Büchi Automata and Model Checking

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

FLOLAC 2009
Outline

- Introduction
- Büchi and Generalized Büchi Automata
- Automata-Based Model Checking
- Basic Algorithms: Intersection and Emptiness Test
- Concluding Remarks
- References
The simplest computation model for finite behaviors is the finite state automaton, which accepts finite words.

The simplest computation model for infinite behaviors is the ω-automaton, which accepts infinite words.

Both have the same syntactic structure.

Model checking traditionally deals with non-terminating systems.

Infinite words conveniently represent the infinite behaviors exhibited by a non-terminating system.

Büchi automata are the simplest kind of ω-automata.

They were first proposed and studied by J.R. Büchi in the early 1960’s, to devise decision procedures for S1S.
Büchi Automata

A Büchi automaton (BA) has the same structure as a finite state automaton (FA) and is also given by a 5-tuple $(\Sigma, Q, \Delta, q_0, F)$:

1. Σ is a finite set of symbols (the alphabet),
2. Q is a finite set of states,
3. $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation,
4. $q_0 \in Q$ is the start state (sometimes we allow multiple start states, indicated by Q_0 or Q^0), and
5. $F \subseteq Q$ is the set of accepting states.

Let $B = (\Sigma, Q, \Delta, q_0, F)$ be a BA and $w = w_1w_2 \ldots w_iw_{i+1} \ldots$ be an infinite string (or word) over Σ.

A run of B over w is a sequence of states $r_0, r_1, w_2 \ldots, r_i r_{i+1} \ldots$ such that

1. $r_0 = q_0$ and
2. $(r_i, w_{i+1}, r_{i+1}) \in \Delta$ for $i \geq 0$.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 4 / 24
Büchi Automata (cont.)

Let $\inf(\rho)$ denote the set of states occurring infinitely many times in a run ρ.

An infinite word $w \in \Sigma^\omega$ is *accepted* by a BA B if there exists a run ρ of B over w satisfying the condition:

$$\inf(\rho) \cap F \neq \emptyset.$$

The *language* recognized by B (or the language of B), denoted $L(B)$, is the set of all words that are accepted by B.
This Büchi automaton accepts infinite words over \{a, b\} that have infinitely many a’s.

Using an \(\omega\)-regular expression, its language is expressed as \((b^*a)^\omega\).
Closure Properties

A class of languages is closed under intersection if the intersection of any two languages in the class remains in the class.

Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed under intersection and complementation (and hence all boolean operations).

Proof.

Closure under intersection will be proven later by giving a procedure for constructing a Büchi automaton that recognizes the intersection of the languages of two given Büchi automata. Closure under complementation will be proven in a separate lecture.
A generalized Büchi automaton (GBA) has an acceptance component of the form $F = \{F_1, F_2, \cdots, F_n\} \subseteq 2^Q$.

A run ρ of a GBA is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$.

GBA’s naturally arise in the modeling of finite-state concurrent systems with fairness constraints.

They are also a convenient intermediate representation in the translation from a linear temporal formula to an equivalent BA.

There is a simple translation from a GBA to a Büchi automaton, as shown next.
Let $B = (\Sigma, Q, \Delta, Q^0, F)$, where $F = \{F_1, \cdots, F_n\}$, be a GBA.

Construct $B' = (\Sigma, Q \times \{0, \cdots, n\}, \Delta', Q^0 \times \{0\}, Q \times \{n\})$.

The transition relation Δ' is constructed such that $(\langle q, x \rangle, a, \langle q', y \rangle) \in \Delta'$ when $(q, a, q') \in \Delta$ and x and y are defined according to the following rules:

- If $q' \in F_i$ and $x = i - 1$, then $y = i$.
- If $x = n$, then $y = 0$.
- Otherwise, $y = x$.

Claim: $L(B') = L(B)$.

Theorem

For every GBA B, there is an equivalent BA B' such that $L(B') = L(B)$.
Kripke structures are the most commonly used model for concurrent and reactive systems in model checking.

Let AP be a set of atomic propositions.

A Kripke structure M over AP is a four-tuple $M = (S, R, S_0, L)$:

1. S is a finite set of states.
2. $R \subseteq S \times S$ is a transition relation that must be total, that is, for every state $s \in S$ there is a state $s' \in S$ such that $R(s, s')$.
3. $S_0 \subseteq S$ is the set of initial states.
4. $L : S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state.
Finite automata can be used to model concurrent and reactive systems as well.

One of the main advantages of using automata for model checking is that both the modeled system and the specification are represented in the same way.

A Kripke structure directly corresponds to a Büchi automaton, where all the states are accepting.

A Kripke structure \((S, R, S_0, L)\) can be transformed into an automaton \(A = (\Sigma, S \cup \{\iota\}, \Delta, \{\iota\}, S \cup \{\iota\})\) with \(\Sigma = 2^{AP}\) where

\[(s, \alpha, s') \in \Delta \text{ for } s, s' \in S \text{ iff } (s, s') \in R \text{ and } \alpha = L(s') \text{ and} \]

\[(\iota, \alpha, s) \in \Delta \text{ iff } s \in S_0 \text{ and } \alpha = L(s). \]
The given system is modeled as a Büchi automaton \(A \).

Suppose the desired property is originally given by a linear temporal formula \(f \).

Let \(B_f \) (resp. \(B_{\neg f} \)) denote a Büchi automaton equivalent to \(f \) (resp. \(\neg f \)); we will later study how a temporal formula can be translated into an automaton.

The model checking problem \(A \models f \) is equivalent to asking whether

\[
L(A) \subseteq L(B_f) \lor L(A) \cap L(B_{\neg f}) = \emptyset.
\]

The well-used model checker SPIN, for example, adopts this automata-theoretic approach.

So, we are left with two basic problems:

- Compute the intersection of two Büchi automata.
- Test the emptiness of the resulting automaton.
Intersection of Büchi Automata

Let $B_1 = (\Sigma, Q_1, \Delta_1, Q_1^0, F_1)$ and $B_2 = (\Sigma, Q_2, \Delta_2, Q_2^0, F_2)$.

We can build an automaton for $L(B_1) \cap L(B_2)$ as follows.

$B_1 \cap B_2 = (\Sigma, Q_1 \times Q_2 \times \{0, 1, 2\}, \Delta, Q_1^0 \times Q_2^0 \times \{0\}, Q_1 \times Q_2 \times \{2\})$.

We have $(\langle r, q, x \rangle, a, \langle r', q', y \rangle) \in \Delta$ iff the following conditions hold:

1. $(r, a, r') \in \Delta_1$ and $(q, a, q') \in \Delta_2$.
2. The third component is affected by the accepting conditions of B_1 and B_2.
 - If $x = 0$ and $r' \in F_1$, then $y = 1$.
 - If $x = 1$ and $q' \in F_2$, then $y = 2$.
 - If $x = 2$, then $y = 0$.
 - Otherwise, $y = x$.

The third component is responsible for guaranteeing that accepting states from both B_1 and B_2 appear infinitely often.
A simpler intersection may be obtained when all of the states of one of the automata are accepting.

Assuming all states of B_1 are accepting and that the acceptance set of B_2 is F_2, their intersection can be defined as follows:

$$B_1 \cap B_2 = (\Sigma, Q_1 \times Q_2, \Delta', Q_1^0 \times Q_2^0, Q_1 \times F_2)$$

where $(\langle r, q \rangle, a, \langle r', q' \rangle) \in \Delta'$ iff $(r, a, r') \in \Delta_1$ and $(q, a, q') \in \Delta_2$.

Checking Emptiness

Let ρ be an accepting run of a Büchi automaton $B = (\Sigma, Q, \Delta, Q^0, F)$.

Then, ρ contains infinitely many accepting states from F.

Since Q is finite, there is some suffix ρ' of ρ such that every state on it appears infinitely many times.

Each state on ρ' is reachable from any other state on ρ'.

Hence, the states in ρ' are included in a strongly connected component.

This component is reachable from an initial state and contains an accepting state.
Conversely, any strongly connected component that is reachable from an initial state and contains an accepting state generates an accepting run of the automaton.

Thus, checking nonemptiness of $L(B)$ is equivalent to finding a strongly connected component that is reachable from an initial state and contains an accepting state.

That is, the language $L(B)$ is nonempty iff there is a reachable accepting state with a cycle back to itself.
Double DFS Algorithm

\textbf{procedure} \textit{emptiness} \\
\hspace{1em} \textbf{for all} \ q_0 \in Q^0 \ \textbf{do} \\
\hspace{2em} dfs1(q_0); \\
\hspace{2em} \text{terminate}(True); \\
\textbf{end procedure}

\textbf{procedure} \textit{dfs1}(q) \\
\hspace{1em} \text{local} \ q'; \\
\hspace{2em} \text{hash}(q); \\
\hspace{2em} \textbf{for all} \ \text{successors} \ q' \ \text{of} \ q \ \textbf{do} \\
\hspace{3em} \textbf{if} \ q' \ \text{not in the hash table} \ \textbf{then} \ \textit{dfs1}(q'); \\
\hspace{3em} \textbf{if} \ \textit{accept}(q) \ \textbf{then} \ \textit{dfs2}(q); \\
\textbf{end procedure}
Double DFS Algorithm (cont.)

procedure dfs2(q)
 local q';
 flag(q);
 for all successors q' of q do
 if q' on dfs1 stack then terminate(False);
 else if q' not flagged then dfs2(q');
 end if;
end procedure
Correctness

Lemma

Let \(q \) be a node that does not appear on any cycle. Then the DFS algorithm will backtrack from \(q \) only after all the nodes that are reachable from \(q \) have been explored and backtracked from.

Theorem

The double DFS algorithm returns a counterexample for the emptiness of the checked automaton \(B \) exactly when the language \(L(B) \) is not empty.
Correctness (cont.)

Suppose a second DFS is started from a state q and there is a path from q to some state p on the search stack of the first DFS.

There are two cases:

- There exists a path from q to a state on the search stack of the first DFS that contains only unflagged nodes when the second DFS is started from q.
- On every path from q to a state on the search stack of the first DFS there exists a state r that is already flagged.

The algorithm will find a cycle in the first case.

We show that the second case is impossible.
Correctness (cont.)

Suppose the contrary: On every path from q to a state on the search stack of the first DFS there exists a state r that is already flagged.

Then there is an accepting state from which a second DFS starts but fails to find a cycle even though one exists.

- Let q be the first such state.
- Let r be the first flagged state that is reached from q during the second DFS and is on a cycle through q.
- Let q' be the accepting state that starts the second DFS in which r was first encountered.

Thus, according to our assumptions, a second DFS was started from q' before a second DFS was started from q.
Correctness (cont.)

Case 1: The state q' is reachable from q.
- There is a cycle $q' \rightarrow \cdots \rightarrow r \rightarrow \cdots \rightarrow q \rightarrow \cdots \rightarrow q'$.
- This cycle could not have been found previously.
- This contradicts our assumption that q is the first accepting state from which the second DFS missed a cycle.

Case 2: The state q' is not reachable from q.
- q' cannot appear on a cycle.
- q is reachable from r and q'.
- If q' does not occur on a cycle, by Lemma 23 we must have backtracked from q in the first DFS before from q'.
- This contradicts our assumption about the order of doing the second DFS.
Concluding Remarks

Büchi automata occupy a very special position in logic and automata theory.

They have found practical applications in linear temporal logic model checking.

In another lecture, we will study how a linear temporal logic formula can be translated into an equivalent Büchi automaton.
References

