
Flolac 2008
Functional programming in Haskell

Assignment 2, Due date: July 3

1. (List comprehension, 30%)
(a) (5%) Using list comprehensions, define a function, countNeg, for counting the
number of negative numbers in a list of numbers.
countNeg :: [Int] -> Int

countNeg [1, -2, 3, -5] = 2

(b) (10%) Define xn using a list comprehension. Name the function as raise:
raise :: Int -> Int -> Int

raise 2 4= 16

(c)(15%) Pascal's triangle is a triangle of numbers
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
.............

computed as follows: (1) The first row just contains a 1.

(2) The following rows are computed by adding together adjacent numbers in the
row above, and adding a 1 at the beginning and at the end.
Write a function, pascal, using list comprehension and ++, which maps a positive
integer n to the nth row of Pascal numbers.
For example, pascal 5 = [1, 4, 6, 4, 1].
Hint: define an auxiliary function pairs which construct pairs from two consecutive
integer in a list.

2. (Higher-order functions and list comprehension 30%)
(a) (10%) Study the code fragment below and identify the operation it provides.
Then rewrite it using map and filter.

q1f1 :: [Int] -> [Int]
q1f1 [] = []

q1f1 (x:xs) | x < 3 = q1f1 xs

| x > 10 = q1f1 xs

| otherwise = x * 3 : q1f1 xs

(b) (10%) Now rewrite q1f1 using list comprehensions and name it as q1f1b.
(c) (10%) Express the comprehension

[f x | x <- xs, p x]
using the functions map and filter. Call the function compre:
compre xs f p = … --using map and filter

3. (Function composition, 20%) Use the functions, remdup, elemOcc, and map to
define a function occurrences that receives a list and returns a list of pairs of an
element and the number of its occurrences in the input list.

 remdup :: Eq a => [a] -> [a] --or [Char]->[Char]
 remdup [] = []
 remdup (x:xs) = x : remdup (filter ?? xs)

 elemOcc :: Eq a => a -> [a] -> Int --or [Char]->Int
 elemOcc x = length . (filter ??)

 occurences :: Eq a => [a] -> [(a,Int)]
 occurences xs = map (??) (??)
 Example: >occurrences [‘a’, ‘c’, ‘d’, ‘a’, ‘c’]
 [(‘a’, 2), (‘c’, 2), (‘d’, 1)]

4. (fold 20%)
(a) Use foldr to define map f. To avoid confusion, please rename it as myMap.

myMap :: (a->b)->[a]->[b]
myMap f = foldr ...

(b) The “unwords” function creates a string from a list of strings by inserting a space
character between the original strings. For examples:
 unwords :: [String] -> String

unwords ["aa","bb","cc","dd","ee"]

 = “aa bb cc dd ee”

Please define unwords in terms of “foldr1”.

