Finite Automata

Elementary Automata Theory @ A finite automaton is a 5-tuple (Q, X, d, qo, F) where
» @ is a finite set of states;
» Y is a finite input alphabet;
Bow-Yaw Wang » §C Q x X x @ is a transition relation;
» qo € Q is the initial state;

Institute of Information Science » FCcQ is a set of accepting states.

Academia Sinica, Taiwan o If the transition relation is in fact a function from Q@ x X to Q, it is a
deterministic finite automaton (DFA). Otherwise, it is a
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non-deterministic finite automaton (NFA).
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Outline Example

@ Automata over Finite Input Sequences

9 Automata over Infinite Input Sequences )
Figure: NFA My
© Conversion between w-Automata
o M= (072757 qo, F) where
> Q = {q()v CI1};
» Y ={0,1};
S1S and w-Automata ’
o » 0= {(q0707 qO)a (q07 17 q0)7 (q07 1) q1)7 (qla 1a ql)}v
> F={aq}.
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Input Sequences and Runs Languages

o Let M=(Q,X%,0,qo, F) be an NFA.
@ An input sequence a = ajap---a, is a finite sequence of symbols over @ Given an alphabet ¥, a language is a set of input sequences over Y.
the alphabet 2. o Let M =(Q,Z,,qo, F) be an NFA. Define
» The finite sequence without any symbol is denoted by e.
@ A run p=qoQgi---Gn+1 ON an input sequence o = ajay---a, is a sequence L(M) = {a: a is an input sequence accepted by M}.

of states such that
e L(M) is the language accepted (or recognized) by M.

for all 0 <i < n,(qi,ai+1,Gi+1) €9. e Thus,
. o L(My) = {1,01,11,001,011,111,...}
@ Arun p=qoqi---gn+1 of M over a = ajap---ap, is accepting if gpi1 € F. = {a: the last symbol of a is 1}.
@ An input sequence « is accepted by M if there is an accepting run p
of M over a.
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Example (cont’'d) Expressive Power

@ Let M be a DFA. Since a DFA is also an NFA, the language L(M) is
accepted by an NFA as well.

Figure: NFA M, o Let N be an NFA. We will prove that L(/N) can be accepted by a
DFA.

@ In other words, nondeterminism does not recognize more languages.
For finite automata, it suffces to consider deterministic fintie
automata.

@ For the input sequence 0000, there is only one run gogoqogoqo-
» 0000 is not accepted by M.
@ For the input sequence 0011, there are three possible runs:

> godoGoqodo. Gogododoq, and Gogodoqi .
» the dark green ones are accepting.

» 0011 is accepted by M.
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Subset Construction

Theorem

Let L be a language accepted by an NFA. Then there is a DFA M such
that L(M) = L.

Proof.
Let N = (Q,,5,qo, F) be an NFA and L(N) = L.
Consider M = (29.%,6",{qo}, F") where

e §(X,a) = L_;(é(x,a);

o F/={XcQ:XnF+gx}.
We can show that L(N) = L(M) by induction on the length of input

sequences. L]
v
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Example

0 1 1
. :
': 1
Figure: DFA M,

@ Let us find a DFA Mj such that L(M;) = L(Mp).
o Mi=(Q',X,0",{qo}, F") where
XQ) ‘ XO ‘ Xl ‘ X01

R r_ X,X,X,X here
Q' = {Xg, Xo, X1, Xo1} wher z ‘{qo}‘{ql}\{qoﬁl}

> 5, = {(X0707X0)a (X07 17X01)7 (Xla 17X1)7 (X01707X0)a (X017 1aX01)};
> F’ = {Xl,X()l}.
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Operations on Languages

Let ¥ be a finite alphabet, and L, Ly, L; be languages over ¥.
The concatenation of Ly and L; (denoted by LgL;) is defined by

Lng = {0[610[ € Lo,ﬂ € Ll}

Define L% = {e} and L' = LL™! for i > 1.

@ The Kleene closure (or just closure) of L (denoted by L*) is defined by
L=t
i=0
@ The positive closure of L (denoted by L") is defined by
L=yt
i=1
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Regular Expressions

@ Let ¥ be an alphabet. The regular expressions over ¥ are defined as
follows.

@ o is a regular expression denoting the empty set;

@ cis a regular expression denoting the set {e};

© For each ac X, ais a regular expression denoting the set {a};

@ If r and s are regular expressions denoting the sets R and S
respectively, then r + s, rs, and r* are regular expressions denoting
RuUS, RS, and R* respectively.
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Example Regular Expressions to NFA with e-Transitions

Theorem

Let r be a regular expression. There is an NFA with e-transition that
accepts the language denoted by r.

Proof.
Figure: NFA M, We prove by induction on the r. For the basis, see the following.

r=e |

r=g | r=a
o Let £=1{0,1}. Lo={e,00} and L; = {1,111}. ‘ ‘ (o —
» Loly = {1,111,001,00111};
» Ly = {¢,00,0000,...} = {02': 1i>0}; For the inductive step, first consider r = st. We use
s LF={e,1,11,111,.. .} = {1': i > 0}.
@ Also note that Lo € X" and [; € X*.

« (OO « ©
» Thus, a language is a subset of ¥*.

e We have L(Mp) =(0+1)*1*

(assuming a single acceptance state qor)
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NFA with e-Transitions Regular Expressions to NFA with e-Transitions (cont'd)

Proof (cont'd).

For r = s + t, we use

Figure: NFA M,

@ Since € ¢ ¥, we do not allow, for example, (p,€,q) in the transition
relation of finite automata.
@ A transition with € as its input symbol is called an e-transition.

» Intuitively, it represents that the finite automaton can move to another
state without consuming any input symbol.

o Consider the NFA M. We have L(M,) =0"1".
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NFA with e-Transitions to DFA

Figure: NFA M, to M3 without e-transition

@ It is actually not difficult to see that e-transitions can be removed.
» The idea is to simulate e-transitions by consuming input symbols.

@ We will not give a proof but only consider an example.
@ In general, removing e-transitions will result in an NFA.
@ We can futher transform an NFA to a DFA.
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DFA to Regular Expressions

Theorem
Let D be a DFA. There is a regular expression denoting L(D).

Proof.

Let D= ({q1,...,qn},%,0,q1, F) be a DFA. Define
o _ | {a:(gi.a.q)ed} if i+
J {a:(qi,a,q;)edu{e} ifi=j
R = RI(REDRETURS

Intuitively, R,-f represents the inputs that cause D to go from g; to g;
without passing through a state higher than gi. It is not hard to see that
Réf can be denoted by regular expressions.

The result follows by observing that L(D) = Ug;er Ry)- O

v
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Example

Figure: DFA M,

k=0 k=1 k=2
RET 0 0o

RE,| 1 0%1 0°1(01)*0*1+0*1=(0+1)*1

k +
RE| 0 0
k *
RE| 1 01
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Regular Languages

@ The class R of regular langauges consists of langauges accepted by
deterministic finite automata.

R={L(D):DisaDFA}
@ Since each NFA can be transformed to a DFA, we have
R ={L(M): M is an NFA }
@ Since each regular expression can be transformed to an NFA, we have

R ={L(e) : e is a regular expression }
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Closure Properties w-Automata

We would like to generalize inputs to finite automata.

@ For any Lg, L1 € R, there are regular expressions ry and r; denoting Lo Instead of finite input sequences, let us consider an infinite input
and L; respectively. sequence o = ajap:--a,--- Over X.

@ Moreover, the regular expression rg + r; denotes Lo U Ly and is o Let M=(Q,%,4,qo, F) be a finite automaton.
accepted by an NFA. @ As before, define a run p = gogi---gn--- on « to be an infinite sequence
@ Thus LouL; € R for any Lo, L; € R. of states such that
@ Similarly, we can prove that .
> . . . .
+ LoLy € R for any Lo, Ly € R, and for all i >0, (i, a1, qiv1) € 6

» L*eR forany LeR.

What is an accepting run then?

» Problem: there is no “final” state in an infinite run.
» We cannot reuse the old definition.
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Closure Properties (cont'd) Blichi Acceptance
Theorem @ Let p=qog1---qn--- be an infinite run.
Forany LeR, X"\ LeR. o Define
Proof. Inf(p) = {q € Q : g occurs infinitely many times in p}.
Let D =(Q,%,0,qo, F) be a DFA and L= L(D). Then @ An infinite run p of M = (Q,X,d, qo, F) over « is accepting if
D' =(Q,%,d,q0,Q~ F) accepts the language X* \ L. O Inf(p) N F # @.
» This is called Biichi acceptance

Theorem @ An infinite input sequence « is accepted by M if there is an accepting
Forany Ly, L1 e R, LonLi eR. infinite run p of M over «.

o Finally, define
Proof.
Observe that Lon L1 = £* ~ ((Z* ~ Lo) U (Z* ~ L1)). 0 L,(M) ={a: «ais an infinite input sequence accepted by M}.
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Example

Figure: NFA M,

@ Let us reconsider My.
o L,(Mp) = {a: « has only finitely many 0's}.
» If there are infintiely many 0's, My has to stay in qp. It cannot pass ¢;
infinitely many times.

o We will write the expression (0+ 1)*1“ to denote L(Mjp).
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Nondeterminism

e For finite automata over finite input sequences, we know
nondeterminism does not give us more expressive power.

@ However, nondeterministic finite automata with Biichi acceptance
over infinite input sequences can recognize more languages than
deterministic ones.

Theorem
(0+1)*1¥ cannot be accepted by any DFA with Blichi acceptance.

Proof.

Suppose D = (Q,X,0,qo, F) is a DFA and L(D) = (0+1)*1*. Consider
1¥. There is ng such that 1™ causes D to reach an accepting state. Now
consider 1™01“. There is n; such that 1™01™ causes D to reach an
accepting state. We can therefore construct 1™01™01™0--- to cause D to
pass through F infinitely many times. A contradiction. [

v
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Remark

Figure: NFA My

The proof does not work for NFA.
Consider again the NFA Mj.

1 causes Mp to reach g;. 101 causes My to reach qi, etc. There is no
problem.

However, 101 passes g1 only once. Similarly, 10101, 1010101, ... pass
g1 only once.

Because My is nondeterministic, infinite runs may not be the “limit”
of their finite prefixes.
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The Class of Regular w-Languages

@ Define
R ={L,(M): M is an NFA with Biichi acceptance }.

@ R, is called the class of regular w-languages.

@ Under Biichi acceptance, nondeterminism increases the expressive
power. We have

{L,(D): D is a DFA with Biichi acceptance } ¢ R,,.

@ In addition to Biichi acceptance, we will discuss three different
acceptances.
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Muller Acceptance

Figure: DFA M5

o Let M =(Q,X,0,qo,F) be a finite automaton with F c 29,
@ An infinite run p over an input sequence a on M is accepting if
Inf(p) € F.
» This is called Muller acceptance.
o Consider the DFA Ms with F = {{q2}}.
e With Muller acceptance, we have L,(Ms) = (0+1)*1%.

» Note that M5 is deterministic
» Also note that (01)“ is not accepted with Muller acceptance.
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Rabin Acceptance

Figure: DFA M5

o Let M=(Q,X,0,q0,Q) be a finite automaton with
Q:{(E07F0)7"‘7(Ek7":k)} and Ei7Fng-

@ An infinite run p over an input sequence o on M is accepting if
3(E, F) € Q such that Inf(p) N E = @ and Inf(p) n F # @.

o Consider the DFA Ms with Q = {({q1},{q92})}-
e With Rabin acceptance, we have L,(Ms) = (0+1)*1%.

» Inf(p) n {qg1} = @ forbids 0 to occur infinitely many times.
» Inf(p) n{g2} # @ forces 1 to occur infinitely many times.
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Streett Acceptance

Figure: DFA Ms

o Let M=(Q,%,d,qo, Q) be a finite automaton with
Q= {(Eo, Fo), cee, (Ek, Fk)} and E,‘, F;c Q.
@ An infinite run p over an input sequence o on M is accepting if

V(E,F) eQ,Inf(p) nE + @ or Inf(p) N F = @.

@ Observe that Rabin acceptance and Streett acceptance are
complementary.

o Consider the DFA Ms with Q = {({q2}, {q1, 92}), (@, {a1 })}.
» ({g2},{q1,q2}) forces 1 to occur infinitely many times.

» (2,{q1}) forbids 0 to occur infinitely many times.
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Expressive Power

@ An important question in w-automata theory is to compare the
expressive power of various acceptances.

@ We have shown that non-deterministic Biichi acceptance is strictly
more expressive than deterministic Biichi acceptance.

@ What is the relation between non-deterministic Biichi acceptance and
non-deterministic Muller acceptance

» Similarly, what about non-deterministic Rabin acceptance and
non-deterministic Streett acceptance?

@ What is the relation between deterministic Biichi acceptance and
deterministic Muller acceptance

» And between deterministic Rabin acceptnace and deterministic Streett
acceptance?

@ We will address these questions shortly.
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Expressive Power (Overview)

DMA «——— DRA «+— DSA

/(/) NRA

NBA ——— NMA —
\ NSA

D: Deterministic, N: Nondeterministic

B: Biichi, M: Muller, R: Rabin, S: Streett
A: Automata

X = Y: X can be translated to Y

(The graph here only covers translations in this lecture and hence is not
complete.)
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Buchi to Muller Acceptance

Lemma

Let B=(Q,X,d,qo,F) be a finite automaton with Biichi acceptance.
Define M = (Q,%,0,q,F) with F={Gc Q:GnF +z}. Then
L,(B)=L,(M).

Proof.

Let o be an input sequence and p an infinite run over & on B. a € L,(B)
iff Inf(p) N F # @ iff Inf(p) € F iff a € L, (M). O
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Example

0,1 1
e :

Figure: NFA My

@ The finite automaton M = ({qo, g1}, {0,1},6, go, F) with Muller
acceptance where

g 5:{(q0707q0)7(q0717q0)7(qulaql),(qh]wa)};
> F={{a} . {q0,q}}

accepts the same w-language.
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Muller to Buchi Acceptance

Lemma

Let M =(Q,X,d,qo,F) be a finite automaton with Muller acceptance.
There is a finite automaton B = (Q',%,¥’, qo, F) with Biichi acceptance
such that L,(B) = L,(M).

Proof.

The idea is to “guess” a set G € F and check whether all states in G are
visited infinitely many times.

For each G € F, we define Qg = {gg : g € G}. Moreover, we use a set to
record which states in G have been visited. Define

Q' = QuUUger(Qq x 2°).

§'=0u {(p7 a, (anz)) 5 (pv a, q) € 5}U
{((pG7 R)737 (an Ru {p})) e (p’ a, q) € 67 R # G}U
{((va G)aaa (qug)) 5 (paaa q) € 5}
F={(496.9):q6 € Qg,G € F}.

=
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Example

0,1 1

° - °

Figure: NFA My

e Consider M = ({qo,q1},{0,1},0, go, F) where

6 =1{(90,0,90),(q0,1,90),(qo0,1,91),(q1,1,q1)} and
F={{q0,q1},{q1}}-
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Rabin and Streett to Muller Acceptance

Lemma

Let R=(Q,X,0,q0,Q) be a finite automaton with Rabin acceptance.
Define M = (Q, X, 4, qo, F) with Muller acceptance where

F={GcQ:3(E,F)eQ.GnE=3AGnF +g}.

Then L,(R) = L,(M).

Lemma

Let S=(Q,X,0,qo,) be a finite automaton with Streett acceptance.
Define M = (Q, %, 0, qo, F) with Muller acceptance where

F={GcQ:Y(E,F)eQ.GnE+@aVvGnF=g}

Then L, (S) = L,(M).

@ These two follow from the definition immediately.
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Example

0 1
3
OO0

Figure: DFA M5

o Consider the finite automaton R = ({q1,¢2},{0,1},0, g1,2) with
Rabin acceptance where

» 0={(91,0,91),(91,1,92),(92,0,q1), (g2, 1, q2) }
» Q={{q1},{a=}}

@ The finite automaton M = ({q1, 92}, {0,1},6, g1, {{g2}}) with Muller
acceptance accepts the same w-language.
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Bichi to Rabin and Street Acceptance

Lemma

Let B=(Q,X,d,qo,F) be a finite automaton with Biichi acceptance.
Define R = (Q, X, 4, qo, ) with Rabin acceptance where Q = {(2, F)}.
Then L,(B) = L,(R).

Lemma

Let B=(Q,X,d,qo,F) be a finite automaton with Biichi acceptance.
Define S = (Q, X, 9, qo, Q) with Rabin acceptance where Q = {(F,Q)}.
Then L,(B) = L,(S).

@ These two also follow by definition immediately.
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Example

Figure: NFA My

e Consider the finite automaton My = ({qo, q1},{0,1},0, go,{q1}) with
Biichi acceptance where

» 4= {(q0707 q0)7 (q07 17 qO)a (qu 1) q1)7 (qla 1a ql)}

@ The finite automaton R = ({qo,q1},{0,1},0, g0, {(&,{q1})}) with
Rabin acceptance recognizes the same w-language.
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Expressive Power

@ We have the following transformaion:

» Biichi to Muller acceptance
» Muller to Biichi acceptance
» Rabin and Streett to Muller acceptance
» Biichi to Rabin and Streett acceptance

@ Therefore,

Lemma

The following classes of w-languages are equivalent:
Q {L,(M): M is an NFA with Biichi acceptance },
Q@ {L,(M): M is an NFA with Muller acceptance };
@ {L,(M): M is an NFA with Rabin acceptance };
Q {L,(M): M is an NFA with Streett acceptance }.
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Deterministic Muller to Rabin Acceptance

Lemma
Let M =(Q,X,d,qo0,F) be a DFA with Muller acceptance. Assume
Q={1,2,...,k} and qo = 1. Consider R=(Q',%,d', q},Q) with Rabin
acceptance where
o Q' ={we(Qu{y})*:Yqge Qu{t},q occurs in w exactly once. }.
® qp=hk-1.
© O'(my--mphympiq---my,a) = my---ms_1 ff Mgy1---myems if 6(my, a) = ms.
e O = {(Eo, Fo), R (Ek, Fk)} with
Ei={uqv:|u<i}
Fi={ufv:|ul <iyu{upgv:|ul=iand {meQ:m occursinv}eF}.

We have L,(M) = L,(R).
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Deterministic Muller to Rabin Acceptance

Proof (sketch).

Let us consider a run p of M with Inf(p) = J={my,...,m;}. In the
corresponding run on R, states in @ \ J will eventually move before 4.
Hence, R will finally visits states of the form uf v where u contains all
states in @ \ J. Therefore, |u| >|Q \ J| and |v| < |J| = j eventually. Since J
are visited infinitely often, we have |v| = |J| = j infinitely often. Moreover,
the states in v when |v| = are precisely the set J. O

4
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Example

0 1
": °
1

Figure: DFA Mg

o Consider Ms = ({91,92},{0,1},9, g1, {{g2}}) with Muller acceptance
where

» = {(q1707 ql)a (q17 17 CI2)7 (q2a07 q1)7 (q2a ]-a CI2)}
o The DFA Mg = (Q,{0,1},4", {(Eo, Fo), (E1, F1), (E2, F2)}) with
Rabin acceptance where

> Q={bq12,192q1,911 G2, G2 1 G1 }

» (Eo, Fo) = (2,9)

» (B, F) = ({09192, 1921 3, {h 9192, 01 6291, g1 G2 })
g (E2’ F2) = (Qv Q)

recognizes the same language.
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Deterministic Rabin to Muller Acceptance

Lemma

Let R=(Q,X,0,q0,Q) be a DFA with Rabin acceptance. Define
M= (Q,X,d,qo,F) with Muller acceptance where

F={GcQ:IE,F)eQGnE=3AGNnF + 3}

Then Ly (R) = L,(M).

@ This is the same construction for the non-deterministic case.
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Deterministic Rabin to Streett Acceptance

Lemma

Let D=(Q,%,d,q0,2) be a DFA with Rabin acceptance. Consider
E=(Q,%,0,q0,Q) as a DFA with Streett acceptance. Then
L,(D) =X Ly (E).

Proof.

Rabin acceptance and Streett acceptance are complementary. ]

Lemma

Let M =(Q,X%,d,qo,F) be a DFA with Muller acceptance. Define
M =(Q,%,8,q0,2° ~ F). Then L,(M) =% L,(M").

Proof.

By definition. |
w
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Deterministic Rabin to Streett Acceptance

Lemma

Let R be a DFA with Rabin acceptance. There is a DFA S with Streett
acceptance such that L,(R) = L,(S).

Proof.

We construct a DFA M with Muller acceptance such that
L,(M)=L,(R). Build M" with Muller acceptance such that
L,(M")=X“L,(M). Then we construct a DFA R" with Rabin acceptance
such that L,(R") = L,(M"). Then S = R" with Street acceptance is what
we want. We have the following equation:
L, (S) with Streett acceptance

= XY¥\ L,(R’) with Rabin acceptance

= X¥\ L,(M") with Muller acceptance
Y¥ N (XY N Ly(M)) with Muller acceptance
L, (M) with Muller acceptance
= L, (R) with Rabin acceptance.

4
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Example

0 1
IoSS
(=)
Figure: Rabin to Muller Acceptance

o Consider the DFA R = ({q1,92},{0,1}, 4, go, 2) with Rabin
acceptance where

» 0={(91,0,91),(91,1,92),(92,0,q1), (g2, 1, q2) }
» Q={({q1},{9=})}

e The DFA M = ({q1,92},{0,1},6, g1, {{qg2}}) with Muller acceptance
recognizes the same language.
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Example

0 1
()
1
Figure: Muller Complementation

o Consider the DFA M = ({q1,92},{0,1},0,q1,{{g2}}) with Muller
acceptance where

» 4= {(qlvov ql)? (qlv 1, q2)7 (q230a ql), (q27 17 q2)}

@ The DFA M" = ({g1,92},{0,1},8,91,{2,{q1},{q1, g2} }) with Muller
acceptance recognizes ¥ \ L,(M).
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Example

Figure: Muller to Rabin Acceptance

e Consider the DFA M’ = ({q1,92},{0,1},6,91,{@,{q1 },{q1, a2} })
with Muller acceptance where

» 0= {(q1707 ql)a (ql, 1, q2)7 (q2303 ql), (q27 17 q2)}
e The DFA R' =(Q,{0,1},¢",{(Eo, Fo), (E1, F1,(E2, F2),(E3,F3))})
with Rabin acceptance where

» Q=1{h9192,59291,91 b G2, G2 h G1 }

» (Eo, Fo) = (2,{h 9192, g2q1})

» (Ei,F1) = ({b 192, 59201}, {19192, 11 9201, G2 1 91 })
g (E27 F2) = (E37 F3) = (Q7 Q)

recognizes L,(M").
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Example

Figure: Rabin Complementation

@ Consider the DFA
R = (Q, {0, 1}, 5’, {(Eo, Fo), (El, Fl), (EQ, FQ), (E37 F3)}) with Rabin
acceptance where
» Q={bq192,192q1,911 92,921 g1 }
» (Eo, Fo) = (2,{h 9192, g2q1})
» (Ei,F1) = ({b 192, 59201}, {19192, 11 G201, G2 1 91 })
» (B2, F2) = (E3,F3)=(Q,Q)
o The DFA S =(Q,{0,1},0",{(Eo, Fo), (E1, F1), (E2, F2), (E3, F3)})
with Streett acceptance recognizes ¥ \ L, (R’).
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Expressive Power

@ In summary, we have shown Muller, Rabin, and Streett acceptaces are
equivalent for deterministic finite automata.

Theorem

The following classes of w-languages are equivalent:
Q {L.(D):D is a DFA with Muller acceptance };
@ {L,(D):D is a DFA with Rabin acceptance },
© {L.(D):D is a DFA with Streett acceptance }.

Corollary

The following classes are closed under union, intersection, and
complementation:

@ {L,(D):D is a DFA with Muller acceptance };
@ {L,(D):D is a DFA with Rabin acceptance };
© {L.(D):D is a DFA with Streett acceptance }.

v
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Relating Nondeterministic and Deterministic Classes

@ We have shown that Biichi, Muller, Rabin, Streett acceptances are
equivalent for nondeterministic finite automata

@ We also know that Muller, Rabin, Streett acceptances are equivalent
for deterministic finite automata
@ Are these two classes of w-languages equivalent?
» YES!
@ We can in fact compute the complement of NFA with Biichi
acceptance

» Transform NFA with Biichi acceptance to DFA with, say, Muller
acceptance

» Find the complement of the DFA with Muller acceptance

» Transform DFA with Muller acceptance to NFA with Biichi acceptance

@ In Prof. Tsay's lecture, a construction for complementation will be
given. (Have fun!)
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Second-Order Logic

@ Second-order logic (SO) is an extension of first-order logic.
@ It allows relational variables X, Y, Z,....

@ Terms in second-order logic includes

» All terms in first-order logic; and
» Xti---t, where X is an n-ary relational variable and ti,...,t, are terms.

o Well-formed formulae in second-order logic includes

» All well-formed formulae in first-order logic; and
» 31X ¢ where X is a relational variable and ¢ a formula.
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Monadic Second-Order Logic: Syntax

@ A l-ary relational symbol is called monadic.

e Monadic second-order logic (MSO) is a subclass of second-order logic
where all relational variables are monadic.
@ The syntax of monadic second-order logic over vocabulary o
(MSO[o]) is as follows.
» If X, Y €0 are monadic, X ¢ Y is in MSO[o];
» If R, Y1,Ys, ..., Yy are in MSO[o] and R has arity k, then RY; Y5 Y
is in MSO[o];
» If ¢ and ¢ are in MSOJo], so are -¢ and ¢ Vv ¢;
» If ¢ is in MSO[ou {X}] and X is monadic, then 3X¢ is in MSO[o].
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Monadic Second-Order Logic: Semantics Weak Monadic Second-Order Logic

@ The satisfication relation & is defined as follows. Let Y be a model
over the vocabulary o.

CUEXCYifXYC Yy @ Weak Monadic S.econd—Order. Logic (WMSO) has the same syntax as
s e RYLYi if R (Y x YY) £ MSO. Its semantics however is slightly different:
» Sl —¢ is not U & ¢; » iy 3X¢ if there is an extension model 9B over o U {X} such that
s e GV if e ¢ or Ui b B =, ¢ and XT is finite.
» L= 3X¢ if there is an extension model B of 4l over o U {X} such that @ In other words, the second-order quantification in WMSO is over
BEg. finite sets.
@ Semantically, a monadic symbol represents a set of objects > On the other hand, we can quantify arbitrary sets in MSO.

@ Where is the first-order quantification?
» Ix¢ is not in MSO[o]!
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Abbreviations Infinite Inputs as Structures

@ We use the following abbreviations:

A S A )]

Let X be a finite alphabet.

p—1  for —pva o Consider the structure 3 = (Z*, 5%, (P3).cx) where

VX¢ for —-3X-¢ » S7={(n,n+1):neZ*};

X=g for VYXcVY >P§EZ+foraIIa€Z.

sing(x) for -x=@AVX(Xcx—>(xcXvX=0)) @ Intuitively, each positive integer represents a position in an input

xeP for sing(x)Axc P sequence.
P=Q for PcQArQcP
Ix e Pp for 3Ix(xePAg)

VxeP¢p for Vx(xeP — ¢).

@ A position in the set Pg means that the symbol a appears in the
position

We can represent an infinite input with such a structure.

e Note that sing(x) means that x is a singleton set
» x is a l-ary relation and o € x for exactly one object o
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Example Initially Closed Sets

@ Aset P of Z* is initially closed if

forall x,y e Z*(ye PAx<y - xeP).

o Let ¥ ={0,1}. o Consider the following formula:

@ The input sequence 0“ corresponds to INCI(P) = VxVv((sing(x)ASxy Ay eP) = xeP
30=(Z+,530,P50=Z+,P1:‘°=®). (P) y((sing(x) yAy€eP)— )-

@ The input sequence (01)“ corresponds to @ Then

J1 = (Z*,S™, Pt = {2k + 1: ke N}, P = {2k : k e Z*}). Lemma

For any infinite input structure J, the following are equivalent:
3 &= InCI(P);
Iy InCI(P);

P is initially closed.
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S1S and WS1S Transitive Closure of Successor

@ Consider the following binary relations:

@ Monadic Second-Order Logic with One Successor (S1S) is the logic < = {(n,n+m):nmeZ*}
MSO over infinite inputs. < = <u{(n,n):neZ"}.
» That is, the satisfication relation & is restricted to infinite inputs on the
left @ We can represent these relations in (W)S1S:
@ Weak Monadic Second-Order Logic with One Successor (WS1S) is
the logic WMSO over infinite inputs. x<y = sing(y) AVP((InCI(P) Ay € P) - x e P)
x<y = x<yA-(x=y).

@ Thus, we are free to use x <y and x <y in (W)S1S.
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Infiniteness

@ Let J be an infinite input structure.
@ Consider the following S1S formula:

Inf(P)=3P'(P'+aAVx e P'Aye Py’ e P'(X' <y ax' < y").

e We have J & Inf(P) if P is an infinite subset of Z™.

» Informally, P is an infinite subset of Z* if there are infinite
X4 < X1 < x3 < --- such that for each i, there is a y; such that x/ < y;.

Bow-Yaw Wang (Academia Sinica)

Logic and Finite Automata

@ Let « be an infinite input over ¥ and J, its infinite input structure.
@ We have two formalisms to define w-languages over ¥:

» L,(M) ={a:«is accepted by the DFA M};

» Ly(¢) ={a:Ts = ¢, ¢ is an S1S formula}.
@ An important question (as in DFA’s and NFA's) is to determine the

expressive power of finite automata over infinite inputs and S1S over
infinite input structures. More precisely,

» Given a DFA M with Muller acceptance, is there an S1S formula ¢
such that L,(M) = L, (¢)?
» Given an S1S formula ¢, is there a DFA M with Muller acceptance
such that L,(¢) = L,(M)?
@ We will show that finite automata and S1S formulae are equally
expressive.
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Finite Automata to S1S

Lemma

For each NFA M with Muller acceptance, there is a formula ¢y € S1S
such that Ya € X, M accepts a iff T, = op.

Proof.
Let M = (Q,X,6,qo,F). Define R = (Rq)qgeq- Consider

ém = IR(Part A Init A Trans A Accept).

Part formalizes that the states on the run form a partition. Let

Stateq(x)
Part

X € Rq AN /\q/gQ\{q} —|(X € qu)
Vx(sing(x) = Vgeq Stateg(x)).
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Finite Automata to S1S
Proof.

Init formalizes the initial condition.
Init = 3x(Stateq, (x) A Vy(sing(y) = x < y).
Trans expresses the transition relation.

Trans = VxVx/'((sing(x) Asing(x") A Sxx") —
V(q’a’q,)E(;(Stateq(x) A x € P, A Stateg(x))).

Accept represents the Muller acceptance. Consider

InfOccq(P) = 3FQ(RcPAQCRyAINF(Q))
Muller(P) = VEer(Ager InfOccq(P) A Aggr —InfOccq(P))
Path(P) = Inf(P) A InCI(P)A

VR((Inf(R) AInCI(R)AQESP)— Q=P)
Accept = VP(Path(P) — Muller(P))
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S1S to Finite Automata

Lemma

For each S1S formula ¢, there is a DFA My with Muller acceptance such
that Jo = ¢ iff Vo e X, My accepts a.

Proof.

By induction on ¢, we construct a DFA M over 2*.
For ¢ = P, € Pp, define My = ({q},2%,9,q,{q}) where

0={(q,A,q):AcX, and ac A implies b e A}.
For ¢ = SP,Py, define My = ({qo, 41,42}, 2>, 4, 4o, {g2}) where

o = {(qO,A,7qo)33¢A/,A/EZ}U{(Qo,A,q1)ZQEA,AEZ}U
{(ql’Bl,qo)Ib¢B/,B,EZ}U{(ql,B,qQ)IbEB,BEZ}U
{(qz,C,Q2)ICEZ}.

v

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 69 / 75

S1S to Finite Automata

Proof.

For disjunction and negation, recall that DFA’s with Muller acceptance are
closed under union and complementation. We apply these constructions in
inductive step.

For ¢ = 3P, assume My, = (Q,2%,6,qo,F). Define

My = (Q,2%,6', qo, F) where

6'={(q,A{a},q'): (q,A,q') € 0}.

@ Technically, we construct a DFA over 2% not X. This is necessary
when, for instance, ¢ = P, € Py,
@ Our presentation is overly simplified. We do not consider monadic
relational variables (as in X ¢ P,).
» We can extend the alphabet to have a fresh symbol for each relational
variable.
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Muller Acceptance and S1S

Thus, we have shown that nondeterministic finite automata with
Muller acceptance have the same expressive power as S1S.

@ Observe that the quantification over infinite subsets is needed in
Muller acceptance.

» Precisely, InfOccq(P) in Accept.

@ The proof would not go through for WS1S where only finite subsets
can be quantified.
@ Is WSIS strictly less expressive than S1S7?
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Deterministic Muller Acceptance and WS1S

@ Interestingly, the answer is negative.

@ For deterministic finite automata with Muller acceptance, there is a
WS1S formula which recognizes the same w-language.

@ Since deterministic finite automata with Muller acceptance is as
expressive as nondeterministic ones, WSI1S is as expressive as S1S.

o We will give a WS1S formula ¢y, for each deterministic finite
automata M with Muller acceptance.

» The idea is to consider all finite prefixes of the accepting run in M.
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Deterministic Muller Acceptance to WS1S References

Lemma

For each DFA M with Muller acceptance, there is a formula ¢y € S1S
such that Yo € X%, M accepts « iff T, E dp-

Proof.

Let M = (Q,X,6, qo, F) be a DFA with Muller acceptance. Define © Hopcroft and Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.
Stateg(x) = x€RyAAgequiqy~(x€Ry)
Part(/) = Vxel(sing(x) = Vgeq Stateg(x))
Init = 3Ix(Stateg,(x) A Vy(sing(y) > x<y)
Trans(/) = VxelVx' el((sing(x) Asing(x") A Sxx") -
V(qg,a,')es (Stateq(x) A x € P, A Stateg(x")))
Occq(x) = 3II(InCI(I) Axeln
JR(Part(/) A Init A Trans(/) A Stateq(x)))
InfOccy = Vx(sing(x) - Jy(x <y AOccq(y)))
Accept = VEer(Ager InfOccq A NagF -InfOccy).

@ Gradel, Thomas, Wilke. Automata, Logics, and Infinite Games - A
Guide to Current Research. Springer.

Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 73/ 75 Bow-Yaw Wang (Academia Sinica) Elementary Automata Theory July 1, 2009 75/ 75

Deterministic Muller Acceptance to WS1S

Proof.
Let ¢p = Accept. Then T, E ¢y iff M accepts a. DJ

Figure: NFA My

@ For DFA's, an infinite run is the “limit" of its finite prefixes.

@ The formula InfOccq correctly expresses that g occurs infinite many
times in the run on DFA's.
@ On the other hand, InfOccq is not correct for NFA's.
» Consider My as a counterexample.
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