Elementary Automata Theory

Bow-Yaw Wang

Institute of Information Science Academia Sinica. Taiwan

July 1, 2009

July 1, 2009 1 / 75

Outline

- Automata over Finite Input Sequences
- 2 Automata over Infinite Input Sequences
- 3 Conversion between ω -Automata
- 4 S1S and ω -Automata

Finite Automata

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - Q is a finite set of states;
 - \triangleright Σ is a finite input alphabet;
 - $\delta \subseteq Q \times \Sigma \times Q$ is a transition relation;
 - $q_0 \in Q$ is the initial state;
 - $F \subseteq Q$ is a set of accepting states.
- If the transition relation is in fact a function from $Q \times \Sigma$ to Q, it is a deterministic finite automaton (DFA). Otherwise, it is a non-deterministic finite automaton (NFA).

July 1, 2009 3 / 75

Example

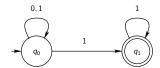


Figure: NFA M₀

• $M_0 = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0, q_1\};$
- $\Sigma = \{0, 1\};$
- $\delta = \{(q_0, 0, q_0), (q_0, 1, q_0), (q_0, 1, q_1), (q_1, 1, q_1)\};$
- $F = \{q_1\}.$

Input Sequences and Runs

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA.
- An input sequence $\alpha = a_1 a_2 \cdots a_n$ is a finite sequence of symbols over the alphabet Σ .
 - The finite sequence without any symbol is denoted by ϵ .
- A run $\rho = q_0 q_1 \cdots q_{n+1}$ on an input sequence $\alpha = a_1 a_2 \cdots a_n$ is a sequence of states such that

for all
$$0 \le i < n, (q_i, a_{i+1}, q_{i+1}) \in \delta$$
.

- A run $\rho = q_0 q_1 \cdots q_{n+1}$ of M over $\alpha = a_1 a_2 \cdots a_n$ is accepting if $q_{n+1} \in F$.
- An input sequence α is accepted by M if there is an accepting run ρ of M over α .

July 1, 2009

Example (cont'd)

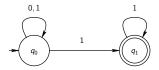


Figure: NFA Mo

- For the input sequence 0000, there is only one run $q_0q_0q_0q_0q_0$.
 - 0000 is not accepted by M_0 .
- For the input sequence 0011, there are three possible runs:
 - $q_0q_0q_0q_0q_0$, $q_0q_0q_0q_0q_1$, and $q_0q_0q_0q_1q_1$.
 - the dark green ones are accepting.
 - 0011 is accepted by M_0 .

Languages

- Given an alphabet Σ , a language is a set of input sequences over Σ .
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA. Define

$$L(M) = \{\alpha : \alpha \text{ is an input sequence accepted by } M\}.$$

- L(M) is the language accepted (or recognized) by M.
- Thus,

$$L(M_0) = \{1,01,11,001,011,111,\ldots\}$$

= $\{\alpha : \text{ the last symbol of } \alpha \text{ is } 1\}.$

Expressive Power

- Let M be a DFA. Since a DFA is also an NFA, the language L(M) is accepted by an NFA as well.
- Let N be an NFA. We will prove that L(N) can be accepted by a DFA.
- In other words, nondeterminism does not recognize more languages. For finite automata, it suffces to consider deterministic fintie automata.

Subset Construction

Theorem

Let L be a language accepted by an NFA. Then there is a DFA M such that L(M) = L.

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and L(N) = L. Consider $M = (2^Q, \Sigma, \delta', \{q_0\}, F')$ where

- $\delta'(X, a) = \bigcup_{x \in X} \delta(x, a);$ $F' = \{X \subseteq Q : X \cap F \neq \emptyset\}.$

We can show that L(N) = L(M) by induction on the length of input sequences.

Example

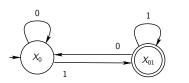


Figure: DFA M₁

- Let us find a DFA M_1 such that $L(M_1) = L(M_0)$.
- $M_1 = (Q', \Sigma, \delta', \{q_0\}, F')$ where
 - $P = \{X_{\varnothing}, X_0, X_1, X_{01}\} \text{ where } \begin{array}{c|cccc} X_{\varnothing} & X_0 & X_1 & X_{01} \\ \hline \varnothing & \{q_0\} & \{q_1\} & \{q_0, q_1\} \end{array}$
 - $\delta' = \{(X_0, 0, X_0), (X_0, 1, X_{01}), (X_1, 1, X_1), (X_{01}, 0, X_0), (X_{01}, 1, X_{01})\}$
 - $F' = \{X_1, X_{01}\}.$

Operations on Languages

- Let Σ be a finite alphabet, and L, L_0 , L_1 be languages over Σ .
- The concatenation of L_0 and L_1 (denoted by L_0L_1) is defined by

$$L_0L_1=\{\alpha\beta:\alpha\in L_0,\beta\in L_1\}.$$

- Define $L^0 = \{\epsilon\}$ and $L^i = LL^{i-1}$ for $i \ge 1$.
- The Kleene closure (or just closure) of L (denoted by L^*) is defined by

$$L^* = \bigcup_{i=0}^{\infty} L^i.$$

• The positive closure of L (denoted by L^+) is defined by

$$L^+ = \bigcup_{i=1}^{\infty} L^i.$$

Regular Expressions

- ullet Let Σ be an alphabet. The regular expressions over Σ are defined as follows.
 - \bigcirc \emptyset is a regular expression denoting the empty set;
 - **2** ϵ is a regular expression denoting the set $\{\epsilon\}$;
 - **3** For each $a \in \Sigma$, a is a regular expression denoting the set $\{a\}$;
 - If r and s are regular expressions denoting the sets R and Srespectively, then r + s, rs, and r^* are regular expressions denoting $R \cup S$, RS, and R^* respectively.

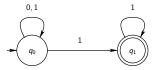


Figure: NFA M₀

- Let $\Sigma = \{0,1\}$. $L_0 = \{\epsilon,00\}$ and $L_1 = \{1,111\}$.
 - $L_0L_1 = \{1, 111, 001, 00111\};$
 - $L_0^+ = {\epsilon, 00, 0000, \ldots} = {0^{2i} : i \ge 0};$
 - $L_1^* = \{\epsilon, 1, 11, 111, \ldots\} = \{1^i : i \ge 0\}.$
- Also note that $L_0 \subseteq \Sigma^*$ and $L_1 \subseteq \Sigma^*$.
 - Thus, a language is a subset of Σ^* .
- We have $L(M_0) = (0+1)^*1^+$

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1 2000 13 /

NFA with ϵ -Transitions

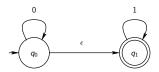


Figure: NFA M₂

- Since $\epsilon \notin \Sigma$, we do not allow, for example, (p, ϵ, q) in the transition relation of finite automata.
- A transition with ϵ as its input symbol is called an ϵ -transition.
 - Intuitively, it represents that the finite automaton can move to another state without consuming any input symbol.
- Consider the NFA M_2 . We have $L(M_2) = 0^*1^*$.

Regular Expressions to NFA with ϵ -Transitions

Theorem

Let r be a regular expression. There is an NFA with ϵ -transition that accepts the language denoted by r.

Proof.

We prove by induction on the r. For the basis, see the following.

For the inductive step, first consider r = st. We use

(assuming a single acceptance state q_{0f})

Bow-Yaw Wang (Academia Sinica)

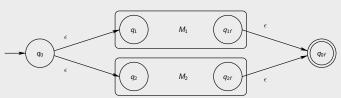
lementary Automata Theory

July 1, 2009 15

Regular Expressions to NFA with ϵ -Transitions (cont'd)

Proof (cont'd).

For r = s + t, we use



Finally, for $r = s^*$, we use

NFA with ϵ -Transitions to DFA

Figure: NFA M_2 to M_3 without ϵ -transition

- ullet It is actually not difficult to see that ϵ -transitions can be removed.
 - The idea is to simulate ϵ -transitions by consuming input symbols.
- We will not give a proof but only consider an example.
- In general, removing ϵ -transitions will result in an NFA.
- We can futher transform an NFA to a DFA.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

ulv 1. 2009 17 /

DFA to Regular Expressions

Theorem

Let D be a DFA. There is a regular expression denoting L(D).

Proof.

Let $D = (\{q_1, \dots, q_n\}, \Sigma, \delta, q_1, F)$ be a DFA. Define

$$R_{ij}^{0} = \begin{cases} \{a : (q_{i}, a, q_{j}) \in \delta\} & \text{if } i \neq j \\ \{a : (q_{i}, a, q_{j}) \in \delta\} \cup \{\epsilon\} & \text{if } i = j \end{cases}$$

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

Intuitively, R_{ij}^k represents the inputs that cause D to go from q_i to q_j without passing through a state higher than q_k . It is not hard to see that R_{ii}^k can be denoted by regular expressions.

The result follows by observing that $L(D) = \bigcup_{q_i \in F} R_{1i}^n$.

Example

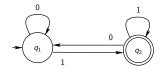


Figure: DFA M₄

	k = 0	k = 1	<i>k</i> = 2
R_{11}^{k}	0	0+	
R_{12}^{k}	1	0*1	$0^*1(0^*1)^*0^*1 + 0^*1 = (0+1)^*1$
R_{21}^{k}	0	0+	
R_{22}^{k}	1	0*1	

Bow-Yaw Wang (Academia Sinica)

lementary Automata Theory

1. 2009 19 / 75

Regular Languages

ullet The class ${\mathcal R}$ of regular languages consists of languages accepted by deterministic finite automata.

$$\mathcal{R} = \{L(D) : D \text{ is a DFA } \}$$

• Since each NFA can be transformed to a DFA, we have

$$\mathcal{R} = \{L(M) : M \text{ is an NFA }\}$$

• Since each regular expression can be transformed to an NFA, we have

$$\mathcal{R} = \{L(e) : e \text{ is a regular expression }\}$$

Closure Properties

- For any $L_0, L_1 \in \mathcal{R}$, there are regular expressions r_0 and r_1 denoting L_0 and L_1 respectively.
- Moreover, the regular expression $r_0 + r_1$ denotes $L_0 \cup L_1$ and is accepted by an NFA.
- Thus $L_0 \cup L_1 \in \mathcal{R}$ for any $L_0, L_1 \in \mathcal{R}$.
- Similarly, we can prove that
 - ▶ $L_0L_1 \in \mathcal{R}$ for any $L_0, L_1 \in \mathcal{R}$, and
 - $L^* \in \mathcal{R}$ for any $L \in \mathcal{R}$.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009 21 / 7

Closure Properties (cont'd)

Theorem

For any $L \in \mathcal{R}$, $\Sigma^* \setminus L \in \mathcal{R}$.

Proof.

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA and L = L(D). Then $D' = (Q, \Sigma, \delta, q_0, Q \setminus F)$ accepts the language $\Sigma^* \setminus L$.

Theorem

For any $L_0, L_1 \in \mathcal{R}$, $L_0 \cap L_1 \in \mathcal{R}$.

Proof.

Observe that $L_0 \cap L_1 = \Sigma^* \setminus ((\Sigma^* \setminus L_0) \cup (\Sigma^* \setminus L_1))$.

ω -Automata

- We would like to generalize inputs to finite automata.
- Instead of finite input sequences, let us consider an infinite input sequence $\alpha = a_1 a_2 \cdots a_n \cdots$ over Σ .
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton.
- As before, define a run $\rho = q_0 q_1 \cdots q_n \cdots$ on α to be an infinite sequence of states such that

for all
$$i \ge 0, (q_i, a_{i+1}, q_{i+1}) \in \delta$$
.

- What is an accepting run then?
 - ▶ Problem: there is no "final" state in an infinite run.
 - We cannot reuse the old definition.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

1 1 2000 22 / 75

Büchi Acceptance

- Let $\rho = q_0 q_1 \cdots q_n \cdots$ be an infinite run.
- Define

 $Inf(\rho) = \{ q \in Q : q \text{ occurs infinitely many times in } \rho \}.$

- An infinite run ρ of $M = (Q, \Sigma, \delta, q_0, F)$ over α is accepting if $Inf(\rho) \cap F \neq \emptyset$.
 - ▶ This is called Büchi acceptance
- An infinite input sequence α is accepted by M if there is an accepting infinite run ρ of M over α .
- Finally, define

 $L_{\omega}(M) = \{\alpha : \alpha \text{ is an infinite input sequence accepted by } M\}.$

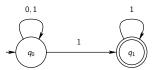


Figure: NFA M₀

- Let us reconsider M_0 .
- $L_{\omega}(M_0) = \{\alpha : \alpha \text{ has only finitely many 0's} \}.$
 - If there are infintiely many 0's, M_0 has to stay in q_0 . It cannot pass q_1 infinitely many times.
- We will write the expression $(0+1)^*1^\omega$ to denote $L(M_0)$.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009 25

5 / 75

Nondeterminism

- For finite automata over finite input sequences, we know nondeterminism does not give us more expressive power.
- However, nondeterministic finite automata with Büchi acceptance over infinite input sequences can recognize more languages than deterministic ones.

Theorem

 $(0+1)^*1^\omega$ cannot be accepted by any DFA with Büchi acceptance.

Proof.

Suppose $D=(Q,\Sigma,\delta,q_0,F)$ is a DFA and $L(D)=(0+1)^*1^\omega$. Consider 1^ω . There is n_0 such that 1^{n_0} causes D to reach an accepting state. Now consider $1^{n_0}01^\omega$. There is n_1 such that $1^{n_0}01^{n_1}$ causes D to reach an accepting state. We can therefore construct $1^{n_0}01^{n_1}01^{n_2}0\cdots$ to cause D to pass through F infinitely many times. A contradiction.

Remark

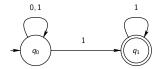


Figure: NFA M₀

- The proof does not work for NFA.
- Consider again the NFA M_0 .
- 1 causes M_0 to reach q_1 . 101 causes M_0 to reach q_1 , etc. There is no problem.
- However, 101 passes q_1 only once. Similarly, 10101, 1010101, ... pass q_1 only once.
- Because M_0 is nondeterministic, infinite runs may not be the "limit" of their finite prefixes.

low-Yaw Wang (Academia Sinica)

lementary Automata Theory

I.J. 1 2000 27 / 75

The Class of Regular ω -Languages

Define

 $\mathcal{R}_{\omega} = \{L_{\omega}(M) : M \text{ is an NFA with Büchi acceptance } \}.$

- \mathcal{R}_{ω} is called the class of regular ω -languages.
- Under Büchi acceptance, nondeterminism increases the expressive power. We have

 $\{L_{\omega}(D): D \text{ is a DFA with Büchi acceptance }\} \not\subseteq \mathcal{R}_{\omega}.$

• In addition to Büchi acceptance, we will discuss three different acceptances.

Muller Acceptance

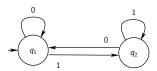


Figure: DFA M₅

- Let $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a finite automaton with $\mathcal{F} \subseteq 2^Q$.
- An infinite run ρ over an input sequence α on M is accepting if $Inf(\rho) \in \mathcal{F}$.
 - This is called Muller acceptance.
- Consider the DFA M_5 with $\mathcal{F} = \{\{q_2\}\}$.
- With Muller acceptance, we have $L_{\omega}(M_5) = (0+1)^*1^{\omega}$.
 - ▶ Note that *M*₅ is deterministic
 - Also note that $(01)^\omega$ is not accepted with Muller acceptance.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009

/____

09 29 / 75

Rabin Acceptance

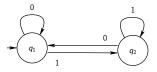


Figure: DFA M₅

- Let $M = (Q, \Sigma, \delta, q_0, \Omega)$ be a finite automaton with $\Omega = \{(E_0, F_0), \dots, (E_k, F_k)\}$ and $E_i, F_i \subseteq Q$.
- ullet An infinite run ho over an input sequence lpha on M is accepting if

 $\exists (E,F) \in \Omega$ such that $Inf(\rho) \cap E = \emptyset$ and $Inf(\rho) \cap F \neq \emptyset$.

- Consider the DFA M_5 with $\Omega = \{(\{q_1\}, \{q_2\})\}.$
- With Rabin acceptance, we have $L_{\omega}(M_5) = (0+1)^*1^{\omega}$.
 - ▶ $Inf(\rho) \cap \{q_1\} = \emptyset$ forbids 0 to occur infinitely many times.
 - ▶ $Inf(\rho) \cap \{q_2\} \neq \emptyset$ forces 1 to occur infinitely many times.

Streett Acceptance

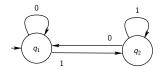


Figure: DFA M₅

- Let $M = (Q, \Sigma, \delta, q_0, \Omega)$ be a finite automaton with $\Omega = \{(E_0, F_0), \dots, (E_k, F_k)\}$ and $E_i, F_i \subseteq Q$.
- ullet An infinite run ho over an input sequence lpha on M is accepting if

$$\forall (E, F) \in \Omega, \mathsf{Inf}(\rho) \cap E \neq \emptyset \text{ or } \mathsf{Inf}(\rho) \cap F = \emptyset.$$

- Observe that Rabin acceptance and Streett acceptance are complementary.
- Consider the DFA M_5 with $\Omega = \{(\{q_2\}, \{q_1, q_2\}), (\emptyset, \{q_1\})\}.$
 - $(\{q_2\}, \{q_1, q_2\})$ forces 1 to occur infinitely many times.
 - $(\emptyset, \{q_1\})$ forbids 0 to occur infinitely many times.

Bow-Yaw Wang (Academia Sinica

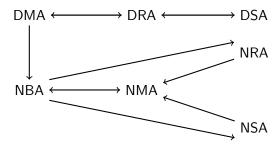
Elementary Automata Theory

July 1, 2009 31 /

Expressive Power

- An important question in ω -automata theory is to compare the expressive power of various acceptances.
- We have shown that non-deterministic Büchi acceptance is strictly more expressive than deterministic Büchi acceptance.
- What is the relation between non-deterministic Büchi acceptance and non-deterministic Muller acceptance
 - Similarly, what about non-deterministic Rabin acceptance and non-deterministic Streett acceptance?
- What is the relation between deterministic Büchi acceptance and deterministic Muller acceptance
 - And between deterministic Rabin acceptnace and deterministic Streett acceptance?
- We will address these questions shortly.

Expressive Power (Overview)



D: Deterministic, N: Nondeterministic

B: Büchi, M: Muller, R: Rabin, S: Streett

A: Automata

 $X \rightarrow Y$: X can be translated to Y

(The graph here only covers translations in this lecture and hence is not complete.)

Bow-Yaw Wang (Academia Sinica)

Elementary Automata Theory

July 1, 2009 33 / 7

Büchi to Muller Acceptance

Lemma

Let $B = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton with Büchi acceptance. Define $M = (Q, \Sigma, \delta, q, \mathcal{F})$ with $\mathcal{F} = \{G \subseteq Q : G \cap F \neq \emptyset\}$. Then $L_{\omega}(B) = L_{\omega}(M)$.

Proof.

Let α be an input sequence and ρ an infinite run over α on B. $\alpha \in L_{\omega}(B)$ iff $Inf(\rho) \cap F \neq \emptyset$ iff $Inf(\rho) \in \mathcal{F}$ iff $\alpha \in L_{\omega}(M)$.

Example

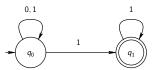


Figure: NFA M₀

- The finite automaton $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \mathcal{F})$ with Muller acceptance where
 - $\delta = \{(q_0, 0, q_0), (q_0, 1, q_0), (q_0, 1, q_1), (q_1, 1, q_1)\};$
 - $\mathcal{F} = \{\{q_1\}, \{q_0, q_1\}\}$

accepts the same ω -language.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1 2000 35 / 7

Muller to Büchi Acceptance

Lemma

Let $M=(Q,\Sigma,\delta,q_0,\mathcal{F})$ be a finite automaton with Muller acceptance. There is a finite automaton $B=(Q',\Sigma,\delta',q_0,F)$ with Büchi acceptance such that $L_{\omega}(B)=L_{\omega}(M)$.

Proof.

The idea is to "guess" a set $G \in \mathcal{F}$ and check whether all states in G are visited infinitely many times.

For each $G \in \mathcal{F}$, we define $Q_G = \{q_G : q \in G\}$. Moreover, we use a set to record which states in G have been visited. Define $Q' = Q \cup \bigcup_{G \in \mathcal{F}} (Q_G \times 2^G)$.

$$\delta' = \delta \cup \{ (p, a, (q_G, \emptyset)) : (p, a, q) \in \delta \} \cup \\ \{ ((p_G, R), a, (q_G, R \cup \{p\})) : (p, a, q) \in \delta, R \neq G \} \cup \\ \{ ((p_G, G), a, (q_G, \emptyset)) : (p, a, q) \in \delta \}.$$

$$F = \{ (q_G, \emptyset) : q_G \in Q_G, G \in \mathcal{F} \}.$$

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009

Bow-Yaw Wang (Academia Sinica)

Elementary Automata Theory

July 1, 2009

9 36 /

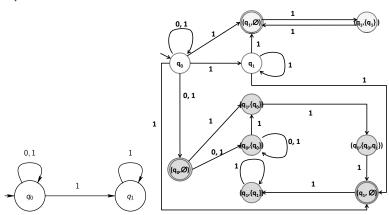


Figure: NFA M₇

• Consider $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \mathcal{F})$ where $\delta = \{(q_0, 0, q_0), (q_0, 1, q_0), (q_0, 1, q_1), (q_1, 1, q_1)\}$ and $\mathcal{F} = \{\{q_0, q_1\}, \{q_1\}\}.$

Rabin and Streett to Muller Acceptance

Lemma

Let $R = (Q, \Sigma, \delta, q_0, \Omega)$ be a finite automaton with Rabin acceptance. Define $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with Muller acceptance where

$$\mathcal{F} = \{ G \subseteq Q : \exists (E, F) \in \Omega . G \cap E = \emptyset \land G \cap F \neq \emptyset \}.$$

Then $L_{\omega}(R) = L_{\omega}(M)$.

Lemma

Let $S = (Q, \Sigma, \delta, q_0, \Omega)$ be a finite automaton with Streett acceptance. Define $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with Muller acceptance where

$$\mathcal{F} = \{ G \subseteq Q : \forall (E, F) \in \Omega . G \cap E \neq \emptyset \lor G \cap F = \emptyset \}.$$

Then $L_{\omega}(S) = L_{\omega}(M)$.

• These two follow from the definition immediately.

Example

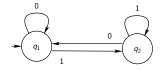


Figure: DFA M₅

- Consider the finite automaton $R = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \Omega)$ with Rabin acceptance where
 - $\delta = \{(q_1, 0, q_1), (q_1, 1, q_2), (q_2, 0, q_1), (q_2, 1, q_2)\}$
 - $\Omega = \{\{q_1\}, \{q_2\}\}.$
- The finite automaton $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{\{q_2\}\})$ with Muller acceptance accepts the same ω -language.

Büchi to Rabin and Street Acceptance

Lemma

Let $B = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton with Büchi acceptance. Define $R = (Q, \Sigma, \delta, q_0, \Omega)$ with Rabin acceptance where $\Omega = \{(\emptyset, F)\}.$ Then $L_{\omega}(B) = L_{\omega}(R)$.

Lemma

Let $B = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton with Büchi acceptance. Define $S = (Q, \Sigma, \delta, q_0, \Omega)$ with Rabin acceptance where $\Omega = \{(F, Q)\}.$ Then $L_{\omega}(B) = L_{\omega}(S)$.

• These two also follow by definition immediately.

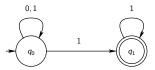


Figure: NFA M₀

- Consider the finite automaton $M_0 = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ with Büchi acceptance where
- The finite automaton $R = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{(\emptyset, \{q_1\})\})$ with Rabin acceptance recognizes the same ω -language.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

ılv 1, 2009 41 / 7

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009 43 / 75

Expressive Power

- We have the following transformaion:
 - ► Büchi to Muller acceptance
 - Muller to Büchi acceptance
 - Rabin and Streett to Muller acceptance
 - ▶ Büchi to Rabin and Streett acceptance
- Therefore,

Lemma

The following classes of ω -languages are equivalent:

- **1** $\{L_{\omega}(M): M \text{ is an NFA with Büchi acceptance }\};$
- **2** $\{L_{\omega}(M): M \text{ is an NFA with Muller acceptance }\};$
- **3** $\{L_{\omega}(M): M \text{ is an NFA with Rabin acceptance }\};$
- **4** $\{L_{\omega}(M): M \text{ is an NFA with Streett acceptance }\}.$

Deterministic Muller to Rabin Acceptance

Lemma

Let $M=(Q,\Sigma,\delta,q_0,\mathcal{F})$ be a DFA with Muller acceptance. Assume $Q=\{1,2,\ldots,k\}$ and $q_0=1$. Consider $R=(Q',\Sigma,\delta',q_0',\Omega)$ with Rabin acceptance where

- $Q' = \{ w \in (Q \cup \{b\})^* : \forall q \in Q \cup \{b\}, q \text{ occurs in } w \text{ exactly once. } \}.$
- $\bullet \ q_0' = \natural \ k \cdots 1.$
- $\delta'(m_1 \cdots m_r \mid m_{r+1} \cdots m_k, a) = m_1 \cdots m_{s-1} \mid m_{s+1} \cdots m_k m_s$ if $\delta(m_k, a) = m_s$.
- $\Omega = \{(E_0, F_0), \dots, (E_k, F_k)\}$ with
 - $E_i = \{ u \mid v : |u| < i \}$
 - $F_i = \{u \mid v : |u| < i\} \cup \{u \mid v : |u| = i \text{ and } \{m \in Q : m \text{ occurs in } v\} \in \mathcal{F}\}.$

We have $L_{\omega}(M) = L_{\omega}(R)$.

Deterministic Muller to Rabin Acceptance

Proof (sketch).

Let us consider a run ρ of M with $\operatorname{Inf}(\rho)=J=\{m_1,\ldots,m_j\}$. In the corresponding run on R, states in $Q\smallsetminus J$ will eventually move before ${\mathfrak h}$. Hence, R will finally visits states of the form $u\,{\mathfrak h}\,v$ where u contains all states in $Q\smallsetminus J$. Therefore, $|u|\geq |Q\smallsetminus J|$ and $|v|\leq |J|=j$ eventually. Since J are visited infinitely often, we have |v|=|J|=j infinitely often. Moreover, the states in v when |v|=j are precisely the set J.

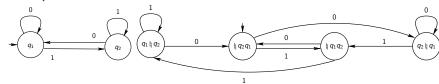


Figure: DFA M₈

- Consider $M_5 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{\{q_2\}\})$ with Muller acceptance where
 - $b = \{(q_1,0,q_1),(q_1,1,q_2),(q_2,0,q_1),(q_2,1,q_2)\}.$
- The DFA $M_8 = (Q, \{0,1\}, \delta', \{(E_0, F_0), (E_1, F_1), (E_2, F_2)\})$ with Rabin acceptance where
 - $Q = \{ \natural \ q_1 \ q_2, \ \natural \ q_2 \ q_1, \ q_1 \ \natural \ q_2, \ q_2 \ \natural \ q_1 \}$
 - $(E_0, F_0) = (\emptyset, \emptyset)$
 - $(E_1, F_1) = (\{ \natural q_1 q_2, \natural q_2 q_1 \}, \{ \natural q_1 q_2, \natural q_2 q_1, q_1 \natural q_2 \})$
 - $(E_2, F_2) = (Q, Q)$

recognizes the same language.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

ulv 1. 2009 45 /

Deterministic Rabin to Muller Acceptance

Lemma

Let $R = (Q, \Sigma, \delta, q_0, \Omega)$ be a DFA with Rabin acceptance. Define $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with Muller acceptance where

$$\mathcal{F} = \big\{ G \subseteq Q : \exists (E,F) \in \Omega . G \cap E = \emptyset \land G \cap F \neq \emptyset \big\}.$$

Then $L_{\omega}(R) = L_{\omega}(M)$.

• This is the same construction for the non-deterministic case.

Deterministic Rabin to Streett Acceptance

Lemma

Let $D=(Q,\Sigma,\delta,q_0,\Omega)$ be a DFA with Rabin acceptance. Consider $E=(Q,\Sigma,\delta,q_0,\Omega)$ as a DFA with Streett acceptance. Then $L_{\omega}(D)=\Sigma^{\omega}\smallsetminus L_{\omega}(E)$.

Proof.

Rabin acceptance and Streett acceptance are complementary.

Lemma

Let $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a DFA with Muller acceptance. Define $M' = (Q, \Sigma, \delta, q_0, 2^Q \setminus \mathcal{F})$. Then $L_{\omega}(M) = \Sigma^{\omega} \setminus L_{\omega}(M')$.

Proof.

By definition.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

ly 1, 2009 47 / 7

Deterministic Rabin to Streett Acceptance

Lemma

Let R be a DFA with Rabin acceptance. There is a DFA S with Streett acceptance such that $L_{\omega}(R) = L_{\omega}(S)$.

Proof.

We construct a DFA M with Muller acceptance such that $L_{\omega}(M) = L_{\omega}(R)$. Build M' with Muller acceptance such that $L_{\omega}(M') = \Sigma^{\omega} L_{\omega}(M)$. Then we construct a DFA R' with Rabin acceptance such that $L_{\omega}(R') = L_{\omega}(M')$. Then S = R' with Street acceptance is what we want. We have the following equation:

 $L_{\omega}(S)$ with Streett acceptance

- = $\Sigma^{\omega} \setminus L_{\omega}(R')$ with Rabin acceptance
- = $\Sigma^{\omega} \setminus L_{\omega}(M')$ with Muller acceptance
- = $\Sigma^{\omega} \setminus (\Sigma^{\omega} \setminus L_{\omega}(M))$ with Muller acceptance
- $= L_{\omega}(M)$ with Muller acceptance
- = $L_{\omega}(R)$ with Rabin acceptance.

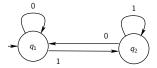


Figure: Rabin to Muller Acceptance

- Consider the DFA $R = (\{q_1, q_2\}, \{0, 1\}, \delta, q_0, \Omega)$ with Rabin acceptance where
 - $\delta = \{(q_1, 0, q_1), (q_1, 1, q_2), (q_2, 0, q_1), (q_2, 1, q_2)\}$
 - $\Omega = \{(\{q_1\}, \{q_2\})\}$
- The DFA $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{\{q_2\}\})$ with Muller acceptance recognizes the same language.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

ulv 1, 2009 49

Example

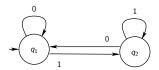


Figure: Muller Complementation

- Consider the DFA $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{\{q_2\}\})$ with Muller acceptance where
 - $b = \{(q_1, 0, q_1), (q_1, 1, q_2), (q_2, 0, q_1), (q_2, 1, q_2)\}$
- The DFA $M'=(\{q_1,q_2\},\{0,1\},\delta,q_1,\{\varnothing,\{q_1\},\{q_1,q_2\}\})$ with Muller acceptance recognizes $\Sigma^\omega \setminus L_\omega(M)$.

Example

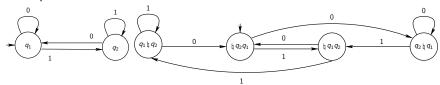


Figure: Muller to Rabin Acceptance

- Consider the DFA $M'=(\{q_1,q_2\},\{0,1\},\delta,q_1,\{\varnothing,\{q_1\},\{q_1,q_2\}\})$ with Muller acceptance where
 - $\delta = \{(q_1, 0, q_1), (q_1, 1, q_2), (q_2, 0, q_1), (q_2, 1, q_2)\}$
- The DFA $R' = (Q, \{0,1\}, \delta', \{(E_0, F_0), (E_1, F_1, (E_2, F_2), (E_3, F_3))\})$ with Rabin acceptance where
 - $Q = \{ \natural q_1 q_2, \natural q_2 q_1, q_1 \natural q_2, q_2 \natural q_1 \}$
 - $(E_0, F_0) = (\emptyset, \{ \natural q_1 q_2, \natural q_2 q_1 \})$
 - $(E_1, F_1) = (\{ \downarrow q_1 q_2, \downarrow q_2 q_1 \}, \{ \downarrow q_1 q_2, \downarrow q_2 q_1, q_2 \downarrow q_1 \})$
 - $(E_2, F_2) = (E_3, F_3) = (Q, Q)$

recognizes $L_{\omega}(M')$.

ow-Yaw Wang (Academia Sinica)

Elementary Automata Theory

July 1 2009 51 /

Example

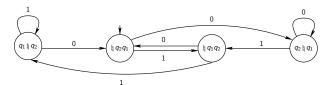


Figure: Rabin Complementation

- Consider the DFA $R' = (Q, \{0,1\}, \delta', \{(E_0,F_0), (E_1,F_1), (E_2,F_2), (E_3,F_3)\})$ with Rabin acceptance where
 - $Q = \{ \natural q_1 q_2, \natural q_2 q_1, q_1 \natural q_2, q_2 \natural q_1 \}$
 - $(E_0, F_0) = (\emptyset, \{ \natural q_1 q_2, \natural q_2 q_1 \})$
 - $(E_1, F_1) = (\{ \natural q_1 q_2, \natural q_2 q_1 \}, \{ \natural q_1 q_2, \natural q_2 q_1, q_2 \natural q_1 \})$
 - $(E_2, F_2) = (E_3, F_3) = (Q, Q)$
- The DFA $S = (Q, \{0,1\}, \delta', \{(E_0, F_0), (E_1, F_1), (E_2, F_2), (E_3, F_3)\})$ with Streett acceptance recognizes $\Sigma^{\omega} \setminus L_{\omega}(R')$.

Expressive Power

• In summary, we have shown Muller, Rabin, and Streett acceptaces are equivalent for deterministic finite automata.

Theorem

The following classes of ω -languages are equivalent:

- **1** $\{L_{\omega}(D): D \text{ is a DFA with Muller acceptance }\};$
- **2** $\{L_{\omega}(D): D \text{ is a DFA with Rabin acceptance }\};$
- **3** $\{L_{\omega}(D): D \text{ is a DFA with Streett acceptance }\}.$

Corollary

The following classes are closed under union, intersection, and complementation:

- **1** $\{L_{\omega}(D): D \text{ is a DFA with Muller acceptance }\};$
- **2** $\{L_{\omega}(D): D \text{ is a DFA with Rabin acceptance }\};$
- **3** $\{L_{\omega}(D): D \text{ is a DFA with Streett acceptance }\}.$

July 1, 2009

Relating Nondeterministic and Deterministic Classes

- We have shown that Büchi, Muller, Rabin, Streett acceptances are equivalent for nondeterministic finite automata
- We also know that Muller, Rabin, Streett acceptances are equivalent for deterministic finite automata
- Are these two classes of ω -languages equivalent?
 - YES!
- We can in fact compute the complement of NFA with Büchi acceptance
 - Transform NFA with Büchi acceptance to DFA with, say, Muller acceptance
 - Find the complement of the DFA with Muller acceptance
 - ► Transform DFA with Muller acceptance to NFA with Büchi acceptance
- In Prof. Tsay's lecture, a construction for complementation will be given. (Have fun!)

Second-Order Logic

- Second-order logic (SO) is an extension of first-order logic.
- It allows relational variables X, Y, Z, \dots
- Terms in second-order logic includes
 - All terms in first-order logic; and
 - * $Xt_1 \cdots t_n$ where X is an *n*-ary relational variable and t_1, \ldots, t_n are terms.
- Well-formed formulae in second-order logic includes
 - All well-formed formulae in first-order logic; and
 - $\exists X \phi$ where X is a relational variable and ϕ a formula.

Monadic Second-Order Logic: Syntax

- A 1-ary relational symbol is called monadic.
- Monadic second-order logic (MSO) is a subclass of second-order logic where all relational variables are monadic.
- ullet The syntax of monadic second-order logic over vocabulary σ (MSO[σ]) is as follows.
 - ▶ If $X, Y \in \sigma$ are monadic, $X \subseteq Y$ is in MSO[σ];
 - If R, Y_1, Y_2, \dots, Y_k are in MSO[σ] and R has arity k, then $RY_1Y_2\cdots Y_k$ is in $MSO[\sigma]$:
 - If ϕ and ψ are in MSO[σ], so are $\neg \phi$ and $\phi \lor \psi$;
 - If ϕ is in MSO[$\sigma \cup \{X\}$] and X is monadic, then $\exists X \phi$ is in MSO[σ].

July 1, 2009

Monadic Second-Order Logic: Semantics

- ullet The satisfication relation \vDash is defined as follows. Let ${\mathfrak U}$ be a model over the vocabulary $\sigma.$
 - $\mathfrak{U} \models X \subseteq Y$ if $X^{\mathfrak{U}} \subseteq Y^{\mathfrak{U}}$:
 - $\mathfrak{U} \models RY_1 \cdots Y_k$ if $R^{\mathfrak{U}} \cap (Y_1^{\mathfrak{U}} \times \cdots \times Y_k^{\mathfrak{U}}) \neq \emptyset$;
 - $\mathfrak{U} \vDash \neg \phi$ is not $\mathfrak{U} \vDash \phi$;
 - $\mathfrak{U} \models \phi \lor \psi$ if $\mathfrak{U} \models \phi$ or $\mathfrak{U} \models \psi$;
 - $\mathfrak{U} \models \exists X \phi$ if there is an extension model \mathfrak{B} of \mathfrak{U} over $\sigma \cup \{X\}$ such that $\mathfrak{B} \models \phi$.
- Semantically, a monadic symbol represents a set of objects
- Where is the first-order quantification?
 - $\exists x \phi$ is not in $MSO[\sigma]!$

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009 57 /

Abbreviations

• We use the following abbreviations:

$$\begin{array}{lll} \phi \wedge \psi & \text{for} & \neg (\neg \phi \vee \neg \psi) \\ \phi \rightarrow \psi & \text{for} & \neg \phi \vee \psi \\ \forall X \phi & \text{for} & \neg \exists X \neg \phi \\ X = \varnothing & \text{for} & \forall YX \subseteq Y \\ \operatorname{sing}(x) & \text{for} & \neg x = \varnothing \wedge \forall X (X \subseteq x \rightarrow (x \subseteq X \vee X = \varnothing)) \\ x \in P & \text{for} & \operatorname{sing}(x) \wedge x \subseteq P \\ P = Q & \text{for} & P \subseteq Q \wedge Q \subseteq P \\ \exists x \in P \phi & \text{for} & \exists x (x \in P \wedge \phi) \\ \forall x \in P \phi & \text{for} & \forall x (x \in P \rightarrow \phi). \end{array}$$

- Note that sing(x) means that x is a singleton set
 - x is a 1-ary relation and $o \in x$ for exactly one object o

Weak Monadic Second-Order Logic

- Weak Monadic Second-Order Logic (WMSO) has the same syntax as MSO. Its semantics however is slightly different:
 - $\mathfrak{U} \vDash_W \exists X \phi$ if there is an extension model \mathfrak{B} over $\sigma \cup \{X\}$ such that $\mathfrak{B} \vDash_w \phi$ and $X^{\mathfrak{B}}$ is finite.
- In other words, the second-order quantification in WMSO is over finite sets.
 - On the other hand, we can quantify arbitrary sets in MSO.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

I.I. 1 2000 E0 / 75

Infinite Inputs as Structures

- ullet Let Σ be a finite alphabet.
- Consider the structure $\mathfrak{I} = (\mathbb{Z}^+, S^{\mathfrak{I}}, (P_a^{\mathfrak{I}})_{a \in \Sigma})$ where

 - $P_a^{\mathfrak{I}} \subseteq \mathbb{Z}^+$ for all $a \in \Sigma$.
- Intuitively, each positive integer represents a position in an input sequence.
- A position in the set $P_a^{\mathfrak{I}}$ means that the symbol a appears in the position
- We can represent an infinite input with such a structure.

- Let $\Sigma = \{0, 1\}$.
- The input sequence 0^{ω} corresponds to $\mathfrak{I}_0 = (\mathbb{Z}^+, S^{\mathfrak{I}_0}, P_0^{\mathfrak{I}_0} = \mathbb{Z}^+, P_1^{\mathfrak{I}_0} = \varnothing).$
- The input sequence $(01)^{\omega}$ corresponds to $\mathfrak{I}_1 = (\mathbb{Z}^+, S^{\mathfrak{I}_1}, P_0^{\mathfrak{I}_1} = \{2k + 1 : k \in \mathbb{N}\}, P_1^{\mathfrak{I}_1} = \{2k : k \in \mathbb{Z}^+\}).$

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1, 2009 61 /

S1S and WS1S

- Monadic Second-Order Logic with One Successor (S1S) is the logic MSO over infinite inputs.
 - ► That is, the satisfication relation ⊨ is restricted to infinite inputs on the left
- Weak Monadic Second-Order Logic with One Successor (WS1S) is the logic WMSO over infinite inputs.

Initially Closed Sets

• A set P of \mathbb{Z}^+ is initially closed if

for all
$$x, y \in \mathbb{Z}^+(y \in P \land x \le y \to x \in P)$$
.

• Consider the following formula:

$$InCl(P) = \forall x \forall y ((sing(x) \land Sxy \land y \in P) \rightarrow x \in P).$$

Then

Lemma

For any infinite input structure \Im , the following are equivalent:

- $\mathfrak{I} \models InCl(P);$
- $\mathfrak{I} \models_{W} InCl(P);$
- P is initially closed.

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

July 1 2009 63 / 75

Transitive Closure of Successor

• Consider the following binary relations:

$$< = \{(n, n+m) : n, m \in \mathbb{Z}^+\}$$

$$\leq = < \cup \{(n, n) : n \in \mathbb{Z}^+\}.$$

• We can represent these relations in (W)S1S:

$$x \le y = \operatorname{sing}(y) \land \forall P((\operatorname{InCl}(P) \land y \in P) \rightarrow x \in P)$$

 $x < y = x \le y \land \neg(x = y).$

• Thus, we are free to use x < y and $x \le y$ in (W)S1S.

Infiniteness

- Let 3 be an infinite input structure.
- Consider the following S1S formula:

$$Inf(P) = \exists P'(P' \neq \emptyset \land \forall x' \in P' \exists y \in P \exists y' \in P'(x' < y \land x' < y')).$$

- We have $\mathfrak{I} \models \mathsf{Inf}(P)$ if P is an infinite subset of \mathbb{Z}^+ .
 - ▶ Informally. P is an infinite subset of \mathbb{Z}^+ if there are infinite $x_0' < x_1' < x_2' < \cdots$ such that for each i, there is a y_i such that $x_i' < y_i$.

July 1, 2009

Logic and Finite Automata

- Let α be an infinite input over Σ and \mathfrak{I}_{α} its infinite input structure.
- We have two formalisms to define ω -languages over Σ :
 - $L_{\omega}(M) = \{\alpha : \alpha \text{ is accepted by the DFA } M\};$
 - $L_{\omega}(\phi) = \{\alpha : \mathfrak{I}_{\alpha} \models \phi, \phi \text{ is an S1S formula}\}.$
- An important question (as in DFA's and NFA's) is to determine the expressive power of finite automata over infinite inputs and S1S over infinite input structures. More precisely,
 - \triangleright Given a DFA M with Muller acceptance, is there an S1S formula ϕ such that $L_{\omega}(M) = L_{\omega}(\phi)$?
 - Given an S1S formula ϕ , is there a DFA M with Muller acceptance such that $L_{\omega}(\phi) = L_{\omega}(M)$?
- We will show that finite automata and S1S formulae are equally expressive.

Finite Automata to S1S

Lemma

For each NFA M with Muller acceptance, there is a formula $\phi_M \in S1S$ such that $\forall \alpha \in \Sigma^{\omega}$, M accepts α iff $\mathfrak{I}_{\alpha} \models \phi_{M}$.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$. Define $\overline{R} = (R_q)_{q \in Q}$. Consider

$$\phi_M = \exists \overline{R}(\mathsf{Part} \wedge \mathsf{Init} \wedge \mathsf{Trans} \wedge \mathsf{Accept}).$$

Part formalizes that the states on the run form a partition. Let

$$\begin{aligned} \mathsf{State}_q(x) &= x \in R_q \land \bigwedge_{q' \in Q \setminus \{q\}} \neg (x \in R_{q'}) \\ \mathsf{Part} &= \forall x (\mathsf{sing}(x) \to \bigvee_{q \in Q} \mathsf{State}_q(x)). \end{aligned}$$

Finite Automata to S1S

Proof.

Init formalizes the initial condition.

Init =
$$\exists x (\mathsf{State}_{q_0}(x) \land \forall y (\mathsf{sing}(y) \to x \le y).$$

Trans expresses the transition relation.

Trans =
$$\forall x \forall x' ((\operatorname{sing}(x) \land \operatorname{sing}(x') \land Sxx') \rightarrow \bigvee_{(q,a,q') \in \delta} (\operatorname{State}_q(x) \land x \in P_a \land \operatorname{State}_{q'}(x'))).$$

Accept represents the Muller acceptance. Consider

$$InfOcc_q(P) = \exists Q(Q \subset P \land Q \subseteq R_q \land Inf(Q))$$

$$\mathsf{Muller}(P) = \bigvee_{F \in \mathcal{F}} (\bigwedge_{q \in F} \mathsf{InfOcc}_q(P) \land \bigwedge_{q \notin F} \neg \mathsf{InfOcc}_q(P))$$

$$Path(P) = Inf(P) \land InCl(P) \land$$

$$\forall \, Q((\mathsf{Inf}(Q) \land \mathsf{InCI}(Q) \land Q \subseteq P) \to Q = P)$$

Accept =
$$\forall P(Path(P) \rightarrow Muller(P))$$

July 1, 2009

S1S to Finite Automata

Lemma

For each S1S formula ϕ , there is a DFA M_{ϕ} with Muller acceptance such that $\mathfrak{I}_{\alpha} \models \phi$ iff $\forall \alpha \in \Sigma^{\omega}, M_{\phi}$ accepts α .

Proof.

By induction on ϕ , we construct a DFA M over 2^{Σ} . For $\phi = P_a \subseteq P_b$, define $M_{\phi} = (\{q\}, 2^{\Sigma}, \delta, q, \{q\})$ where

$$\delta = \{(q, A, q) : A \subseteq \Sigma, \text{ and } a \in A \text{ implies } b \in A\}.$$

For $\phi = SP_aP_b$, define $M_\phi = (\{q_0, q_1, q_2\}, 2^{\Sigma}, \delta, q_0, \{q_2\})$ where

$$\delta = \{ (q_0, A', q_0) : a \notin A', A' \subseteq \Sigma \} \cup \{ (q_0, A, q_1) : a \in A, A \subseteq \Sigma \} \cup \{ (q_1, B', q_0) : b \notin B', B' \subseteq \Sigma \} \cup \{ (q_1, B, q_2) : b \in B, B \subseteq \Sigma \} \cup \{ (q_2, C, q_2) : C \subseteq \Sigma \}.$$

Bow-Yaw Wang (Academia Sinica)

Elementary Automata Theory

luly 1, 2009 69 / 7

S1S to Finite Automata

Proof.

For disjunction and negation, recall that DFA's with Muller acceptance are closed under union and complementation. We apply these constructions in inductive step.

For
$$\phi = \exists P_a \psi$$
, assume $M_{\psi} = (Q, 2^{\Sigma}, \delta, q_0, \mathcal{F})$. Define $M_{\phi} = (Q, 2^{\Sigma}, \delta', q_0, \mathcal{F})$ where

$$\delta' = \{(q, A \setminus \{a\}, q') : (q, A, q') \in \delta\}.$$

- Technically, we construct a DFA over 2^{Σ} not Σ . This is necessary when, for instance, $\phi = P_a \subseteq P_b$.
- Our presentation is overly simplified. We do not consider monadic relational variables (as in $X \subseteq P_a$).
 - We can extend the alphabet to have a fresh symbol for each relational variable.

Muller Acceptance and S1S

- Thus, we have shown that nondeterministic finite automata with Muller acceptance have the same expressive power as S1S.
- Observe that the quantification over infinite subsets is needed in Muller acceptance.
 - ▶ Precisely, $InfOcc_a(P)$ in Accept.
- The proof would not go through for WS1S where only finite subsets can be quantified.
- Is WS1S strictly less expressive than S1S?

Bow-Yaw Wang (Academia Sinica

Elementary Automata Theory

1 1 2000 71 / 75

Deterministic Muller Acceptance and WS1S

- Interestingly, the answer is negative.
- For deterministic finite automata with Muller acceptance, there is a WS1S formula which recognizes the same ω -language.
- Since deterministic finite automata with Muller acceptance is as expressive as nondeterministic ones, WS1S is as expressive as S1S.
- We will give a WS1S formula ϕ_M for each deterministic finite automata M with Muller acceptance.
 - $\,\,\,\,\,\,$ The idea is to consider all finite prefixes of the accepting run in M.

Deterministic Muller Acceptance to WS1S

Lemma

For each DFA M with Muller acceptance, there is a formula $\phi_M \in S1S$ such that $\forall \alpha \in \Sigma^{\omega}$, M accepts α iff $\mathfrak{I}_{\alpha} \models \phi_M$.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a DFA with Muller acceptance. Define

$$\begin{array}{lll} \mathsf{State}_q(x) &=& x \in R_q \land \bigwedge_{q' \in Q \smallsetminus \{q\}} \lnot(x \in R_{q'}) \\ \mathsf{Part}(I) &=& \forall x \in I(\mathsf{sing}(x) \to \bigvee_{q \in Q} \mathsf{State}_q(x)) \\ \mathsf{Init} &=& \exists x (\mathsf{State}_{q_0}(x) \land \forall y (\mathsf{sing}(y) \to x \leq y) \\ \mathsf{Trans}(I) &=& \forall x \in I \forall x' \in I((\mathsf{sing}(x) \land \mathsf{sing}(x') \land Sxx') \to \\ && \qquad \qquad \bigvee_{(q,a,q') \in \delta} (\mathsf{State}_q(x) \land x \in P_a \land \mathsf{State}_{q'}(x'))) \\ \mathsf{Occ}_q(x) &=& \exists I (\mathsf{InCl}(I) \land x \in I \land \\ && \qquad \qquad \exists \overline{R} (\mathsf{Part}(I) \land \mathsf{Init} \land \mathsf{Trans}(I) \land \mathsf{State}_q(x))) \\ \mathsf{InfOcc}_q &=& \forall x (\mathsf{sing}(x) \to \exists y (x < y \land \mathsf{Occ}_q(y))) \\ \mathsf{Accept} &=& \bigvee_{F \in \mathcal{F}} (\bigwedge_{q \in F} \mathsf{InfOcc}_q \land \bigwedge_{q \notin F} \lnot \mathsf{InfOcc}_q). \end{array}$$

Bow-Yaw Wang (Academia Sinica)

Elementary Automata Theory

July 1, 2009 73 / 7

July 1, 2009

Deterministic Muller Acceptance to WS1S

Proof.

Let ϕ_M = Accept. Then $\Im_\alpha \models \phi_M$ iff M accepts α .

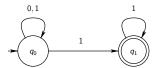


Figure: NFA M₀

- For DFA's, an infinite run is the "limit" of its finite prefixes.
- The formula $InfOcc_q$ correctly expresses that q occurs infinite many times in the run on DFA's.
- On the other hand, $InfOcc_q$ is not correct for NFA's.
 - Consider M_0 as a counterexample.

ow-Yaw Wang (Academia Sinica) Elementary Automata Theory

References

- Hopcroft and Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.
- @ Grädel, Thomas, Wilke. Automata, Logics, and Infinite Games A Guide to Current Research. Springer.

Bow-Yaw Wang (Academia Sinica)

ementary Automata Theory

I 1 2000 7F / 7F