
Flolac 2008
Functional programming

Assignment 1, Due date: July 2

 1. (Simple Recursive functions, 20%) Implement the well-known "power" function in
two different new ways. The power function takes two arguments n and k and computes
nk. Your implementation only has to work for non-negative k. The following is a
straightforward implementation of this function:
 power :: Int -> Int -> Int
 power n k | k < 0 = error "power: negative argument"
 power n 0 = 1
 power n k = n * power n (k-1)

You will implement two more ways in this part.
(a) Use the standard Haskell function "product", which calculates the product

(multiplication) of all elements in a list. To calculate "power n k", first construct a
list with k elements, all being n, and then use "product". Implement this idea as a
Haskell function "power1".

(b) There is a different approach to calculating the power function uses less computing
steps: to calculate "power n k":

• If k is even, we use (n2)k/2

• If k is odd, we use n* (nk-1)

Implement this idea as a Haskell function "power2". (Hint: Use the standard Haskell
functions "even" and/or "odd")

2. (Pattern matching, 30%)
(a) Use pattern-matching with (:) and the wildcard pattern _ to define a function,
myButLast, that find the last but one element of a list. For examples;

myButLast [1,2,3,4] = 3

myButLast ['a'..'z'] = 'y'

(b) Use pattern-matching with (:) to define a function, rev2, that reverses all lists of
length 2, but leaves others unchanged. Ensure that your solution works for all lists ---
that is, that the patterns you use are exhaustive. For examples:

rev2 [1, 2] = [2, 1], but rev2 [1, 2, 3] = [1, 2, 3].

 You may use the standard Haskell function “reverse” in the body of rev2, but you
should not use the “length” function to determine the length of the input parameter.

3. (Tail recursion, 15%) Write a tail-recursive version of the fib function to compute
the nth number in the Fibonacci sequence.

fib :: Int -> Int
fib 0 = 0, fib 1 = 1, fib 2 = 1, fib 3 = 2,
fib 4 = 3, fib 5 = 5, ...

You need to define fib in terms of an auxiliary function which is tail-recursive and
takes two accumulating parameters.

http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html#v:.

4. (List manipulation)
(a) (15%) A permutation of a list is another list with the same elements, but in a
possibly different order. For example, [1,2,1] is a permutation of [2,1,1],
but not of [1,2,2]. Write a function

isPermutation :: [Int] -> [Int] -> Bool

that returns True if its arguments are permutations of each other. Hint: define a
function, removeOnce, that removes the first occurrence of an element from a list,
and use it to implement isPermutation.
(b) (20%) Let us use lists to represent sets. Write a function, subsets, to
generate all subsets of a given set. (Note: you should not use list
comprehension)

subsets :: [Int] -> [[Int]]

 For examples:
 subsets [] = [[]]
 subsets [1,2,3] = [[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

