
FLOLAC 08 2008/06/30

FP & Types 1

06/30~-07/04 FP & Types 428

2008
Defining your own “show”
function

instance (Show a) => Show (Tree a) where
show = showTree

showTree = …

data Tree a = Node a (Tree a) (Tree a)
| Leaf a

Main> Leaf 3
ERROR: Cannot find "show" function for:
*** Expression : Leaf 3
*** Of type : Tree Integer

06/30~-07/04 FP & Types 429

2008Defining your “show” function

instance (Show a) => Show (Tree a) where
show = showTree

data Tree a = Node (Tree a) (Tree a)
| Leaf a

showTree :: (Show a) => Tree a -> String
showTree (Leaf x) = show x
showTree (Node l r) =
"<" ++ showTree l ++ "|" ++ showTree r ++ ">"

> Node (Leave 1) (Node (Leave 2) (Leave 3))
"<1|<2|3>>"

FLOLAC 08 2008/06/30

FP & Types 2

06/30~-07/04 FP & Types 430

2008Derived Instances

data Tree a = Node (Tree a) (Tree a)
| Leaf a

deriving (Eq, Show)

Constructs a “default
instance” of class Show.

Works for standard classes.

Main> Node (Leaf 1) (Node (Leaf 2) (Leaf 3))
Node (Leaf 1) (Node (Leaf 2) (Leaf 3))

Main> (Leaf 3) == (Leaf 4)
False

06/30~-07/04 FP & Types 431

2008A Data type for λ-terms

data Term = V VarName
| L VarName Term
| A Term Term
| I Int
| Term :+ Term -- addition
| IFZ Term Term Term -- if zero

deriving (Show, Eq)

E ::= Id
| \x.E
| E1 E2
| i
| E1 ‘+’ E2
| ifzero E1 then E2 else E3

FLOLAC 08 2008/06/30

FP & Types 3

06/30~-07/04 FP & Types 436

2008Environment-Based Evaluator

• Previously, we see substitution-based evaluation
for lambda calculus with constants

• Now we show an environment-based evaluator.

eval env expr = ... --compute a value

where an environment is a finite function from
Identifiers to values.

Pseudo code:
eval [x=5, y=10] “x+y” = 15

06/30~-07/04 FP & Types 437

2008LC Evaluator, 1
data Term = V VarName

| L VarName Term --lambda
| A Term Term --application
| I Int
| Term :+ Term -- addition
| IFZ Term Term Term deriving (Show, Eq)

data Value = VI Int | VC (Value -> Value)

type VarName = String
-- Environment: associating values with `free' variables
type Env = [(VarName, Value)]
lookup :: Eq a => a -> [(a, b)] -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x
lkup :: Env -> VarName -> Value
lkup env x = maybe err id $ lookup x env

where err = error $ "Unbound variable " ++ x

FLOLAC 08 2008/06/30

FP & Types 4

06/30~-07/04 FP & Types 438

2008LC Evaluator, 2
data Term = V VarName

| L VarName Term
| A Term Term
| I Int
| Term :+ Term -- addition

| IFZ Term Term Term deriving (Show, Eq)

data Value = VI Int | VC (Value -> Value)

type VarName = String
-- Environment: associating values with `free' variables
type Env = [(VarName, Value)]
lkup :: Env -> VarName -> Value
lkup env x = maybe err id $ lookup x env

where err = error $ "Unbound variable " ++ x
-- Denotational semantics. Why? How to make it operational?
eval :: Env -> Term -> Value
eval env (V x) = lkup env x

…

06/30~-07/04 FP & Types 439

2008LC Evaluator, 3

data Term = … | I Int
| Term :+ Term -- addition
| IFZ Term Term Term deriving (Show, Eq)

eval env (I n) = VI n -- already a value
eval env (e1 :+ e2) =

let v1 = eval env e1
v2 = eval env e2

in case (v1,v2) of
(VI n1, VI n2) -> VI (n1+n2)
vs -> error $ "Trying to add non-integers:" ++ show vs

eval env (IFZ e1 e2 e3) =
let v1 = eval env e1
in case v1 of

VI 0 -> eval env e2
VI _ -> eval env e3
v -> error $ "Trying to compare a non-integer

to 0: " ++ show v

--data Value = VI Int | VC (Value -> Value)

FLOLAC 08 2008/06/30

FP & Types 5

06/30~-07/04 FP & Types 440

2008LC Evaluator, 4
data Term = … | L VarName Term --lambda

| A Term Term --app
… deriving (Show, Eq)

data Value = VI Int | VC (Value -> Value)

eval env (L x e) = VC (\v -> eval (ext env (x,v)) e)

ext :: Env -> (VarName,Value) -> Env
ext env xt = xt : env

eval env (A e1 e2) =
let v1 = eval env e1

v2 = eval env e2
in case v1 of

VC f -> f v2
v -> error $ "Trying to apply a non-function: “

++ show v

