Logic Homework for Lecture II

Max Schäfer

Please answer as many of the following questions as you can, in Chinese or English, on the provided answer sheet and hand it to me on or before **July 9**, **2008**. No delayed submissions will be accepted.

Do not feel pressured to complete *all* questions. The grading of your homework will not be based on how many questions you solve, but on how well you do compared with your classmates.

1 Natural Deduction for Propositional Logic

- 1. Give a derivation of $(P \land Q \to R) \to (P \to Q \to R)$.
- 2. Give a derivation of $(P \to Q \to R) \to (P \to Q) \to P \to R$.
- 3. Give a derivation of $P \wedge Q \rightarrow \neg (P \rightarrow \neg Q)$.
- 4. Give a derivation of $\neg P \lor Q \to (P \to Q)$.
- 5. Give a derivation of $\neg\neg\bot$ \to \bot .
- 6. Show that the rule $(\perp E)$ is *admissible* in system NK, i.e. show that from the premise \perp you can derive any formula φ in NK.

Thus, we can use $(\bot E)$ as if it were a rule of NK.

2 Natural Deduction for First Order Logic

- 1. Can you give a derivation of $(\forall x.\varphi) \to (\exists x.\varphi)$ for any formula φ ? Would you accept this inference step in a mathematical proof? Why or why not?
- 2. Show that $(\forall x.\varphi) \land (\forall x.\psi) \vdash_{NJ} \forall x.\varphi \land \psi$ for any formulas φ and ψ .
- 3. Show that $\vdash_{NJ} (\forall x.\varphi) \to \neg(\exists x.\neg\varphi)$.

3 Natural Deduction for Second Order Logic

- 1. Show that $\vdash_{N,I^2} \bot \leftrightarrow (\forall P.P)$.
- 2. Show that $\vdash_{\mathrm{NJ}^2} \varphi \lor \psi \leftrightarrow (\forall P.(\varphi \to P) \to (\psi \to P) \to P)$.