Glossary for Logic

Max Schäfer

Connectives and Quantifiers

NJ

Propositional Rules

Conjunction Introduction:

$$(\wedge I) \frac{\varphi \quad \psi}{\varphi \land \psi}$$

Conjunction Elimination:

$$(\wedge \mathbf{E}_l) \frac{\varphi \wedge \psi}{\varphi} \qquad \qquad (\wedge \mathbf{E}_r) \frac{\varphi \wedge \psi}{\psi}$$

Disjunction Introduction:

$$(\vee \mathbf{I}_l) \frac{\varphi}{\varphi \vee \psi} \qquad (\vee \mathbf{I}_r) \frac{\psi}{\varphi \vee \psi}$$

Disjunction Elimination:

$$\begin{matrix} [v:\varphi] & [w:\psi] \\ \vdots & \vdots \\ (\vee \mathbf{E}^{v,w}) \, \frac{\varphi \lor \psi \quad \vartheta}{\vartheta} \quad \frac{\vartheta}{\vartheta} \end{matrix}$$

All open assumptions from the left subderivation are also open in the two right subderivations. Implication Introduction:

$$\begin{matrix} [x:\varphi] \\ \vdots \\ (\to \mathbf{I}^x) \ \underline{\psi} \\ \hline \varphi \to \psi \end{matrix}$$

Implication Elimination (modus ponens, MP):

$$(\rightarrow \mathbf{E}) \; \frac{\varphi \rightarrow \psi \qquad \varphi}{\psi}$$

\perp	falsity
Т	truth
$\varphi \wedge \psi$	conjunction, "and"
$\varphi \vee \psi$	disjunction, "or"
$\varphi \to \psi$	implication, "ifthen"
$\neg \varphi$	negation, "not"
$\varphi \leftrightarrow \psi$	equivalence
$\forall x. \varphi$	universal quantification, "for all
	individuals x, φ "
$\exists x.\varphi$	existential quantification, "there
	is an individual x such that φ "
$\forall P.\varphi$	(2nd order) universal quantifica-
	tion, "for all propositions P, φ "
$\exists P.\varphi$	(2nd order) existential quantifi-
	cation, "there is a proposition P
	such that φ "

Semantic Definitions

valid	a formula that is always true
satisfiable	a formula that has a model
$\varphi \Leftrightarrow \psi$	φ and ψ have same truth value
	under all interpretations
$\Gamma \models \varphi$	any model for Γ is also a model
	for φ

Falsity Elimination (EFQ):

$$(\perp E) \frac{\perp}{\varphi}$$

First Order Rules

Universal Introduction:

$$(\forall \mathbf{I}) \ \frac{\varphi}{\forall x.\varphi}$$

where x cannot occur free in any open assumption

Universal Elimination:

$$(\forall \mathbf{E}) \ \frac{\forall x.\varphi}{\varphi[t/x]}$$

for any term t

Existential Introduction:

$$(\exists I) \frac{\varphi[t/x]}{\exists x.\varphi}$$

for any term t

Existential Elimination:

$$[u:\varphi]$$

$$(\exists E^{u}) \quad \exists x.\varphi \quad \psi$$

$$\psi$$

where x cannot occur free in any open assumptions on the right and in ψ

All open assumptions from the left subderivation are also open in the right subderivation.

$\mathbf{N}\mathbf{K}$

NK has all rules of NJ except $(\bot E).$ Instead it has the rule

(DN)
$$\frac{\neg \varphi}{\varphi}$$

$\mathbf{N}\mathbf{J}^2$

 $\rm NJ^2$ has all propositional rules of NJ, plus the following:

Universal Introduction:

$$(\forall \mathbf{I}) \; \frac{\varphi}{\forall P.\varphi}$$

where P cannot occur free in any open assumption Universal Elimination:

$$^{(\forall \mathrm{E})} \frac{\forall P.\varphi}{\varphi[\psi/P]}$$

for any formula ψ

Existential Introduction:

$$(\exists \mathbf{I}) \; \frac{\varphi[\psi/P]}{\exists P.\varphi}$$

for any formula ψ

Existential Elimination:

$$[u:\varphi]$$

$$(\exists \mathbf{E}^{u}) \quad \frac{\exists P.\varphi \quad \psi}{\psi}$$

 $\begin{array}{l} \text{where } P \text{ cannot occur free in any} \\ \text{open assumptions on the right and in } \psi \\ \text{All open assumptions from the} \\ \text{left subderivation are also open in the} \\ \text{right subderivation.} \end{array}$