and adds some states.

20 Bie3] [0 Bie3y] [labe][Blaa2gdir

S{q3je| [6190.q2}r
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 46/53 2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 48/53

SVVRL @) IM.NTU
Some Observations (cont.)

Muller-Schupp trees are the largest, because they
contain more redundant data.

Safra-Piterman construction performs better
than others, because DPW can be translated into
NBW more efficiently.

Muller-Schupp construction helps to understand
other algorithms.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 49/53

SVVRL @) IM.NTU

Concluding Remarks

Blichi complementation is expensive.

The automata-theoretic approach to model checking
tries to avoid it:
The system is modeled as a Biichi automaton A.
A desired property is given by a PTL formula f.
Let B; (B.;) denote a Buchi automaton equivalent to f (~f).
The model checking problem translates into
L(A) C L(By) or L(A)NL(B.) =0 or L(AxB.) = 0.

o So, with PTL to automata translation, the expensive

complementation procedure is avoided.
The well-used model checker SPIN, for example,
adopts the automata-theoretic approach and asks
the user to express properties in LTL.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 51/53

O

O 0 O

SVVRL (42 IM.NTU
Other Complementation Algorithms

[Thomas]
o NBW = APW - (complement) NBW
APW: alternating parity automaton
[Kupferman and Vardi]
o NBW - (complement) UCBW - VWAA - NBW
UCBW: universal co-Blichi automaton

VWAA: very weak alternating automaton

There is also a construction (by Kurshan) for DBW
complementation, which is quite efficient.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 50/53

SVVRL 6 IM.NTU

Concluding Remarks (cont’d)

When the B in AC B is given by an arbitrary Blichi
automaton, complementation cannot be avoided.

However, complementation of B may be done
“on demand”.

When the containment does not hold, one might
find a counterexample before going through the
full procedure of complementation.

There are algorithms for checking language
containment based on this idea.

This line of research is still ongoing.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buchi Complementation 52/53

SVVRL @) IM.NTU

References

E. Gradel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite
Games (LNCS 2500), Springer, 2002.

O. Kupferman and M.Y. Vardi. Weak alternating automata are not
that weak, ACM Transactions on Computational Logic, 2(3), 2001.

D.E. Muller and P.E. Schupp, Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the
theorems of Rabin, McNaughton and Safra, TCS, Vol. 141, 1995.

N. Piterman. From nondeterministic Blichi and Streett automata to
deterministic parity automata, L/CS 2006.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation
problem for Biichi automata with applications to temporal logic,
TCS, Vol. 49, 1987.

S. Safra. On the Complexity of w-automta, FOCS 1988.

W. Thomas. Automata on infinite objects, Handbook of Theoretical

Computer Science (Vol. B), 1990.
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Buichi Complementation 53/53

