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Introduction

Languages recognizable by (nondeterministic)
Blchi automata are called w-regular languages.

The class of w-regular languages is closed
under intersection and complementation (and
hence all boolean operations).

Deterministic Buchi automata are strictly less
expressive.

The complement of a deterministic Blichi
automaton may not be deterministic.
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Outline Introduction (cont.)

Introduction
Why Is Buchi Complementation Hard?

Complementation via Determinization
o Muller-Schupp Construction

o Safra’s Construction

o Safra-Piterman Construction

Other Approaches
Concluding Remarks
References
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While intersection is rather straightforward,
complementation is much harder and still a
current research topic.

A complementation construction is also useful
for checking language containment (and
hence equivalence) between two automata:

L(4A)c L(B)=L(A) L(B) = ¢.
The language containment test is essential in

the automata-theoretic approach to model
checking (more about this later ...).
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Complementation of an NFA

Translate the given nondeterministic finite
automaton (NFA) N into an equivalent
deterministic finite automaton (DFA) D via the
subset construction.

Take the dual of D to get a DFA D’ for the
complement language.

This works because languages recognizable by
DFA’s are closed under complementation.
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Subset Construction for Finite Words

Formally, from NFA N=(S,, 2, &,, q,, F\), we
construct an equivalent DFA D=(S,, 2, 6, {q,}, Fp)
as follows:

u SD :2SN
a 6,(8,a)=U, 6y (s,a)
O F,={SeS,|SNF, #¢}
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Example of NFA Complementation

L(N) = (a+b)*aa*, which An equivalent DFA D by
equals (a+b)*a. the subset construction.

b a
N\ N
a
A gl @
\."/ N4
=
NFA N
DFA D
There are two unreachable states in D.
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w-Automata

w-automata are finite automata on infinite words.
Blichi automata are one type of w-automata.
Formally, a (nondeterministic) w-automaton B is
represented as a five-tuple B=(2, S, s, o, Acc):

a 2 a finite alphabet (set of symbols)

o S: a finite set of states (or locations)

0 S,ES: the initial state

a8 SxY— 25

0 Acc: the acceptance condition

When Jis actually a function from Sx > to S, the
automaton is said to be deterministic.
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Runs and Languages of w-Automata

A run of an w-automaton Bon aword w =

w,W, . .. is an infinite sequence of states s,s; . ..
€ S¥ such that for all j > 0 we have s;,; € 6(s;,w,,,).
For arunr, let Inf(r) denote the set of states that
occur infinitely many times in r.

A word w is accepted by B if there exists an accepting
run of B on w that satisfies the acceptance
condition.

The language of B, denoted L(B), is the set of all
words accepted by B.
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Blichi and Other w-Automata (cont.)

Rabin automata:

Ace={(E\, F),(E,), F,),....(E,,F})}, E F, & S.
A run ris accepting iff for some i, Inf(r) N E; =
¢ and Inf(r) N F; # ¢.
Streett automata:

Ace ={(E\, F)),(E,, F5),...(E} . F )L EL F S
A run ris accepting iff foralli, Inf(r) N E;# ¢ or
Inf(r) N F, = ¢.
Rabin automata and Streett automata are the
dual of each other.
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Buchi and Other w-Automata

Blichi automata:
Acc=F c S.

A run ris accepting iff Inf(r) N F= @.

Parity automata:
Acc={F F,.. F.},F. cS.

A run ris accepting iff the smallest i such that Inf(r)
N F; # @is even.
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Convenient Acronyms

DBW (or DBA): deterministic Blichi automata
NBW: nondeterministic Blichi automata
DPW: deterministic parity automata

DRW: deterministic Rabin automata

DSW: deterministic Streett automata

etc.

Note: replace W with T, for tree automata.
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An Example of Buchi Automaton

B = ({a, b}, {90, q1}, {90}, T, {q1})
0 T(q0,a) ={q0, q1}
0 T(q0,b) = {q0}

o T(qLa) ={q1} >0 ) ——(a)
o T(alb) ={}

Apparently, B is nondeterministic.
L(B) = (a+b)*av (or “FG a” or “<>[]a").

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 13/53

SVVRL @) IM.NTU
Naive Subset Construction

NBW N defines the A DBW D by the naive
language: (a+b)*a® subset construction.
(“eventually always a”).

a Y
/\
v\
a
[>( ) 5(@ (unreachable states removed)

q0
- = D accepts every word that

—
T
>

N accepts words like is accepted by N.

ababa“and bbba®. However, D also accepts

N rejects words like (ab)® some words that are

and bb(ba)v. rejected by N, e.g., (ab)®.
2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 15/53

SVVRL ‘s_’,:}?IM.NTU
Subset Construction for Infinite Words

If we use the subset construction to construct a
DBW D from an NBW N, the two automata may
not be language equivalent.

By construction, the accepting states of the DBW
D are those that contain an accepting state of the
original NBW N.

D may accept some words that are rejected by N,
as shown by the following example.

Thus, this method is not sound.
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Another Subset Construction

This subset construction keeps more detailed
information of accepting states visited in a run.

A state of D is called a breakpoint if the state
does not contain any unmark state of N.

The construction will mark an accepting state of
N and every state that has a marked predecessor.

A word w is accepted if D identifies infinitely
many breakpoints while reading w.

This does not work, either; see the example next.
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Another Subset Construction (cont.)

P

A A=)
P\
o) o b
This automaton accepts the input €
word a®. >
S

The constructed automaton also has a run on a%,
which is accepting.

a breakpoint a a
[{s0} ] —> [{s1,821}] —* [{s0!,52!}] —* [{s0,51,52!}] —* [{s0!;s1,52!}

a  breakpoint a a
— [{s0Ls11,s21)] — [{s051,82!} | — ==
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Duality Does Not Apply

If we take the dual of a given DBW D to get DBW D',
then it is possible that L(D) N L(D’) # ¢, e.g., (ab)®.

Note: DBW is not closed under complementation, e.g.,
((a+b)*a) v (or GF a).
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Another Subset Construction (cont.)

j A
This automaton also accepts the input G\\TV’V\\\

word bv. \K_zj‘/”

However, the single run of the constructed automaton
on b¥is rejecting:

b b b b
{(s0} | —» —> [{s0,52!}] — [{s0,52!}] —> -~

Therefore, this construction is incomplete, missing words
that should be accepted.
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Muller-Schupp Construction

We shall now study three constructions for Blichi
complementation.

Stages in Muller-Schupp construction:

o NBW = DRW = (complete) DSW ->NBW

0 The DSW is the complement of the DRW, by taking the
dual view.

The determinization part uses Muller-Schupp

trees to construct the DRW.

A Muller-Schupp tree (MS tree) is a finite strictly
binary tree, which has precisely two children for
each node except the leave nodes.
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Run Trees vs. Run DAG’s

In Figure (a) is an example run tree r,,and in (b) is the
corresponding run DAG r,.

(a) (b)
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MS Trees (cont.)

For every state s on each level in
t,, if we only keep the leftmost s,
we obtain another new tree t,

Claim: t; has a path branching left
infinitely often iff t, has a path
branching left infinitely often.
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MS Trees

In a run tree r,, we partition the
children of a node v into two
classes, the left child which

wl
carries an accepting state and the
right one which carries a non-
accepting state. w2

Let us refer to the new tree as t,.

[{s5}] [{s4}] [{s1}] [{s4}]

Claim: r,, has an accepting path iff
t, has a path branching left
infinitely often.
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MS Trees (cont.)

1{s0}r
wl
3{s2)r
w2
2(s455)y] [islg
w3 '/' f
[4{s53g [5{s43r] 6fsl}g
A 4
(1] [s2)]  [6s5)]
°
°
°
hd
[4fslig] [5{s2}1] 6{sS}g
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Three Colors for the Nodes

Three colors are used to identify whether a node
is accepting or not.

o A node is red if the run path that the node represents
has no accepting state.

o Anodeis if it has visited an accepting state
before but it does not visit an accepting state in this
step.

o A node is green if it visits an accepting state in this
step or it merges a green or yellow son.
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An Example of MS Construction (cont.)

compute te

crea remove merge
successors 1{q0,93}r sons 1{q0,q3}r empty 1{q0,q3}r sons 1{q0,q3}r
—

e — —_
[ 20}y |[3{q0.93}r] [20}y ][3{q0.93}r] [3{q0.3}r] [5{a3}e][64q03r]

[5{a3}y][6{q0}1] \S{Qf}Y\\t”{qO}r\ \5{q‘3}YH6{q‘0}f\
[4la3e] a0l [4fa33e] [7ia0}] l b
compute create
successors | 1{90,g3}r | gong 1{q0,q3}r n;z;gse 1{q0,q3}r
[5{a3}y][6{q0}r] [5{q3}y][6{q0}r] [5{a3}g][6{q0}r]
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An Example of MS Construction

1{q0}r

|
compute create

SUCCessors sons 1{q0,q1,92}r

—  [Lig0.qL.2}r] —»

2{ql}g| |3{q0.92}r

l a
compute create

merge merge
successors | 1{90,41,42,a3}r sons  [1190.91,a2,03}r states  [149001.02.03}r]  sons  [1{40,91,a2.93}r]
—

— —> —
[2fally] [3ia0.9L.a2.63}r] [2ially] [Bia0a2a3ir] [2ialje] [3ia0.q2.q3ir]
[

[4al}g] [Stal.a3}e] [64a0.a2}] [4{al}e] [5{a3}g] [6{a0.9231] [5{a3}e] [6{a0.02}r]

l a
compute creats

e merge merge
successors | 1490,41.92,g3}r sons  [14909L,02.0311]  grares  [14909L2.030r]  sons  [1{90.91L,02.43}

—

—_— — —
[2{al}y] [31a0.a1,92.93}r | [24q1}y] [3{a0.a.a2.3}r] \Z{q‘l}y\ [3{q0.02.3}r] [2talie] [3{q0,02.03i1 |
[StaLa3ty] [6{a0.02ir] [4alig] | 5<q1,q3>yHé\'qo]qznuuqug\ [5{a3}y] [6{q0.a2}r] [5ta3}g] [61a0.a2}r]

[7{al.a3}e][8{q0.02}r] [7{a3}e] [8{a0.02}r] l b
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An Example of Rejecting a Word

compute create

sons 1{q0,q1,q2}r

—  [T{a0qLa2}r] —»

2{ql}g| [3{q0.2}r

prs compute create merge
. Successors 1{q0}r sons sons.
— — |1{q0}r

—
20y

compute create

Hoit 1{q0,q1,92}r
—  [1{q04q1.q2}r] —>
2{qlje| [3{q0.2}r

compute reate

c
successors 1{q0}r sons
— —
2{}y] |3{q0ir
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The Detail of Determinization

LetA=(Z, S, sy O, F) be an NBW with n states.
An equivalent DRW D = (%, S, s,”, &, Acc):
o S':a set of MS trees,

| so': an initial MS tree with only one node numbered 1,
which is labeled {s,} and colored red,

0 &": a transition function which, given an input g€X,
transforms an MS tree using the steps described next.

o Acc ={(E,,F,), (E,,F,), ..., (E4,Fsn)}:
E; = the set of MS trees without node i.
F, = the set of MS trees with green node i.
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Safra’s Construction

Stages of the complementation:
o NBW - DRW - (complement) DSW - NBW

Safra trees are used to construct the DRW.
Safra trees are labeled ordered trees.

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Biichi Complementation 31/53

SVVRL (42 IM.NTU
Detail of the Determinization (cont.)

Steps to compute the next MS-tree state:
o Change color green to yellow for every tree node.
0 Replace the label of every node with U ¢ 6(s, a).

o Create a left child with label L N F and a right child
with label L\ F.

0 Merge the same states into the leftmost one for each
level in the tree.

o Remove every node with an empty label.

o Mark green every node that has only one child with
color green or yellow.
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Safra Trees

1{s1,s2,s3}

3 A
ts5H [is4t]  [is

w3

1

\ 4 v
[{s1}] [{s2}]  [{s5}]

1{sl,s2,s5}

2{s1,s2}1] [3{s5}!

4{s1v,52} S{VSS}
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An Example of Construction

a |
compute
‘ Successors

a
o}
‘ —>  [1{q0,q1}
da
() («) b
create compute
sons 1{q0, q1}| successors |1{q0, q1}
e e
2{ql} 2{ql}
|

1{q0, q1} 1{q0, q1
create {q0. g1} compute {90 ql} merge remove merge
sons uCCcessors| states empty sons _1 190, g1}
2{q1}] [3{al} 2{q1}] [3{a} 2{q1} R s
2{ql}!
4{ql} 4{ql}
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An Example of Rejecting a Word

a
compute l
successors

—  [Liq0.q1}]

| o

create compute
sons 1{q0, q1}| successors |1{q0,ql}
2{ql} 2{ql}
|«
1{q0, ql 1{q0, ql 1{q0, ql 1{q0, ql
create {q0, q1} compute {q0, q1} merge {q0, g1} remove {q0. 1) "

crge
sons L1190, ql}

" Rigl] Biapeo 2] Bl M 2an] (301 S Rian] _sonS

[2{q1}!]
4{ql} 4{ql} 4{ql} 4{ql}
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An Example of Construction (cont.)

1{q0, ql 1{q0, ql
create {90, ql} compute {90. 91} merge merge
[1{q0, q1}]
B PITTH] I ETCTH] intivegts PXTTE] I EXCTH] Ml _sons
[2{q1}!]
4{ql} 4{ql}
|
1{q0, q1 1{q0, ql
create {90. g1} compute {9091} merge merge T{q0, 41}
qY, q
e PICTH BN ETCTH ity PITTH IRETCTV] R sons
[2{q1}!]
4{ql} 4{ql}
d
b a
a
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An Example of Rejecting a Word
[1{q0, q13] [[1{q0} |

create compute remove
sons uccessors empt;
y 26a0] BlahPeeeo2iy] 30 ™Y oy

a
compute l
successors

—  [1{q0.q1}]

a

create compute
sons 1{q0, ql1}| successors |1{q0, ql}
— —_—

2{ql} 2{ql}

l a
1 1 1 1 1 1 1 1
create {90, a1} compute {90, g1} merge {90, g1} remove merge Tr0aT]
o0 [ign] BHaDFeesoeien) Ban) 1 2ign] [307] Sy [2ign] o =;
2{ql}!
aiai} aai; aal} —
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Detail of the Determinization

LetA=(Z, S, s, O, F) be an NBW with n states.
An equivalent DRW D = (%, S', s, &', Acc’):
o S': a set of Safra trees,

0 s, an initial Safra tree with only one node numbered
1 which is labeled {s,},

0 &": a transition function which, given an input g€X,
transforms a Safra tree using the steps described next,
a Acc’ ={(E,F,),(E,F)), ..., (E5, Fy)}:
E; = the set of Safra trees without node i.
F; = the set of Safra trees with marked node i.
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Safra-Piterman Construction

Stages of the complementation:
o NBW - DPW - (complement) DPW - NBW

The determinization part uses compact Safra
trees to construct the DPW.

Compact Safra trees are Safra trees, but use two
different kinds of techniques:
o Dynamic names

o Recording only the smallest marked name (called f)
and removed name (called e)
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Detail of the Determinization (cont.)

Steps to compute the next Safra-tree state:
Remove the mark of every tree node.

Create a new child with label L N F.

Replace the label of every node with U 8(s, a).

O 0O O DO

Merge the same states into the leftmost one for each
level in the tree.

O

Remove every node with an empty label.

o Mark every node whose label equals the union of the
labels of its children and remove its children.
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Dynamic Names

The construction renames
the tree at the final step

=, 13 =2, 3
and get a new tree. Some ) )
. " l{Ll} rename l{Ll}
But it does not change siep —
the marks of the smallest B{L2}] [4{L3}] [2{L2}] [3{L3}]
eandf.
Pow
v
e=4, £2
Some
step [ 1{L1} ]
—_—

3{L3)
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An Example of Construction

e=2, =1

[T 0
la

e=3,f=3
compute omp o] Create

successors sons |1{q0,q1,q2}| s2

—  [1{q0.91.92}| —>

|
e=3, =3 e=3, =3 e=4, =2
compute create merge
SuCCessors \l{qO,ql,qZ,qS}\ sons \l{qO,ql,qZ,q}}\ sons \l{qO,ql,qZ,q}}\s}
i B B
2{ql} 2{ql}| |3{q3} 2{ql}!| [3{q3}
4{ql} l
a
=4, £=2 e=4, £=2 e=4, £=2 e=4, £=2
create merge merge
uccessors [1190.91,92,03} ] sons  [1490.91.92.03}]  grates  [1490:91,92,03}]  gons [1£90.91,92,93}s3
— P —_— —_—
2{q1}] [3{q1.q3} 2{ql}] [3{q1.q3} 2{q1}] |3{93} 2{q1}!] [3{q3}!
4{ql} 4ql}] |5{93} l b

compute
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The Determinization

LetA=(Z, S, s, O, F) be an NBW with n states.
An equivalent DPW D = (%, S', s/, 8', Acc’):
o S": the set of compact Safra trees,

0 s, an initial compact Safra tree with only one node
numbered 1, which is labeled {s,} and has e=2 and f=1,

o &": a transition function which, given an input g€,
transforms a compact Safra tree as described next,
o The acceptance condition Acc”={F,F,, ..., F,,}:
Fo={ses’| f = 1}.
Fy,={s€S’| € = i+2 and f =e}.
Fy.,={s€S’| f=i+2 and e >f}.
i={0,1,2, ..., 2n-1}.
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An Example of Construction (cont.)

e=4, =2 . e=4, f=2 e=2,f=3 e=2, =3
compute create merge remove
successors  |1{90,q3} sons sons [1490.93}] empty [1{q0,93}] TOMAME |1{q0.q3}] 4
— —_— —_— — —
3{a3} 3{e3}! 3{e3}! 2{g3}!
| v
¢=2,£3 3,82
compute create merge
successors 149043} | sons sons 1{q0,q3} s5
— —_— —
2{q3} 2{q3}!
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The Determinization (cont.)

Steps to compute the next compact Safra-tree
state:

0 Replace the label of every node with U ¢ 6(s, a).

o Create a new child with label L N F.

o Merge the same states into the leftmost one for each
level in the tree.

o For every node, whose label equals the union of the
labels of its children, remove its children and assign
the smallest number of these nodes to f.

o Remove every node with an empty label and set e to
the smallest number of removed node.
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Comparison Comparison (cont.) Ay
input word: aaa(b)® Y
We define a modified Safra’s construction, which l a l a l 2
is similar to the original one, except that we e=d, 12
exchange the step of computing successors and loogl@a] [Hoogleey]  [Halglge)]
the step of creating children. R} Be3}] MY Be3Y] a1} Big3}]
Let us compare these four algorithms: Safra, l b l b l b
modified Safra, Safra-Piterman, Muller-Schupp.
l b
e=3, =2
1190.93
6{q0}r
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Comparison (cont.) Some Observations

input word: aaa(b)®
Modified

Modified Safra trees are slightly better than Safra

Safra Safta Piterman
e=2, f-1 trees, because a modified Safra tree is usually

one step ahead of the corresponding Safra tree.

| b L

Safra-Piterman trees are usually better than

e=3, 13 modified Safra trees, because a Safra-Piterman
1is0q1.q2)] ”‘ﬁz} ”qo’ﬁ” o tree only cares about the smallest marked name
in the tree.
l ! l ! l ¢ l ‘ Modified Safra trees are sometimes better than
S — \1{:;,1’1;:;3}\ S— Safra-Piterman trees, because the rename step

spends some time and adds some states.

20 Bie3] [0 Bie3y]  [labe][Blaa2gdir

S{q3je| [6190.q2}r
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Some Observations (cont.)

Muller-Schupp trees are the largest, because they
contain more redundant data.

Safra-Piterman construction performs better
than others, because DPW can be translated into
NBW more efficiently.

Muller-Schupp construction helps to understand
other algorithms.
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Concluding Remarks

Blichi complementation is expensive.

The automata-theoretic approach to model checking
tries to avoid it:
The system is modeled as a Biichi automaton A.
A desired property is given by a PTL formula f.
Let B; (B.;) denote a Buchi automaton equivalent to f (~f).
The model checking problem translates into
L(A) C L(By) or L(A)NL(B.) =0 or L(AxB.) = 0.

o So, with PTL to automata translation, the expensive

complementation procedure is avoided.
The well-used model checker SPIN, for example,
adopts the automata-theoretic approach and asks
the user to express properties in LTL.
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Other Complementation Algorithms

[Thomas]
o NBW = APW - (complement) NBW
APW: alternating parity automaton
[Kupferman and Vardi]
o NBW - (complement) UCBW - VWAA - NBW
UCBW: universal co-Blichi automaton

VWAA: very weak alternating automaton

There is also a construction (by Kurshan) for DBW
complementation, which is quite efficient.
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Concluding Remarks (cont’d)

When the B in AC B is given by an arbitrary Blichi
automaton, complementation cannot be avoided.

However, complementation of B may be done
“on demand”.

When the containment does not hold, one might
find a counterexample before going through the
full procedure of complementation.

There are algorithms for checking language
containment based on this idea.

This line of research is still ongoing.
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