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Non-recursive Procedures

We first consider procedures with call-by-value
parameters (and global variables).

Syntax:
proc p(in x); S

where x may be a list of variables, S does not contain p,
and S does not change x.

Inference rule:

{P} S {Q}

{P [a/x] ∧ I} p(a) {Q[a/x] ∧ I}

where a may not be a global variable changed by S and
I does not refer to variables changed by S.
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Non-recursive Procedures (cont.)

We now consider procedures with call-by-value,
call-by-value-result, and call-by-result parameters.

Syntax:
proc p(in x; in out y; out z); S

where x, y, z may be lists of variables, S does not
contain p, and and S does not change x.

Inference rule:

{P} S {Q}

{P [a, b/x, y] ∧ I)} p(a, b, c) {Q[b, c/y, z] ∧ I}

where b, c are (lists of) distinct variables, a, b, c may not
be global variables changed by S, and I does not refer
to variables changed by S.
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Recursive Procedures

A rule for recursive procedures without parameters:

{P} p() {Q} ⊢ {P} S {Q}

⊢ {P} p() {Q}

where p is defined as “proc p(); S”.

A rule for recursive procedures with parameters:

∀v({P [v/x]} p(v) {Q[v/x]}) ⊢ {P} S {Q}

⊢ {P [a/x]} p(a) {Q[a/x]}

where p is defined as “proc p(in x); S” and a may not be
a global variable changed by S.
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An Example

proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

The semantics of “read x” is defined as follows:

{IN = v · L ∧ P [v/x]} read x {IN = L ∧ P}

where v is a single value and L is a stream of values.

We wish to prove the following:

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
nonzero();
{IN = L ∧ x = n ∧ n 6= 0} // {Q}
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An Example (cont.)

It amounts to proving the following annotation:

proc nonzero();
begin

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
read x;
if x = 0 then nonzero() fi;
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

end

The first step is to find a suitable assertion R between
“read x” and the “if” statement.

For this, we consider two cases: (1) Z is empty and (2)
Z is not empty.
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An Example (cont.)

Case 1: Z is empty
{IN = n · L ∧ n 6= 0}

read x

{IN = L ∧ x = n ∧ n 6= 0}

Case 2: Z is not empty
{IN = 0 · Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}

read x

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

Applying the Disjunction rule, we get a suitable R:

(IN = L ∧ x = n ∧ n 6= 0)∨

(IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0)
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An Example (cont.)

We now have to prove the following:

{R} if x = 0 then nonzero() fi {IN = L ∧ x = n ∧ n 6= 0}

From the Conditional rule, this breaks down to
{R ∧ x = 0} nonzero() {IN = L ∧ x = n ∧ n 6= 0}

(R ∧ x 6= 0) → (IN = L ∧ x = n ∧ n 6= 0) (obvious)

The first case involving the recursive call simplifies to

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The precondition is stronger than we need and x = 0
can be removed.
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An Example (cont.)

Finally, we are left with the following proof obligation:

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The induction hypothesis gives us exactly the above.

And, this completes the proof.
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Termination of Recursive Procedures

Consider the previous recursive procedure again.
proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

Given an input of the form IN = L1 · n · L2, where L1

contains only zero values and n 6= 0, the command
“nonzero()” will halt.

We prove this by induction on the length of L1.
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Proving Termination by Induction

Basis: length(L1) = 0

The input has the form IN = n · L2, where n 6= 0.
After “read x”, x 6= 0.
The boolean test x = 0 does not pass and the
procedure call terminates.

Induction step: length(L1) = k > 0

Hypothesis: nonzero() halts when
length(L1) = k − 1 ≥ 0.
Let L1 = 0 · L′

1
.

The call nonzero() is invoked with IN = 0 · L′

1
· n · L2,

where L′

1
contains only zero values and n 6= 0.
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Proving Termination by Induction (cont.)

Induction step (cont.)
After “read x”, x = 0.
This boolean test x = 0 passes and a second call
nonzero() is invoked inside the if statement.
The second nonzero() is invoked with L′

1
· n · L2, where

L′

1
contains only zero values and n 6= 0

Since length(L′

1
) = k − 1, termination is guaranteed by

the hypothesis.
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Proving Termination by Induction (cont.)

A rule for proving termination of recursive procedures:

{∃u : W (u < T ∧ P (u))} p() {Q} ⊢ {P (T )} S {Q}

⊢ {∃t : W (P (t))} p() {Q}

where
(W,<) is a well-founded set,
p is defined as “proc p(); S”, and
T is a “rigid” variable that ranges over W and does
not occur in P , Q, or S.
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Sequential vs. Concurrent Programs

Sequential programs (components) with the same
input/output behavior may behave differently when
executed in parallel with some other component.

Consider two program components:

S1

∆
= x := x + 2 and S′

1

∆
= x := x + 1;x := x + 1.

Both increment x by 2.

When executed in parallel with

S2

∆
= x := 0,

S1 and S′

1
behave differently.
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Sequential vs. Concurrent Programs (cont.)

Indeed,
{true} [S1‖S2] {x = 0 ∨ x = 2}

i.e.,
{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

but
{true} [S′

1‖S2] {x = 0 ∨ x = 1 ∨ x = 2}

i.e.,

{true} [x := x + 1;x := x + 1‖x := 0] {x = 0 ∨ x = 1 ∨ x = 2}.
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Atomicity and Interleaving

An action A (a statement or boolean expression) of a
component is called atomic if during its execution no
other components may change the variables of A.

The computation of each component can be thought of
as a sequence of executions of atomic actions.

An atomic action is said to be enabled if its containing
component is ready to execute it.

Atomic actions enabled in different components are
executed in an arbitrary sequential order; this is called
the interleaving model.
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Extending Hoare Logic

The best-known attempt at generalizing Hoare Logic to
concurrent programs is:

S. Owicki and D. Gries. An axiomatic proof
technique for parallel programs. Acta Informatica,
6:319-340, 1976.

Proof outlines (for terminating programs)

Interference freedom

Auxiliary variables
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Proof Outlines

Let S∗ stand for a program S annotated with assertions. A
proof outline (for partial correctness) is defined by the
following formation rules.

{P} skip {P} (Skip)

{Q[E/x]} x := E {Q} (Assignment)

{P} S∗

1
{R} {R} S∗

2
{Q}

{P} S∗

1
; {R} S∗

2
{Q}

(Sequence)

{P ∧ B} S∗

1
{Q} {P ∧ ¬B} S∗

2
{Q}

{P} if B then {P ∧ B} S∗

1 {Q} else {P ∧ ¬B} S∗

2 {Q} fi {Q}

(Conditional)
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Proof Outlines (cont.)

{P ∧ B} S∗ {P}

{inv : P} while B do {P ∧ B} S∗ {P} od {P ∧ ¬B}
(while)

P → P ′ {P ′} S∗ {Q′} Q′ → Q

{P} {P ′} S∗ {Q′} {Q}
(Consequence)

{P} S∗ {Q}

{P} S∗∗ {Q}
(Omission)

where S∗∗ is obtained from S∗ by omitting some of the
intermediate assertions not labeled by inv.

A proof outline {P} S∗ {Q} is said to be standard if every
subprogram T of S is preceded by exactly one assertion,
called pre(T ), and there are no other assertions.
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Atomic Regions

We enclose multiple statements in a pair of “〈” and “〉” to
form atomic regions such as 〈S1;S2〉, indicating that the
enclosed statements are to be executed atomically.

Proof rule:

{P} S {Q}

{P} 〈S〉 {Q}
(Atomic Region)

Proof outline formation:

{P} S∗ {Q}

{P} 〈S∗〉 {Q}
(Atomic Region)

A proof outline with atomic regions is standard if every
normal subprogram is preceded by exactly one
assertion (and there are no other assertions).
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Interference Freedom

A standard proof outline {pi} S∗

i {qi} does not interfere
with another proof outline {pj} S∗

j {qj} if the following
holds:

For every normal assignment or atomic region R
in Si and every assertion r in {pj} S∗

j {qj},

{r ∧ pre(R)} R {r}.

Given a parallel program [S1‖ · · · ‖Sn], the standard proof
outlines {pi} S∗

i {qi}, 1 ≤ i ≤ n, are said to be
interference free if none of the proof outlines interferes
with any other.
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Interference Freedom (cont.)

Proof rule:

{pi} S∗

i {qi}, 1 ≤ i ≤ n, are standard and interference free

{
∧n

i=1
pi} [S1‖ · · · ‖Sn] {

∧n
i=1

qi}
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An Example

{x = 0}
x := x + 2
{x = 2}

{true}
x := 0
{x = 0}

are not interference free.

{x = 0}
x := x + 2
{x = 0 ∨ x = 2}

{true}
x := 0
{x = 0 ∨ x = 2}

are interference free and yield

{x = 0} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}.
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An Example (cont.)

Can we prove the following stronger claim?

{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

This is not possible if we rely only on the proof rules
introduced so far.

It is easy to see that we must prove, for some q1 and q2,

{true} [x := x + 2] {q1} and {true} [x := 0] {q2}.

From {true} [x := x + 2] {q1}, q1 equals true and hence q2

along must imply (x = 0 ∨ x = 2).
From {true} [x := 0] {q2}, q2[0/x] holds.
From {true ∧ q2} [x := x+2] {q2}, q2 → q2[x+2/x] holds.
By induction, q2 holds for all even x’s, a contradiction.
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Auxiliary Variables

A variable z in a program is called auxiliary if it only
appears in assignments of the form z := t.

Rule for auxiliary variables

{p} S {q}

{p} S0 {q}
(Auxiliary Variables)

where S0 is obtained from S by deleting some
assignments with an auxiliary variable that does not
occur free in q.
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An Example (cont.)

{¬done}

〈x := x + 2; done := true〉

{x = 0 ∨ x = 2}

{true}

x := 0

{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}.

are interference free and yield

{¬done}

[〈x := x + 2; done := true〉‖x := 0]
{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}

The conjunct (¬done → x = 0) can now be dropped (for our
purpose).
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An Example (cont.)

{true}

done := false;

{¬done}

[〈x := x + 2; done := true〉‖x := 0]
{x = 0 ∨ x = 2}

from which we infer

{true}

[x := x + 2‖x := 0]
{x = 0 ∨ x = 2}.
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The await Statement

Syntax:
await B then S end

The special case “await B then skip end” is simply
written as “await B”.

Semantics:
If B evaluates to true, S is executed as an atomic region
and the component then proceeds to the next action. If
B evaluates to false, the component is blocked and
continues to be blocked unless B becomes true later
(because of the executions of other components).
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The await Statement (cont.)

Proof rule:

{P ∧ B} S {Q}

{P} await B then S end {Q}
(await)

Proof outline formation:

{P ∧ B} S∗ {Q}

{P} await B then {P ∧ B} S∗ {Q} end {Q}
(await)

For a proof outline to be standard, assertions within an
await statement must be removed.
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An Example with await

· · ·
Q[0] := true;
await ¬Q[1];
/* critical section */
Q[0] := false;
· · ·

· · ·
Q[1] := true;
await ¬Q[0];
/* critical section */
Q[1] := false;
· · ·

Note 1: This is the “first half” of Peterson’s algorithm for
two-process mutual exclusion.

Note 2: Q[0] and Q[1] are false initially.
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An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1]}
Q[1] := false;
{¬Q[1]}

Note: interference free, but not very useful . . . .
We should look for assertions at the two critical sections
such that their conjunction results in a contradiction.
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An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0] ∧ ¬Q[1]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1] ∧ ¬Q[0]}
Q[1] := false;
{¬Q[1]}

Note: looks useful, but not interference free . . . .

Deductive Program Verification at FLOLAC 2007: Hoare Logic (II) [July 11] – 32/37



IM NTU

An Example with await (cont.)

{¬Q[0] ∧ ¬X[0]}

〈Q[0], X[0] := true, true ; 〉

{Q[0] ∧ X[0]}

〈await ¬Q[1];X[0] := false; 〉

{Q[0] ∧ ¬X[0] ∧ (¬Q[1] ∨ X[1])}

Q[0] := false;
{¬Q[0] ∧ ¬X[0]}

{¬Q[1] ∧ ¬X[1]}

〈Q[1], X[1] := true, true ; 〉

{Q[1] ∧ X[1]}

〈await ¬Q[0];X[1] := false; 〉

{Q[1] ∧ ¬X[1] ∧ (¬Q[0] ∨ X[0])}

Q[1] := false;
{¬Q[1] ∧ ¬X[1]}

Note 1: “〈await ¬Q[0];X[1] := false; 〉” is a shorter form for
“await ¬Q[0] then X[1] := false end”.

Note 2: conjoining the two assertions at the two critical
sections gives the needed contradiction.
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Lamport’s ‘Hoare Logic’

In this probably forgotten paper, Lamport proposed a new
interpretation to pre and post-conditions:

L. Lamport. The ‘Hoare Logic’ of concurrent
programs. Acta Informatica, 14:21-37, 1980.

Notation: {P} S {Q}
Meaning: If execution starts anywhere in S with P true,
then executing S (1) will leave P true while control is in
S and (2) if terminating, will make Q true.

The usual Hoare triple would be expressed as
{P} 〈S〉 {Q}, where 〈·〉 indicates atomic execution.
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Lamport’s ‘Hoare Logic’ (cont.)

Rule of consequence (can’t strengthen the
pre-condition):

{P} S {Q′}, Q′ → Q

{P} S {Q}

Rules of Conjunction and Disjunction:

{P} S {Q}, {P ′} S {Q′}

{P ∧ P ′} S {Q ∧ Q′}

{P} S {Q}, {P ′} S {Q′}

{P ∨ P ′} S {Q ∨ Q′}
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Lamport’s ‘Hoare Logic’ (cont.)

Rule of Sequential Composition:

{P} S {Q}, {R} T {U}, Q ∧ at(T ) → R

{(in(S) → P ) ∧ (in(T ) → R)} S;T {U}

Rule of Parallel Composition:

{P} Si {P}, 1 ≤ i ≤ n

{P} cobegin
n

‖
i=1

Si coend {P}
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